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Abstract. Using the Hasse diagrams of concept lattices, we investigate the rela-

tions between matroids and geometric contexts, followed by judging a mathematical

construction to be a matroid. We provide an idea to find out the dual of a matroid

from the ways of concept lattice drawing. In addition, we utilize the Hasse diagrams

of concept lattices to discuss the minors of matroids, direct sum of matroids and

the connectivity of a matroid. All the consequences demonstrate that the theory

of concept lattice drawing can be used into matroids. This generalizes the applied

fields of concept lattices.
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Abstrak. Pada paper ini kami meneliti relasi antara konteks matroid dan geometrik

dengan menggunakan diagram Hasse dari konsep lattice, dilanjutkan dengan pertim-

bangan suatu konstruksi matematika untuk menjadi suatu matroid. Kami menya-

jikan suatu ide untuk mendapatkan dual dari suatu matroid dengan cara penggam-

baran konsep lattice. Sebagai tambahan, kami menggunakan diagram Hasse dari

konsep lattice untuk membahas minor dari matroid, jumlah langsung dari matroid

dan keterhubungan dari suatu matroid. Semua konsekuensi memperlihatkan bahwa

teori penggambaran konsep lattice dapat digunakan pada matroid. Hal ini mempe-

rumum bidang-bidang terapan dari konsep lattice.

Kata kunci: Matroid, konsep lattice, diagram Hasse, lattice geometrik.

1. Introduction and Preliminaries

We know from [8,14,16] that as a branch of combinatorics, a matroid is a
structure that captures the generalizations of linear independence in vector spaces.
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There are many equivalent ways to define a matroid, and many notions within ma-
troid theory have a variety of equivalent formulations. Depending on the sophisti-
cation of the notion, it may be nontrivial to show that the different formulations are
equivalent, a phenomenon sometimes called cryptomorphism significant definitions
of a matroid include those in terms of independent sets, circuits, closed sets and
hyperplanes.

Some authors have introduced many different algorithms to determine the
construction of a matroid such as greedy algorithm (see [1,8,14,16]). They also
provide many algorithms to consider some properties of a matroid such as inter-
sections of matroids and so on (see [8,14,16]). All of these algorithms bring many
results about the structures of matroids and make matroids apply in other fields
such as graph theory and optimization theory (see [1,8,14,16]). Most of these al-
gorithms are relative to independent sets and seldom to the family of closed sets,
though the family of closed sets of a matroid has important contents. We find that
there are equivalent axioms for matroids in terms of independent sets and closure
sets (see [8,14,16]). Hence, if we use the closure sets of a matroid, then we may
search out new algorithms for matroids. Furthermore, these new algorithms can
explore the properties and structures of matroids which have failed to find out be-
fore. We may infer the failure reason to only consider with “matroids”. If we apply
with another theory, then we may success.

Concept lattices have become a useful tool in data analysis and knowledge
processing (cf. [3,4,7,9,10,13,15]) and can be graphically represented by Hasse dia-
grams which have been proved as useful communication tools in many applications
(cf. [3,4,13,15]).

It is well known that matroid have their geometric representation, that is,
up to the isomorphism, a simple matroid corresponds to a geometric lattice, and
vice versa (see [8,14,16]). In addition, every matroid can be simplified. It seems
more natural to investigate the relationship between matroid geometric representa-
tions and drawing concept lattices. In reality, some researches have utilized concept
lattices into matroids with matroid geometric representation (cf. [11,12]). Addi-
tionally, we notice that up to the isomorphism, every lattice is determined by its
Hasse diagram. Hence, if we explore an approach to deal with matroids with the
Hasse diagrams of concept lattices, using the assistance of matroid geometric rep-
resentations (that is, using the assistance of the families of closed sets of matroids),
then we may infer that some constructions and algorithms relative to matroids will
be produced. Meanwhile, concept lattices can search out new applied fields.

Actually, we find that isomorphism is useful to consider mathematical struc-
tures. In fact, many researchers like to express their ideas up to isomorphism.

