STUDI ANALISA PERENCANAAN INSTALASI DISTRIBUSI SALURAN UDARA TEGANGAN MENENGAH (SUTM) 20 KV

Badaruddin¹, Heri Kiswanto²

1,2 Program Studi Teknik Elektro, Fakultas Teknik Universitas Mercu Buana, Jakarta, Indonesia Email: bsulle@gmail.com

Abstrak - Salah satu bagian dari proses penyediaan tenaga listrik bagi konsumen pelanggan listrik adalah operasi jaringan distribusi. Karena sistem jaringan distribusi merupakan titik pertemuan dari para pemakai tenaga listrik dengan sistem penyaluran tenaga listrik.

Salah satu komponen yang memerlukan biaya yang besar pada distribusi saluran udara tegangan menengah adalah penghantar (konduktor). Oleh karena itu, diperlukan analisa perencanaan yang matang agar dapat ditentukan jenis ukuran konduktor yang paling tepat dan sesuai dengan kebutuhan permintaan beban listrik pelanggan, sehingga didapat juga biaya yang ekonomis.

Kata kunci: Jaringan distribusi, tenaga listrik, konduktor

Abstract - One part of the ready process electric power for electricity customer consumer distribution network operation.

Because distribution network system is meeting points from electric power users with electric power canalization system.

ISSN: 2086-9479

One of the component that need big cost in kerage tension air-duct distribution conductor. Therefore, be need ripe planning analysis so that determinable conductor size kind correctest and as according to customer electricity load request need, so that got also economical cost.

Keywords: distribution network, electric power, conductor

PENDAHULUAN

Salah satu bagian dari proses penyediaan tenaga listrik bagi konsumen pelanggan listrik adalah operasi jaringan distribusi. Sistem distribusi merupakan titik pertemuan dari para pemakai tenaga listrik dengan sistem penyaluran tenaga listrik.

Salah satu komponen yang membutuhkan biaya pada saluran udara distribusi tegangan menengah adalah kawat penghantar (konduktor), untuk itu perlu ditentukan ukuran konduktor yang sesuai dengan kebutuhan permintaan agar didapat biaya yang ekonomis tanpa mengurangi persyaratan penyaluran tenaga listrik.

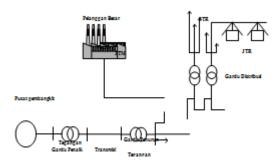
Tujuan Penelitian

Tujuan penelitian ini adalah untuk menganalisis pengaruh ukuran penampang penghantar (konduktor) pada rancangan suatu saluran udara dari distribusi jaringan tegangan menengah dalam upaya mendapatkan pen yaluran biaya yang paling ekonomis, dilihat dari segi investasi dan operasinya, termasuk biaya rugirugi atau susut jaringan mengiringinya dengan pendekatan linearisasi.

Batasan Masalah

Pada penelitian ini pembahasan dibatasi pada penentuan ukuran penampang penghantar pada saluran udara jaringan distribusi tegangan menengah dan masalah teknis yang berkaitan dengan ukuran penghantar.

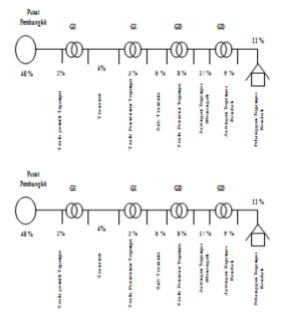
LANDASAN TEORI


Energi listrik pada umumnya dibangkitkan oleh pusat pembangkit

tenaga listrik yang letaknya jauh dari tempat para pelanggan listrik. Untuk menyalurkan tanaga listik tersebut secara ekonomis pada jarak yang cukup jauh, perlu dibuat analisa dan perencanaan yang baik dan matang. Pada umumnya sistem tenaga listrik terdiri dari tiga bagian, yaitu:

ISSN: 2086-9479

- a) Pusat pembangkit tenaga listrik,
- b) Instalasi jaringan transmisi, c)Instalasi jaringan distribusi.


Penyaluran listrik kepada para pelanggan secara skematis digambarkan seperti gambar 2.1. Dalam gambar 2.1 sudah tercakup ketiga unsur dari sistem tenaga listrik, sebagaimana yang dimaksud diatas.

