ANALISIS PERFORMANCE BAN DENGAN ALAT DRUM TEST

Yopi Handoyo¹⁾

¹⁾Program Studi Teknik Mesin, Universitas Islam 45 Bekasi Email : handoyoyopi@yahoo.com

ABSTRAK

Ban merupakan salah satu bagian penting dari sebuah kendaraan bermotor yang berfungsi meneruskan daya dorong dan pengereman, kontrol arah serta sebagai penyangga beban dari kendaraan tersebut berikut muatannya. Berdasarkan fungsi ban diatas maka sangat diperlukan adanya pengujian terhadap performance ban, agar ban yang dipakai dapat memenuhi fungsinya. Untuk mengetahui performance sebuah ban salah satu pengujiannya adalah dengan menggunakan alat uji drum test. Drum test adalah suatu alat atau mesin berbentuk drum dengan diameter 1.707m dan memeiliki permukaan rata yang sebagai prototype jalan raya (jalan tol). Dengan temperatur ruang test 38° C \pm 3° C. Berfungsi untuk menguji performance ban terhadap kecepatan (speed) dan beban (load). Analisis performance ban ini melakukan 4 jenis pengujian, diantaranya ; pengujian high speed yaitu pengujian terhadap kecepatan, pengujian endurance yaitu pengujian terhadap beban, pengujian bead fatique yaitu pengujian terhadap kekuatan bead terhadap velg dan yang terakhir adalah pengujian cord breaking up yaitu pengujian terhadap kerangka ban. Sebelum ban di uji dengan drum test ban harus melewati item check dimensi atau kaibo sebagai persyaratan untuk melakukan uji drum test. Dari data hasil pengujian drum test ban dapat diketahui performance apakah ban tersebut layak untuk di pakai dengan spesifikasi yang tertera pada ban tersebut atau tidak, dan dari hasil check kaibo dan drum test dapat diketahui korelasi antara dimensi ban dengan hasil uji performance ban tersebut.

Kata kunci: Performance Ban, Drum Test.

1.Pendahuluan

1.1. Latar Belakang

Dalam dunia otomotif ban merupakan salah satu bagian penting dari kendaraan bermotor yang berfungsi menyangga beban, meneruskan daya dorong dan pengereman, kontrol arah kendaraan dan meredam getaran dari permukaan jalan. Konstruksi ban juga dibuat berdasarkan kebutuhannya yang berhubungan dengan 4 fungsi yang disebutkan diatas. oleh sebab itu kualitas suatu ban harus di uji agar memenuhi syarat dan fungsinya, adapun salah satu alat yang dipakai untuk menguji *performance* ban adalah dengan *drum test*.

Berdasarkan hal tersebut, penulis tertarik sekali melakukan analisis *performance* ban dengan alat *drum test* sebagai bahan untuk menambah pengetahuan di bidang otomotif khususnya industri ban.

1.2. Batasan Masalah

Dalam analisis ini terdapat beberapa pembatasan masalah, diantaranya :

- 1) Menguji performance ban pada size LVR 185 R14C 8 R624Z T
- 2) Pengujian 4 jenis drum test:
 - a) QC. High speed
 - b) QC. Endurance
 - c) QC. CBU (Cord breaking up)
 - $d) \quad QC. \ BF \ (Bead \ fatique)$

1.3. Tujuan Penelitian

- 1) Mengetahui cara menguji ban dengan alat *drum test*.
- 2) Mengetahui kerusakan yang terjadi pada ban, mulai dari awal terjadinya kerusakan sampai kerusakan yang lebih besar.
- 3) Mengetahui korelasi antara dimensi ban dengan *performance* ban.

2. Tinjauan Pustaka

2.1 Performance Ban

Performance dalam bahasa inggris diartikan kinerja, pencapaian atau prestasi jadi performance ban adalah prestasi pada ban yang spesifikasinya ditentukan dari ukuran dan jenis ban tersebut. Berdasarkan Standard Nasional Indonesia (SNI) ada 3 jenis pengujian yang dilakukan untuk uji Performance ban diantaranya:

1. Drum test

Pengujian yang dilakukan untuk mengetahui ketahanan ban pada saat dijalankan dengan kondisi yang spesifik (Beban, Kecepatan & Tekanan angin).

2. Bead Unseating

Pengujian ini khusus diberikan pada ban yang memakai konstruksi *tubeless*, dimana pengujian ini dilakukan untuk mengetahui kekuatan pegangan *bead* pada *velg* sehingga ban tetap aman saat dijalankan menikung, pengereman dan lain-lain.