This paper presents five applications of ready-made algorithms of drawing
concept lattices. First, we explore the relationships between concept lattices and
matroids under the isomorphism. Using the relationships and ready-made algo-
rithms for drawing concept lattices, we search out the methods to determining a
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construction to be a matroid. Following these methods, we provide an approach
to find out the family of hyperplanes of a matroid. Applying this approach, we
present a way to seek out the family of circuits of a matroid and the dual of a
matroid. Utilizing the above methods, we explore the constructions of minors of a
matroid. Afterwards, we discuss the direct sum of matroids and the connectivity
of a matroid. All these discussion are assisted by the drawing of concept lattices,
and discussed under the isomorphism.

First of all, we recall some knowledge what we need in the sequel. For more
details, please, refer to [5,6] for lattice theory; [8,14,16] for matroid theory; [4] for
concept lattices. We assume that throughout this paper, all sets under considera-
tion are finite. For two mathematical structures L1 and L2, L1

∼= L2 means that
they are isomorphic.

Subsection 1.1 introduces some notations and properties relative to lattices
and matroids. We review the notions and lemmas of concept lattices in Subsection
1.2. For convenient, we give a definition in Subsection 1.3.

1.1. Lattice and Matroid.

Definition 1.1. [16, p.51 or 15] A finite lattice is geometric if it is semimodular
and every point is the join of atoms.

Lemma 1.2. (1)[16, p.50] Let M = (S,F) be a matroid with F as its family of
closed sets. Then (F ,⊆) is a lattice with A ∧B = A ∩B and A ∨B = ∩{X : X ∈
F , A ∪B ⊆ X}.

(2)[16, p.54 or 8] The correspondence between a geometric lattice L and the
matroid M(L) on the set of atoms of L is a bijection between the set of finite
geometric lattices and the set of simple matroids.

If M = (S,F) is a matroid, then we sometimes denote F as FM .

We find from [16, p.54] that for a matroid M , there is one and only one simple
matroid M ′ = (S,F ′) determined by M = (S,F), and besides, (F ,⊆) and (F ′,⊆)
satisfy (F ,⊆) ∼= (F ′,⊆). Therefore, in what follows, a matroid means a simple
matroid.

1.2. Concept Lattice Theory.

Definition 1.3. [4, p.19] If (A1, B1) and (A2, B2) are concepts of a context (O,P, I),
and A1 ⊆ A2 (which is equivalent to B2 ⊆ B1), we write (A1, B1) ≤ (A2, B2). The
set of all concepts of (O,P, I) ordered in this way is denoted by B(O,P, I) and is
called the concept lattice of the context (O,P, I).
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Lemma 1.4. [4, p.20] The concept lattice B(O,P, I) is a complete lattice. A
complete lattice V is isomorphic to B(O,P, I) if and only if there are mappings
γ : O → V and µ : P → V such that γ(O) is supremum-dense in V , µ(P ) is
infimum-dense in V and gIm is equivalent to γg ≤ µm for all g ∈ O and all
m ∈ P . In particular, V ∼= B(V, V,≤).

1.3. New Notions.

Definition 1.5. A context (O,P, I) is geometric if B(O,P, I) is geometric.

2. Applications

In this section, we will use the Hasse diagrams of concept lattices especially
relative to geometric contexts to discuss matroids.

2.1. Relations. There are many ready-made algorithms to draw concept lattices
(see [2,3,4,6,13,15]). If we analyze the relations between matroids and concept
lattices clearly, then we will not need to produce new algorithms for matroids
to deal with properties of matroids only using the existed algorithms of drawing
concept lattices. These points are the guild-line for the following research.

Lemma 2.1. Let F be a collection of subsets of a set S and A ∩ B ∈ F for any
A,B ∈ F . Then (F ,⊆) is a lattice with A ∧ B = A ∩ B and A ∨ B = ∩{X : X ∈
F , A ∪B ⊆ X}.