Gambar 2.1. Diagram satu garis penyaluran tenaga listrik

Alokasi Biaya Investasi Penyaluran Tenaga Listrik

Dalam menyalurkan tenaga listrik ke para pelanggan, mulai dari pusat pembangkit tenaga listrik, transmisi dan distribusi, bagian ternyata distribusinya menyerap biaya investasi paling besar kira-kira 45% dari biaya investasi keseluruhannya, seperti yang terlihat pada gambar 2.2. Ke 45% dari biaya investasi itu, diserap di bagian distribusi yang terdiri dari sebagian besar rangkaian primernya (JTM) dan rangkaian sekunder (JTR) dan trafo distribusinya. Dari gambar dimaksud jelaslah bahwa sistem distribusi mempunyai nilai ekonomi yang tinggi. Oleh sebab itu diperlukan perencanaan matang yang agar didapat biaya keseluruhan yang efisien.

Gambar 2.1. Diagram satu garis penyaluran tenaga listrik

ISSN: 2086-9479

SISTEM JARINGAN DISTRIBUSI

Distribusi adalah bagian dari sistem listrik tenaga yang menyalurkan tegangan listrik dari k e gardu induk gardu distribusi kemudian yang disalurkan ke pemakai tenaga listrik (konsumen). Saluran tegangan menengah atau disebut juga Jaringan Menengah (JTM). Tegangan Berfungsi menyalurkan listrik langsung ke pusat (mulut) beban, maka Jaringan Tegangan Menengah biasa disebut juga sebagai penyulang (feeder).

Saluran Udara Tegangan Menengah (SUTM)

SUTM disebut saluran udara tegangan menengah karena kawat hantarnya yang bertegangan menengah berada di udara.

Saluran Kabel Tegangan Menengah (SKTM)

SKTM disebut saluran kabel tegangan menengah karena kawat hantarnya berisolasi penuh (kabel) dan berada di dalam tanah.

BIAYA SALURAN DISTRIBUSI

Biaya Saluran

Biaya saluran terdiri dua komponen utama yaitu biaya investasi dan biaya operasional, termasuk dalam biaya operasional adalah biaya pemeliharaan dan rugi-rugi (susut) teknis.

Biaya terbagi atas beberapa komponen sesuai ketergantungannya dengan penampang konduktor, karena ukuran konduktor diambil sebagai variabel, maka komponenkomponen biaya tersebut antara lain sebagai berikut:

- a. Biaya-biaya tetap yang sama sekali tidak tergantung pada ukuran penampang konduktor, yaitu:
- Biaya investasi, seperti harga tiang, travers, isolator dan ongkos pemasangan, kecuali harga konduktor.
- Biaya pemeliharaan.

b. Biaya rugi-rugi listrik yangberbanding terbalik denganpenampang konduktor.

Maka persamaan biaya saluran adalah sebagai berikut:

$$H = Ho + Hq + Hr$$
 dimana:

H : biaya saluran per satuan panjang per tahun (Rp/km/th)

Ho: biaya tetap yang bukan konduktor per satuan panjang per tahun (Rp/km/th)

ISSN: 2086-9479

Hq: harga konduktor per satuan panjang per tahun

Hr: harga rugi-rugi listrik (energi dan daya) per tahun (Rp/km/th)

Biaya Tetap

Biaya tetap meliputi biaya investasi dan biaya pemeliharaan yang dikeluarkan untuk pengadaan jaringan, yang terdiri dari:

- Biaya pemasangan
- Biaya material
- Biaya pemeliharaan

Maka biaya tetap dapat dinyatakan dalam persamaan:

Ho =
$$\{(Ha + Hp) \times Fc\} + Hh$$
 dimana:

Hh: biaya pemeliharaan (Rp/km/th)
Ha: biaya investasi awal/harga
material (diluar konduktor)[Rp/km]
Hp: biaya pemasangan, 20% dari
Ha(Rp/km)

Fc : faktor cicilan tahunan (unit/th)

3.1.2. Biaya Penampang

Konduktor

Biaya penampang konduktor

dapat dirumuskan sebagai

berikut: Hq = kq x q

dimana:

q : penampang konduktor (mm²)

kq : faktor diskon penampang

konduktor

3.1.4. Langkah Menghitung Rugi

Rata-rata Total Per Tahun

- a. Menghitung faktor pertumbuhan
- (G)

$$G = \left[\frac{a^2-1}{\ln a^2}\right]^{\frac{1}{2}}$$

b. Menghitung faktor distribusi rata- rata (D)

$$D = \left\{ \frac{(1+b+b^2)}{3} \right\}^{\frac{1}{2}}$$

- c. Menghitung impedansi
- (Z)
- d. Menghitung arus ekivalen

(Ieq) Ieq =
$$I_{\text{sa}}$$
.D.G

- e. Menghitung arus pada tahun ke-
- n

$$(Isn) = \frac{Ieq.a}{D.G}$$

f. Menghitung jatuh tegangan ($\Delta V \%$)

$$\Delta V = \frac{I Z L kb}{V} \times 100\%$$

g. Menghitung rugi rata-rata per tahun (Eu)