3. Plunger Test

Pengujian *plunger test* dilakukan untuk mengetahui ketahanan telapak ban (karet/benang/steel) terhadap benturan atau tusukan benda tumpul.

2.2 Pengertian Drum Test

Drum test adalah suatu alat atau mesin penguji berbentuk drum dengan diameter 1.707 m dan memiliki permukaan rata yang dibuat sebagai prototype jalan raya (jalan tol) dengan temperature ruang $38^{\circ}\text{C} \pm 3^{\circ}\text{C}$. Yang berfungsi untuk menguji performance ban terhadap ketahanan, kecepatan dan beban. Jenis-jenis pengujian pada drum test :

1. Q.C. High speed

Adalah pengujian terhadap kecepatan tinggi dengan kondisi test beban tetap dan kecepatan bertambah naik.

2. Q.C. Endurance

Adalah pengujian terhadap beban dengan kondisi test kecepatan tetap dan beban bertambah naik.

3. Q.C. CBU (cord breaking up)

Adalah pengujian terhadap kerangka ban dengan kondisi test pada beban maksimum ban, tekanan angin rendah dan kecepatan tetap

4. *Q.C. BF* (bead fatigue)

Adalah pengujian kekuatan *bead* terhadap *velg* dengan kondisi test dua kali beban maksimum ban, tekanan angin tinggi dan kecepatan tetap.

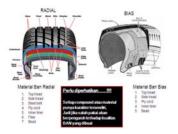
2.3 Ban

Ban adalah perangkat otomotif yang digunakan untuk mengurangi getaran yang disebabkan ketidak teraturan permukaan jalan, menyangga beban kendaraan dan muatannya, meneruskan daya dorong dan pengereman, serta memberikan kestabilan antara kendaraan dan tanah untuk mempermudah pergerakan.

Ban terbagi menjadi 3 jenis diantaranya:

1. Ban Bias

Ban bias adalah ban yang dibuat dari banyak lembar cord yang digunakan sebagai rangka ban. Cord ditenun zig-zag membentuk sudut 40 sampai 65 derajat sudut terhadap keliling lingkaran ban.


2. Ban Radial

Ban *radial* adalah ban dengan konstruksi *carcass cord* membentuk sudut 90 derajat sudut terhadap keliling lingkaran ban, jadi dilihat dari samping konstruksi *cord* adalah dalam arah radial terhadap pusat atau *crown* dari ban. Bagian dari ban berhubungan langsung dengan permukaan jalan diperkuat oleh semacam sabuk pengikat yang dinamakan "*breaker*" atau "*belt*". Ban jenis ini hanya menderita sedikit deformasi dalam bentuknya dari gaya sentrifugal, walaupun pada kecepatan tinggi. Ban radial ini juga mempunyai "*Rolling resistance*" yang kecil.

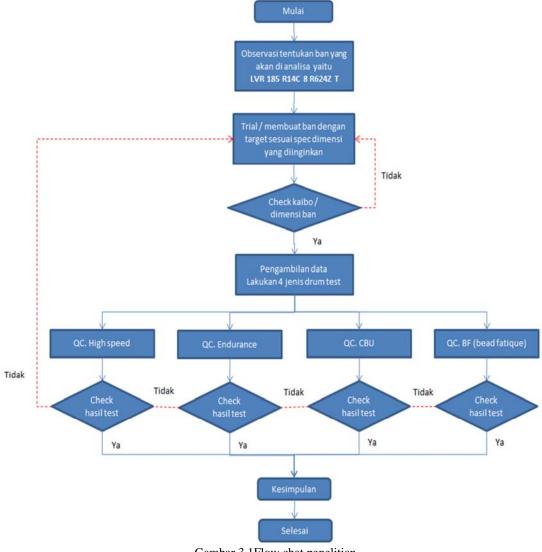
3. Ban Tanpa *Tube*

Ban *tubeless* adalah ban yang dirancang tanpa mempunyai ban dalam. Ban tubeless adalah ban pneumatik, ban tubeless memiliki tulang rusuk terus menerus dibentuk secara integral kedalam manik ban sehingga mereka dipaksa oleh tekanan udara didalam ban untuk menutup dengan *flensa* dari *velg* roda logam. (Sumber: id.wikipedia.org/wiki/ban)