Proof. Routine verification. �

Theorem 2.2. Let F be a collection of subsets of a set S and A ∩ B ∈ F for
any A,B ∈ F . Then under the isomorphism, (S,F) is a matroid if and only if
the context ((F ,⊆), (F ,⊆),⊆)(simply by (F ,F ,⊆)) is geometric, where (F ,⊆) is
defined as Lemma 2.1.

Proof.(⇐) In light of Lemma 1.4 and Lemma 2.1, we obtain (F ,⊆) ∼= B(F ,F ,⊆).
Thus, (F ,⊆) is geometric because Definition 1.5 and the geometric of (F ,F ,⊆). By
virtue of Lemma 1.2(2), we receive that up to the isomorphism, there is a matroid
M = (S,FM ) with FM as its family of closed sets such that the lattice (FM ,⊆) is
isomorphic to (F ,⊆), where (FM ,⊆) is defined in Lemma 1.2(1). Furthermore, up
to the isomorphism, (S,F) is a matroid.

(⇒) We can indicate from Lemma 1.2(2) that, up to the isomorphism, M =
(S,F) corresponds to a geometric lattice L(M) satisfying L(M) ∼= (F ,⊆). The
lattice (F ,⊆) is defined in Lemma 1.2(1). After comparing Lemma 1.2(1) with
Lemma 2.1, we find that the lattice (F ,⊆) is the same to that in Lemma 2.1. By
Lemma 2, we obtain (F ,⊆) ∼= B(F ,F ,⊆). So, L(M) ∼= B(F ,F ,⊆) holds. Hence
(F ,F ,⊆) is geometric. �
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Theorem 2.2 provides a method to determine a construction whether a ma-
troid. Actually, for a collection F of subsets of a set S, we can state the following
expressions.
(I) If for some A,B ∈ F , there is A∩B /∈ F . Then by Lemma 1.2(1), (S,F) is not
a matroid.
(II) If A ∩B ∈ F for any A,B ∈ F . Then we will do with the following two steps.

The first step is to draw the Hasse diagram of concept lattice B(F ,F ,⊆)
using one of the algorithms for drawing concept lattices in [2,3,4,6,13,15]. From the
Hasse diagram of B(F ,F ,⊆), we can decide the geometry of B(F ,F ,⊆).

The second step is to find the matroidal construction of (S,F) by Definition
1.5 and Theorem 2.2 if B(F ,F ,⊆) is geometric.

In fact, the expressions (I) and (II) taken together implies that we receive
some algorithms to construct matroids from [2,3,4,6,13,15] which provide some al-
gorithms for concept lattices drawing.

Let M = (S,F) be a matroid and KM be a context. We denote by M ↔ KM

if B(KM ) ∼= (F ,⊆). By Theorem 2.2, we infer that under the isomorphism, we only
need to consider KM if we consider the properties of M . The consequences in the
following subsections will demonstrate the correct of this point.

2.2. Hyperplanes. Let F be the collection of subsets of a set S and A ∩ B ∈ F
for any A,B ∈ F . By Lemma 2.1 and the algorithms in [13,15], we will obtain the
Hasse diagram of B(F ,F ,⊆), and therefore the hyperplanes H of B(F ,F ,⊆). If
B(F ,F ,⊆) is geometric, then under the isomorphism, H is the set of hyperplanes
of the matroid M = (S,F) because of B(F ,F ,⊆) ∼= (F ,⊆). On the other hand,
we guarantee from [16, p.39, Theorem 3] that a matroid M is uniquely determined
by the set of hyperplanes of M .

The above two hands together shows that up to the isomorphism, we can
produce a construction of a matroid from the hyperplanes in the Hasse diagram of
a geometric context.

2.3. Dual and circuits. We indicate in light of [16, p.9, Theorem 5] that a matroid
is determined by its set of circuits. Next we will find a method to construct the
dual of a matroid with the assistence of Hasse diagrams of concept lattices of a
geometric context.

Let M be a matroid on S with HM as its set of hyperplanes. We infer to
pledge C∗ = {S \ H : H ∈ HM} to be the set of cocircuits of M by view of [16,
p.39, Theorem 2]. Hence, we obtain that (S, C∗) is the dual M∗ of M .