Eu = $3.(\text{Ieq})^2$. r . L . Fr . 8,76 kWh h. Menghitung arus efektif (Ieff)

$$Ieff = Isn$$

i. Menghitung energi rata-rata per tahun (U)

$$U = \sqrt{3.V}$$
. I_{eff} .cos θ . Fb. 8,76

ISSN: 2086-9479

j. Menghitung rugi total rata-rata per

tahun (Et %)

Et % =
$$\frac{\mathbf{E_u}}{\mathbf{U}} \times 100\%$$

ANALISA

Tinjauan Lokasi

Sebagai bahan analisis perencanaan, diambil sebuah Gardu Induk (GI) di area Cikokol yang merupakan penyulang 20 KV, 3 fasa, saluran udara menggunakan penghantar AAAC seperti terlihat pada gambar 4.1. Direncanakan akan ditarik instalasi jaringan distribusi baru sepanjang km dari Gardu Distribusi DK 102 (titik B) ke Gardu Distribusi DK 103S (titik C) untuk mensuplai beban pelanggan dan jaringan yang terlalu jauh. Sesuai kebutuhan dengan beban yang ada, maka direncanakan

Transformator yang digunakan adalah sebesar 250 kVA.

Maka besar arus (I) adalah:

I = 7,2 A

Gambar 4.1 Penyulang tegangan menengah

PERHITUNGAN BIAYA untuk

 $q = 300 \text{ mm}^2$

Biaya Tetap

Biaya investasi penarikan jaringan distribusi saluran udara tegangan menengah 20 KV dengan jarak 2 km, maka biaya investasi dapat dilihat pada tabel 4.1.

No	Kebutuhan Material	Vol	Harga Satuan	Harga Total		
		1 bh	Rp	Rp		
1	Trafo Dist 250 kVA	2 bh	64.130 .000 Rp	64.130.00 0		
	Travers UNP	1 bh	163.00	Rp		
2	tunggal		0	326.000		
	12-1800 mm ²	4 bh	Rp	Rp		
_			16.111	16.111.00		
3	Box Rak TR	46 bh	.000	0		
	630 A/4 jrs + NH Fuse 250	150 bh	Rp 690.00	D.		
4	A A	150 bn	090.00	Rp 2.760.000		
4	Pipa Arde	3 bh	Rp	2.700.000		
	TM	5 011	140.00	Rp		
5	panjang 6	3 bh	0	6.440.000		
	m untuk		Rp	Rp		
	pentanahan	50 bh	170.00	25.500.00		
6	T. T. I.		0	0		
	Pin Isolator		Rp 668.00	D.,		
7			008.00	Rp 2.004.000		
/	Hang Isolator		Rp	2.004.000		
	L Arrester 20-		487.00	Rp		
8	24 kV Cut		0	1.461.000		
	Out 20 kV,		Rp	Rp		
	100A		1.650.	82.500.00		
9			000	0		
	Tiang beton					
	Rp 201.232.0 00					
	<u>Investasi</u>					

ISSN: 2086-9479

Dari tabel 4.1 didapat biaya investasi awal (Ha) sebesar sebagai berikut:

$$Ha = Rp 201.232.000, -/2$$

km

$$= Rp 100.616.000., - / km$$

Biaya pemasangan (Hp) 20% dari biaya investasi awal, maka:

$$Hp = 20\% x biaya$$

investasi

$$= 20\% \times Rp 100.616.000,$$

$$= Rp 20.123.200, - / km$$

Biaya pemeliharaan

$$(Hh)$$
 Hh = RP

2.000.000,-/km

Maka biaya tetap/th (Ho) dapat diperoleh dengan menggunakan persamaan untuk faktor diskon (i) = 15%, masa ekonomis (n) = 25 tahun. Ho = {(Rp 100.616.000,- + Rp 20.123.200,-) x 0,15 } + Rp 2.000.000,- = Rp 20.110.880,-