Susunan material pada ban

Gambar 2.1 Susunan Material Pada Ban

Perbedaan struktur ban bias dengan radial



Gambar 2.2 Perbedaan struktur ban bias dengan radial

3.Metode Penelitian

3.1. Tahapan Penelitian

Untuk mengetahui secara keseluruhan tahapan penelitian ini dapat dilihat pada flow chat berikut ini :

Gambar 3.1Flow chat penelitian

3.2. Jenis-jenis pengujian ban

- a. QC High speed adalah test dengan beban tetap dan kecepatan bertambah.
- QC Endurance adalah test dengan beban bertambah pada kecepatan tetap.
- QC CBU adalah test dengan beban maksimum ban pada tekanan angin rendah dan kecepatan tetap.

d. QCBF adalah test dengan 2 x beban maksimum ban pada tekanan angin tinggi dan kecepatan tetap. Tabel 3.1 $Spec\ Q.C\ High\ speed\ B$

QC High speed B				
Speed symbol	Speed symbol	Speed symbol	Speed symbol	Speed symbol
Q	160x30	170x15	170x30	180×30
R	170x30	180x15	180x30	190x30
S	180x30	190x15	190x30	200x30
Т	190x30	200x15	200x30	210x30
U	200x30	210x15	210x30	220x30
н	210x30	220x15	220x30	230x30

Tabel 3.2 Spec Q.C Endurance

QC Endur	ance A			_					
Group	Belt material	Series	PR	Rim diameter	Size	Pattern	Speed symbol	Center value StepxH	Lower limit value Stepxi
All	All	All	All	All All All	Non, L, M, N, P	10x6	8x6		
200	377	1000	1000	150000	250	55550	Q or further	8x6	6x6
lowever,	, as exception	onal sizes,	the follo	wing is esta	blished:				
However,	Belt	onal sizes, Series	the follo	Rim	blished :	Pattern	Speed	Center value	Lower limit
100041000				T		Pattern D601A	Speed symbol	Center value StepxH	Lower limit value Stepxk
100041000	Belt		PR	Rim diameter	Size 155R12,		120000000000000000000000000000000000000		

Tabel 3.3 Spec Q.C CBU

CBU					
Group	Belt material	Center value	CBU (Note)		
Огоор	Dett material	StepxH	Lower limit value (km)		
	Textile	All	3000		
All		6	5500		
	Steel	8	5500		
	shown notify til				
	shown notify ti				
		e development d	lept		
	Belt material	Center value	Target lower limit value		
	Belt material				
	Belt material	Center value	Target lower limit value		
		Center value StepxH	Target lower limit value		

Tabel 3.4 Spec Q.C bead Fatique1

Dattorn	category			Object		Applivable	e standard
rattern	category	Commercial nattern	Inthar than na	ttens for SUV (Note1))		Applivacio	c atomostu
Dattorn c	atozoni A	Patterns for SUV (No		ittelis for 30 v [Note1])	-	(A) Comm	orcial line
ratternt	ategory A	Patterns for 50 v (No	(E1) 01 12PK			(A) COITIII	eruarinie
Pattern c	ategory B	Patterns for SUV (No	te1) in range f	rom 6PR to 10 PR		(B) SU	V line
Commerc	ial line (LV	(R, LYR, LSR, LXR)					
Group	Series	PR	Rim diameter	Size	Pattern category A	Center value (km)	Lower limit value (km)
95 82 80	6PR		185sec. Or under	All	12000	8000	
	OPK		195sec, or under	All	10000	7000	
	80		All	155sec, or under	All	14000	10000
		8PR		165sec, or under	All	10000	7000
				195R14C	L677EZ	17280	12960
LVR	80	10PR		Applicable size of (Note2)		15000	10000
LYR	00	TOPN	All	Applicable size of (Note3)	All	10000	7000
LIN	75, 70	6~10 PR	All	Applicable size of (Note2)	All	15000	10000
	75, 70	All	All	Applicable size of (Note3)	All	10000	7000
	65	6PR~12PR	All	All	All	10000	7000
	60	6PR					
	55	8PR	All	All	All	10000	7000
	50						
	100	All		Applicable size of (Note4)		12000	8000
LSR	100	All	All	Other than the above	All	9500	7000
LXR	85	All		Applicable size of (Note2)		15000	10000
	0.0	All	All	Applicable size of (Note3)	All	12000	8000