Combining Subsection 2.2 with the above, it follows that up to the isomor-
phism, with one of the algorithms for drawing concept lattices in [2,3,4,6,13,15], we
receive M∗ directly, and obtain the set of circuits of M according to (M∗)∗ = M .
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2.4. Minors. In Subsections 2.1, 2.2 and 2.3, we discuss three applications of draw-
ing concept lattices. Next we will find an application of drawing concept lattices
in the minors of a matroid M = (S,F).

Considering the definitions of minors in [16, p.65] with [16, p.63, Theorem 2]
and Subsection 2.3, we find that if we consider the application of drawing concept
lattices in the minors of a matroids, we only need to analyze with the restriction
M |T of M to T where T ⊆ S.

Let M = (S,F) be a matroid and T ⊆ S. We may easily obtain (T,F|T )
where F|T = {A ⊆ T : there is F ∈ F satisfying A = F ∩ T}. Obviously,
A ∩ B ∈ F|T holds for any A,B ∈ F|T because F is closed for the meet. Hence,
by Theorem 2.2, F|T is the collection of closed sets of a matroid on T if and
only if (F|T,F|T,⊆) is geometric. This determination can be fulfilled with the
method in Subsection 2.1. Moreover, combining with Subsection 2.3, we receive
methods to produce minors of a matroid from concept lattices drawing algorithms
in [2,3,4,6,13,15].

2.5. Direct sum and connection. The fifth application of drawing concept lat-
tices is about direct sum of matroids and connectivity of a matroid. The definition
of direct sum M1⊕M2 of two matroids M1 and M2 is seen [16, p.72]. The definition
of direct sum K1 + K2 of two contexts K1 and K2 is in [4, p.46]. The following
Theorem 2.3 is the cornerstone for the fifth application.

Theorem 2.3. (1) Let M1 and M2 be two matroids on sets S1 and S2 respectively,
KM1

,KM2
be the corresponding contexts, that is, M1 ↔ KM1

and M2 ↔ KM2
. If

M1 ⊕ M2 is true, then up to the isomorphism, B(KM1
+ KM2

) = B(KM1⊕M2
) is

correct.

(2) If K1,K2 are geometric. Then up to isomorphism, there are matroids
Nj , M

′
j , (j = 1, 2) and two contexts K′

1 and K′
2 such that Nj ↔ Kj , Nj

∼= M ′
j , Kj

∼=
K′

j ,M
′
j ↔ K′

j , (j = 1, 2), and besides, M ′
1 ⊕M ′

2 holds.

Proof. (1) Lemma 1.2 and Definition 1.5 imply that both B(KM1
) and B(KM2

) are
geometric, and so B(KM1

)× B(KM2
) is geometric according to [16, p.73, Theorem

1 &15]. By virtue of [4, p.40], we obtain B(KM1
+ KM2

) ∼= B(KM1
) × B(KM2

).
Hence, we receive B(KM1

+KM2
) to be geometric.

On the other hand, S1 ∩ S2 = ∅ holds in light of the truth of M1 ⊕ M2.
Additionally, owing to the results in [16, pp.72-73], we find that if M1⊕M2 is true,
then the following (α) and (β) are correct.

(α)A ∈ FM1⊕M2
if and only if A ∩ S1 ∈ FM1

and A ∩ S2 ∈ FM2
, where

FM1⊕M2
,FM1

,FM2
is the family of closed sets of M1 ⊕M2,M1,M2 respectively.

(β) (FM1
,⊆)× (FM2

,⊆) is (FM1⊕M2
,⊆) up to the isomorphism.

Therefore, from Lemma 1.2, Lemma 1.4 and Theorem 2.2, we obtain B(KMj
) ∼=

(FMj
,⊆) , (j = 1, 2) and B(KM1⊕M2

) ∼= (FM1⊕M2
,⊆). Hence, we receive (FM1

,⊆
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) × (FM2
,⊆) ∼= B(KM1

) × B(KM2
). Moreover, B(KM1

) × B(KM2
) ∼= B(KM1⊕M2

)
holds.