Biaya Penampang Konduktor

Untuk mengetahui biaya konduktor, terlebih dahulu harus diketahui nilai faktor rugi-rugi penampang konduktor (kq) dengan menggunakan persamaan dimana N = 3, hq = Rp 21.746.000,- / km mm² dan Fc = 0,15,

maka:

kq = 3 x Rp 21.746.000,- x 0,15 = Rp 9.785.700,- /km/mm²/th Maka biaya konduktor dapat dihitung dengan menggunakan persamaan, yaitu:

$$Hq = Rp 9.785.700,- x 300$$

= $Rp 2.935.570.000,- /km/th$

Biaya Rugi Listrik

Faktor rugi-rugi listrik didapat dengan menggunakan persamaan untuk

$$Fb = 0.5$$
 yaitu:

Fr =
$$0.3 \times (0.5) + 0.7 \times (0.5)^2$$

$$=0,325$$

Dengan menggunakan persamaan energi rugi-rugi per km per tahun (Er) dapat dihitung, dimana p = 3, Fr = 0,325, I = 7,2 A, yaitu:

ISSN: 2086-9479

$$Er = 3 \times 0,100 \times (7,2^2) \times 0,325$$

 $\times 8,76$

= 44 kWh/km/th

Maka biaya rugi (susut) listrik selama 1 tahun dapat dihitung dengan menggunakan persamaan, untuk hr = Rp 495,-/kWh, sebagai berikut: Hr = 44 kWh/km/th x Rp 495,-/kWh

$$= Rp 21.780, - /km/th$$

Total Biaya Penyaluran

Total biaya penyaluran untuk periode 1 tahun diperoleh dengan menggunakan persamaan, sebagai berikut:

$$= Rp 2.955.842.660, -/km/th$$

Dengan cara yang sama, tetapi ukuran panampang konduktor (q) dirubah, maka akan didapat biaya penyaluran seperti terlihat pada tabel 4.2.

Tabel 4.2 Total biaya penyaluran

q (mm²)	Ho (Rp/km/t h)	Hq (Rp/km/t h)	Hr (Rp/km/t h)	H (Rp/km/th)
300	20.110.88 0,-	2.935.710.00 0,-	21.780,-	2.955.842.66 0,-
240	20.110.88	2.348.568.00	27.225,-	2.368.706.10
150	0 20.110.88 0	0 1.467.855.00 0 -	45.045,-	1.488.010.92 5 -

MENGHITUNG RUGI-RUGI TOTAL PER TAHUN PADA SALURAN untuk $q = 300 \text{ mm}^2$

Untuk mempermudahkan analisis, maka perhitungan biaya hanya dilakukan pada satu jurusan yaitu titik B– C, dan parameter yang digunakan untuk mendapatkan pola penyaluran yang baik seperti dijelaskan pada

Menghitung faktor pertumbuhan (G), dengan menggunakan bagian adalah a = 2, b = 0,5 sehingga untuk menghitung jatuh jatuh tegangan pada titik B- C ($V_{\rm BC}$

a. Menghitung faktor pertumbuhan (G), dengan menggunakan persamaan untuk a = 2, sebagai berikut:

$$G = \left\{ \frac{2^2 - 1}{2 \ln 2} \right\}^{1/2} = 1.4711$$

b. Menghitung faktor distribusi
 rugi- rugi (D) dengan
 menggunakan persamaan
 untuk b = 0,5, sebagai berikut:

$$D = \left\{ \frac{(1+0.5+(0.5)^2)}{3} \right\}^{1/2} = 0.76$$

ISSN: 2086-9479

c. Menghitung Z (impedansi),untuk r= 0,100 dan x = 0,094,sebagai berikut:

$$Z = \sqrt{(0.100^2 + 0.094^2)} = 0.137$$

d. Menghitung arus ekivalen karena pengaruh distribusi arus dan pertumbuhan beban dengan menggunakan persamaan untuk Isa = 7,2 A, G = 1,4711 dan D = 0,76, sebagai berikut:

$$Ieq = 7.2 \times 0.76 \times 1.4711 = 8.05 A$$

Maka arus pangkal tahun ke-n (Isn) dapat dihitung dengan menggunakan persamaan untuk a = 2, G = 1,4711 dan D = 0,76, sebagai berikut:

$$I_{sn} = \frac{8,05 \times 2}{0.76 \times 1.4711} = 14,4 \text{ A}$$

e. Menghitung jatuh tegangan titik B - C (ΔV)sepanjang saluran dengan menggunakan persamaan untuk Z = 0,137, L= 2 km, Isn = 14,4 A dan kb = (1+0,5)/2 = 0,75, maka: $\Delta V_{BC} = \frac{0,137 \times 2 \times 14,4 \times 0,75}{20000} \times 100\%$