Tabel 3.5 Spec Q.C bead fatique 2

Group	Series	PR	Rim diameter	Size	Pattern category B	Center value (km)	Lower limit value (km)	
	95			185sec, or under	All	12000	8000	
	82	6PR	All	195sec, or under	All	10000	7000	
	80	6PR		155sec, or under	All	14000	10000	
		8PR	All	165sec, or uder	All	10000	7000	
LVR 75, 70	75, 70	6~10 PR						
LYR	65	6PR~10PR	All	All	All	10000	7000	
	60	6PR						
	55	SPR]					
	50		All	All	All	16000	7000	
	HF, WB (Note5)	6PR	All	All	All	16000	10000	
100		All	All	pplicable size of (Notes	All	12000	8000	
LSR	100	All	All	Othe than the above	All	9500	7000	
LXR	85	All	All	All	All	12000	7000	

4.Hasil dan Pembahasan

4.2 Data hasil *uji performance drum test 2nd Trial*

Sebelum uji *drum test* dilakukan lihat terlebih dahulu tabel *spec* pengujian untuk mengetahui batasan spec pada ban *type LVR 185 R14C 102R 8 R624Z T*.

Q.C. high speed

Adalah pengujian terhadap kecepatan tinggi dengan kondisi test beban tetap dan kecepatan bertambah naik. Pada ban dengan *type* dan ukuran *LVR 185 R14C 8 102R R624Z T*Dari tabel *high speed inflation* untuk size tersebut diketahui:

- 1. Initial speed yaitu kecepatan saat awal test adalah 150 (Km/h)
- 2. Test inflation pressure atau tekanan saat pengujian yaitu 450 (kpa)
- 3. Test load atau beban yang diberikan selama pengujian adalah 765 (kg)

Dan pada tabel testing condition terdapat beberapa informasi:

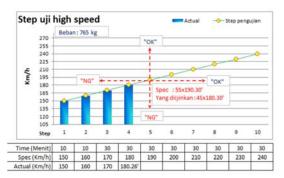
1. Step pengujian dari 1~10 bahkan lebih

- 2. *Test* kecepatan yang diberikan berdasarkan symbol kecepatan masing-masing ban, dengan penambahan kecepatan 10 (km/h) pada setiap stepnya
- 3. Time atau lamanya waktu yang diberikan pada setiap step.

Data pengujian dibuat symbol untuk mempermudah pembacaan hasil pengujian,

Contoh: spec 5S.190.30'

5S adalah batas spec pengujian pada 5 step kenaikan kecepatan, 190 adalah batas atau target akhir step kecepatan, dan 30'adalah menit pada step terakhir pengujin terakhir.


Tabel 4.1 Check sheet dan record data hasil uji Q.C High Speed 2nd trial

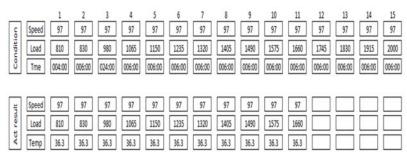
Condition	Speed Load Tme	1 150 765 000:10	2 160 765 000:10	3 170 765 000:30	4 180 765 000:30	5 190 765 000:30	6 200 765 000:30	7 210 765 000:30	8 220 765 000:30	9 230 765 000:30	10 240 765 000:30
Act result	Speed Load Temp	765 38.0	765 38.0	765 38.2	765 38.2						

Dari data hasil *check Q.C High speed* diatas ditemukan masalah terjadi kerusakan pada ban sebelum spec atau step kecepatan yang ditentukan dan data hasil check dinyatakan tidak lulus "*No good / no passable*" dengan nilai,

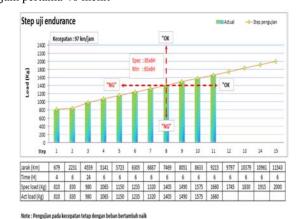
Center spec : 5S.190.20'
Minimum spec : 4S.180.15'
C/V spec : 4S.180.30'

Actual check : 4S.180.26' → Judgement "No good/ not passable" Syarat data dinyatakan lulus adalah jika hasil pengujian melebihi batas C/V spec.