Summing up the above, we obtain B(KM1
+ KM2

) = B(KM1⊕M2
) up to the

isomorphism.

(2) Since Kj is geometric (j = 1, 2). By Lemma 1.2 and Theorem 2.2, up to
the isomorphism, there are two matroids N1 and N2 satisfying Nj ↔ Kj , (j = 1, 2).
In fact, Nj is produced from B(Kj) by the method in [16, p.51, Theorem 1], (j =
1, 2).

For Kj = (Oj , Pj , Ij), (j = 1, 2), we may easily present two contexts K′
j =

(O′
j , P

′
j , I

′
j) (j = 1, 2) such that O′

1 ∩ O′
2 = ∅, P ′

1 ∩ P ′
2 = ∅, |O′

j | = |Oj |, |P
′
j | = |Pj |,

and (X ′, Y ′) ∈ I ′j ⇔ (X,Y ) ∈ Ij , (j = 1, 2). It is easily seen B(K′
j)

∼= B(Kj) and
Kj

∼= K′
j , (j = 1, 2).

Therefore, if both K1 and K2 are geometric, then we obtain the geometric
properties of K′

1 and K′
2. Let M ′

j = (S′
j ,F

′
j) be the matroid produced by B(K′

j)
with the method in [16, p.51, Theorem 1], (j = 1, 2). We easily obtain S′

1 ∩ S′
2 = ∅

and Nj
∼= M ′

j , (j = 1, 2). Furthermore, up to the isomorphism, both M ′
1 ↔ K′

1 and
M ′

2 ↔ K′
2 are correct. Hence M ′

1⊕M ′
2 is true. �

Theorem 2.3(2) hints that under the isomorphism, the direct sum of matroids
can be considered as the direct sum of contexts.

Corollary 2.4. Let M be a matroid on S. Let Mj be a matroid on Sj where
Sj ⊆ S, (j = 1, 2). If S1 ∩ S2 = ∅, S1 ∪ S2 = S and B(KM ) ≇ B(KM1

) × B(KM2
),

then M is connected.

Proof. Otherwise, there are two nontrivial matroids M1 = (S1,F1) and M2 =
(S2,F2) such that M = M1 ⊕M2, S1 ∩ S2 = ∅ and S1 ∪ S2 = S.

In view of Theorem 2.3, we find B(KM1
+ KM2

) = B(KM1⊕M2
) up to the

isomorphism. Since B(KM1
+KM2

) ∼= B(KM1
)×B(KM2

) holds, we obtain B(KM ) =
B(KM1⊕M2

) ∼= B(KM1
)×B(KM2

). This follows a contradiction to the given. �

In light of Corollary 2.4, for a matroid M = (S,F) and a submatroid Mj =
(Sj ,Fj) of M, (j = 1, 2), we receive the Hasse diagrams of B(F ,F ,⊆), B(F1,F1,⊆)
and B(F2,F2,⊆) using the algorithms in [13,15]. Furthermore, we obtain B(F1,F1,⊆
) × B(F2,F2,⊆) using the algorithms in [2]. We may easily determine the correc-
tion of B(FM ,FM ,⊆) ∼= B(F1,F1,⊆) × B(F2,F2,⊆) from their Hasse diagrams.
Hence, by virtue of Corollary 2.4, we find the connectivity of M and the existence
of M1 ⊕M2.

3. Concluding Remarks

With the drawing a concept lattice, i.e the Hasse diagram of a concept lattice,
we find under what conditions a construction to be a matroid from different ideas
of a matroid such as closed sets, hyperplanes, dual and circuits. In addition, we
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also give an application of drawing concept lattices in the minors, direct sum and
connection of matroids. All of these shows that concept lattices can be investigate
matroid theory. In the future, we will apply some searching algorithms of concept
lattices to reveal the constructions and properties for matroids.
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