Selanjutnya untuk menghitung rugi total rata-rata per tahun, dengan langkah-langkah sebagai berikut:

a. Menghitung rugi rata-rata per tahun pada titik $^{E}B^{BC}C$ () dengan menggunakan persamaan untuk Ieq = 8,05 A, r = 0,100 ohm, L = 2 km dan Fr = 0,325 sebagai berikut:

Eu =
$$3 \times (8,05^2) \times 0,100 \times 2 \times 0,325 \times 8,76$$

= $110,695 \text{ kWh/th}$

- b. Menghitung arus efektif (Ieff) pada titik B C dengan
 - menggunakan persamaan untuk Isn = 14,4 A dan a

= 2,sebagai berikut:

$$I_{eff} = \frac{14.4 \cdot (2-1)}{2 \cdot \ln 2} = 10.4 \text{ A}$$

c. Menghitung energi rata-rata per tahun (U) dengan menggunakan persamaan untuk Ieff = 10,4 A, V =

$$20kV$$
, $\cos \theta = 0.85$ dan Fb = 0.5

sebagai berikut:

$$U = \sqrt{3} \times 20 \text{kV} \times 10,4 \times 0,85$$
$$\times 0,5 \times 8,76$$

= 1.341,272 kWh

Maka rugi total rata-rata per tahun (Et %) dengan menggunakan persamaan sebagai berikut:

ISSN: 2086-9479

Et (%) =
$$\frac{110,695}{1.341,272}$$
 x 100%
= 8%

Dengan cara yang sama, tetapi ukuran panampang konduktor (q) dirubah, maka akan didapat biaya penyaluran seperti terlihat pada table 4.3.

Tabel 4.3 Jatuh tegangan dan rugi total rata-rata per tahun

Penampang Konduktor (mm²)	Jatuh Tegangan (ΔV %)	Rugi Total Rata- rata per tahun (Et %)
300	0,015%	8%
240	0,017%	10%
150	0,025%	17%

KESIMPULAN

Dari pembahasan sebelumnya dapat diambil kesimpulan sebagai berikut:

Dalam instalasi jaringan distribusi, khususnya pada saluran udara, yang sangat berpengaruh menentukan besarnya nilai investasi biaya penyaluran adalah ukuran penghantar atau konduktor yang digunakan. Sehingga perlu dibutuhkan analisis perhitungan yang matang agar didapat penggunaan ukuran

- penghantar atau kondukor yang tepat, agar didapat nilai investasi yang optimum dan biaya penyaluran yang ekonomis.
- b. Semakin kecil ukuran penghantar, maka semakin kecil pula biaya penyaluran.
- Semakin kecil ukuran penghantar, maka jatuh tegangan dan rugi total rata-rata per tahun akan semakin besar.

SARAN

yaitu dapat ditulis Saran yang dalam merencanakan sisten jaringan tenaga listrik, hal yang sangat dibutuhkan adalah ketepatan dalam menentukan asumsi-asumsi dan perkiraan yang digunakan. Untuk itu perlu dibuat perkiraan yang matang yang didapat dari teori dan data yang ada, dan juga data hasil monitoring suatu jenis pekerjaan yang sama yang disesuaikan dengan kendalakendala ada yang dilapangan, sehingga dapat membuahkan hasil sesuai dengan tujuan yang perencanaan awal dengan hasil yang optimal dan dapat diandalkan.

DAFTAR PUSTAKA

- Marsudi,D,"Operasi Sistem Tenaga Listrik", Graha Ilmu, Yogyakarta
- Basri, H., "Sistem Distribusi", ISTN. 1994.

ISSN: 2086-9479

- Trisno, B., "Ekonomi Tegangan Tinggi", Diktat Kuliah, Universitas Mercu Buana, Jakarta, 2006.
- Soedirman, S., "Menentukan Ukuran Konduktor Untuk Saluran Udara Pada Jaringan Distribusi dengan Pendekatan Linierisasi", Energi dan Listrik, 1993.
- PLN, "Hantaran Aluminium Campuran (AAAC)", Departemen Pertambangan dan Energi, Jakarta, 1981.
- 6. http://jiunkpe-ns-s1-2001-23497080-244-sutm-chapter2 10 high.
- 7. <u>http://jiunkpe-ns-s1-2001-23497080-244-sutm-</u>chapter2 11 high.
- http://jiunkpe-ns-s1-2001-23497080-244-sutmchapter2 12 high.
- http://jiunkpe-ns-s1-2001-23497080-244-sutmchapter2_13_high.