Note : Pengujian pada beban tetap dengan kecepatan bertambah naik


Gambar 4.1 Grafik hasil uji high speed antara spec vs 2nd trial

Q.C Endurance


Adalah pengujian terhadap beban dengan kondisi test kecepatan tetap dan beban bertambah naik. Tabel 4.2 Test schedule endurance

	Load d	lesignation		S	Step			
Category	PR	Load index	Speed designation	Item	1	2	3	≥4
	PK	(Kg)		7H	16H	24H	step up 6H	
LVR	8	121 ~ 1450	2P	Test speed (Km/H)	81	81	81	Konstan
			1	Test load (%)	75	97	115	Step up 10%

Tabel 4.3 Check sheet dan record data hasil uji Q.C Endurance 2nd trial

Dari data hasil *check Q.C Endurance* diatas tidak ditemukan masalah dan data hasil *check* dinyatakan lulus "*Excellent*" dengan nilai *11Sx1H46' dari spec 8Sx6H* Yaitu 11 step pembebanan pada 1 jam pertama 46 menit

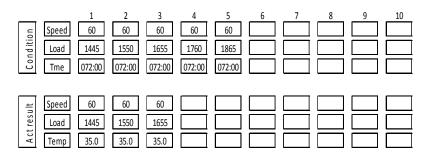
Gambar 4.2 Grafik hasil uji endurance antara spec vs 2nd trial

Q.C. Bead Fatique (BF)

Adalah pengujian kekuatan *bead* terhadap velg dengan kondisi test dua kali beban maksimum ban, pada tekanan angin maksimum dan kecepatan tetap.

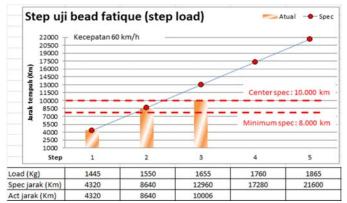
Pada ban dengan type dan ukuran LVR 185 R14C 8 102R R624Z T

Diketahui tekanan angin 65 psi = 448,2 kpa


Dan mampu menerima beban sebesar 850 kg

Pada pengujian Q.C~BF beban yang diberikan pada ban sebesar 2 kali beban maksimum yaitu : 2 x 850 kg = 1700 kg

Dengan spec / jarak tempuh


Center spec : 10.000 Km Minimum spec : 7000 Km C/V spec : 8000 Km

Tabel 4.4 Check sheet dan record data hasil uji Q.C BF 2nd trial

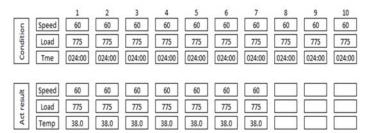
Dari data hasil *check Q.C Bead fatique* diatas tidak ditemukan masalah dan data hasil check dinyatakan lulus "Excellent" dengan nilai atau jarak tempuh 10.006km.

Dari spec : center 10.000 & lower 7.000

Gambar 4.3 Grafik hasil uji bead fatique antara spec vs 2nd trial

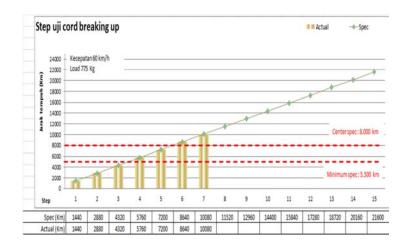
Q.C. Cord breaking up

adalah test dengan beban maksimum pada tekanan angin rendah dan kecepatan tetap. Pada test ini dilakukan dengan kecepatan tetap pada semua jenis ban.


Kecepatan: 60 km/h

Lihat table inflation pressure:

Tabel 4.5 Inflation pressure CBU


TRTO		Test loading	Sp	ec setting b	asis
Tire size	Rim width	(kg)	PR	I.P. (kPa)	Std.
155R12C	4.50	490	6	350	04 ETRTC
155R13C	4.50	515	6	350	, m
165R13C	4.50	615	6	375	. 11
165R14C	4.50	650	6	375	"
175R14C	5.00	710	6	375	
185R14C	5.50	775	6	375	**
185R15C	5.50	800	6	375	**
195R14C	5.50	850	6	375	
205R14C	6.00	925	6	375	"

Tabel 4.6 Check sheet dan record data hasil uji Q.C CBU 2nd trial

Dari data hasil *check Q.C CBU* diatas tidak ditemukan masalah dan data hasil check dinyatakan lulus "Excellent" dengan nilai atau jarak tempuh 10.000 km.

Dari spec : center 8.000 & lower 5.500 Km

Gambar 4.3 Grafik hasil uji cord breaking up antara spec vs 2nd trial

Kesimpulan dari ke empat pengujian drum test:

Dari ke empat uji *performance* diatas terdapat data yang out spec atau tidak capai target yaitu pada pengujian high speed, ban dinyatakan rusak pada step kecepatan ke 5 sedangkan spec untuk uji tersebut sampai step 12

Gambar 4.4 Kerusakan pada ban hasil pengujian high speed

Analisis dan perbaikan data 2nd trial:

Analisis tread gauge terlalu tebal walaupun data check kaibo dinyatakan oke,

Data kaibo tebal tread:	Spec	Actual	Tol ±	Judge
'- Center tread gauge	11.2	11.4	1.2	OK
'- ½ point tread gauge kiri	11.2	11.5	1.2	OK
Kanan	11.2	11.0	1.2	OK
'- Hump tread gauge kiri	11.2	11.2	1.2	OK
Kanan	11.2	11.2	1.2	OK

Gambar 4.5 Kondisi ban saat di pakai

Walaupun data check kaibo sesuai spec, dengan ketebalan tread seperti data diatas maka ban lebih cepat panas dan menyimpan panas lebih lama sehingga menyebabkan kerusakan pada ban diarea *tread~cap/layer sepa*.

Item perbaikan trial dengan menurunkan tread gauge atau ketebalan tread

Tabel 4.7 Revisi spec approve for tread gauge down

		CURED									
ITEMS		CENT	SPEC	5		SPEC	SPEC ACTUAL			VARIA	
		POINT			TOL	APPROVE	\$ 0S		χ	TION	auu
	CENTER	2/3	11.2	±	1.2	10.9			11.4	0.2	0
TREAD	1/4 P.	3/4	11.2	±	1.2	10.9	11.5	11.0	11.3	0.1	0
GA.	HP	2/3	11.2	±	1.2	10.9	11.2	11.2	11.2	0.0	0
8	SHOULDER GA.	3/4	10.5		1.2		11.1	10.9	15.0	0.5	0

Tabel 4.8 Kalkulasi spec approve for tread gauge down

	ITEMS			GREEN		MATERI	AL SAME AS	SPEC	H888888	OKT Cess
		CENT POINT	SPEC	ACTUAL	VARIA TION	CURED ADJUST	VARIA TION	.800	CALC	PROC
	CENTER	2/3	9.3	9.3	0.0	11.4	0.5	0	8.9	8.9
TREAD	1/4 P.	3/4	9.6	9.5	-0.1	11.4	0.5	0	9.2	9.2
GA.	HP	2/3	11.1	11.0	-0.1	11.3	0.4	0	10.7	10,7
å	SHOULDER GA.	3/4	12.6	12.2	-0.4	11.4	0.9	0	11.6	11.6

Revisi spec tread gauge down cured dari 11.2 → 10.9 maka ketebalan tread green atau material sebelum cured direvisi dari $11.1 \rightarrow 10.7$

5.Kesimpulan

Dari keempat pengujian tersebut diatas ada dua pengujian yang memiliki perbedaan data uji yang signifikan terhadap dimensi ban atau data kaibo yaitu pengujian high speed dan bead fatique dengan kesimpulan sebagai berikut:

- 1. Korelasi antara center, ¼ point dan hump tread gauge terhadap high speed Semakin tipis tread gauge maka semakin bagus performance high speed pada ban tersebut, karena pada area tersebut dengan kondisi tread yang lebih tipis diharapkan ban tersebut lebih lambat dan lebih sedikit menyimpan panas pada kecepatan tinggi. Begitu pun sebaliknya dengan kondisi tread yang lebih tebal maka tread akan lebih cepat panas dan
- Korelasi ply turn up dan bead filler, terhadap bead fatique Semakin tinggi ply turn up dan bead filler maka semakin bagus performance bead fatique pada ban tersebut.
- 3. Flipper height dan side tread gauge terhadap bead fatique Semakin kecil tinggi flipper dan semakin tipis side tread maka semakin bagus performance bead fatique pada ban tersebut.

6.Daftar Pustaka

performance high speed ban lebih jelek.

- 1) Kotler, Philips, 2004, Dasar-dasar Pemasaran, Edisi kesembilan, Jilid 1, PT Indek Kelompok Gramedia,
- 2) Lilien G.L., dan E. Yoon, 2003, "The Timing of Competitive Market Entry: An Exploratory study of New Industrial Products" Management science. Vol.36. No 5, Providance.
- 3) Noori, Hamid, 2002, Managing the Dynamics of New Technology, Prentice Hall, New Jersey.
- 4) Porter, Michael, 2002, Competitive Advantage, The Free Press, New York.