A SHORT NOTE ON BANDS OF GROUPS

B. Davvaze¹, and F. Sepahi²

¹¹Department of Mathematics, Yazd University, Yazd, Iran davvaz@yazd.ac.ir

²Department of Mathematics, Yazd University, Yazd, Iran

Abstract. In this paper, we give necessary and sufficient conditions on a semigroup S to be a semilattice of groups, a normal band of groups and a rectangular band of

Key words and Phrases: Semigroup, band, semilattice, band of semigroup.

Abstrak. Pada paper ini, kami menyatakan syarat perlu dan cukup dari suatu semigrup S untuk menjadi semilatis dari grup, pita normal dari grup, dan pita persegipanjang dari grup.

Kata kunci: Semigrup, pita, semilatis, pita dari semigrup.

1. Introduction and Preliminaries

Before we present the basic definitions we give a short history of the subject. In [4], Clifford introduced bands of semigroups and determined their structure. In [3], Ciric and S. Bogdanovic studied sturdy bands of semigroups. Then, this concept is studied by many authors, for example see [6, 11]. In [7, 8, 9, 10], Lajos studied semilattices of groups. In [1], Bogdanovic presented a characterization of semilattices of groups using the notion of weakly commutative semigroup. The purpose of this paper is as stated in the abstract.

A semigroup S is a group, if for every $a, b \in S$, $a \in bS \cap Sb$. A semigroup S is a band, if for every $a \in S$, $a^2 = a$. A commutative band is called a semilattice.

Let S be a semigroup. If there exists a band $\{S_{\alpha} \mid \alpha \in \mathcal{C}\}$ of mutually disjoint subsemigroups S_{α} such that

$$(1) S = \bigcup_{\alpha \in \mathcal{C}} S_{\alpha}$$

(1) $S = \bigcup_{\alpha \in \mathcal{C}} S_{\alpha}$, (2) for every $\alpha, \beta \in \mathcal{C}$, $S_{\alpha}S_{\beta} \subseteq S_{\alpha\beta}$,

2010 Mathematics Subject Classification: 20M10.

then we say S is a band of semigroups of type C.

A congruence ρ of a semigroup S is a semilattice congruence of S if the factor S/ρ is a semilattice. If there exists a congruence relation ρ on a semigroup S such that S/ρ is a semilattice and every ρ -class is a group, then we say S is a semilattice of groups.

2. Main Results

Let S be a semigroup. Then, S^1 is "S with an identity adjoined if necessary"; if S is not already a monoid, a new element is adjoined and defined to be an identity. For an element a of S, the relevant ideals are: (1) The principal left ideal generated by a: $S^1a = \{sa \mid s \in S^1\}$, this is the same as $\{sa \mid s \in S\} \cup \{a\}$; (2) The principal right ideal generated by a: $aS^1 = \{as \mid s \in S^1\}$, this is the same as $\{as \mid s \in S\} \cup \{a\}$.

Let $a, b \in S$. We use the following well known notations:

For elements $a, b \in S$, Green's relations \mathcal{L} , \mathcal{R} and \mathcal{H} are defined by

$$a\mathcal{L}b \Leftrightarrow a|_{l}b, b|_{l}a,$$

 $a\mathcal{R}b \Leftrightarrow a|_{r}b, b|_{r}a,$
 $a\mathcal{H}b \Leftrightarrow a|_{t}b, b|_{t}a.$

Indeed, $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$.

Lemma 2.1. \mathcal{R} is a left congruence relation and \mathcal{L} is a right congruence relation on S.

PROOF. It is well-known in algebraic semigroup theory [4].

An element x of a semigroup S is said to be *left* (right) regular if $x = yx^2$ ($x = x^2y$) for some $y \in S$, or equivalently, $x\mathcal{L}x^2$ ($x\mathcal{R}x^2$). The second condition in the following theorem is equivalent to a semigroup being left regular and right regular.

Theorem 2.2. A semigroup S is a semilattice of groups if and only if

$$(\forall a, b \in S) \ ba|_t ab, \ a^2|_t a. \tag{1}$$

PROOF. Suppose that a semigroup S is a semilattice of groups and $S = \bigcup_{\alpha \in \mathcal{C}} S_{\alpha}$. If $a \in S_{\alpha}$ and $b \in S_{\beta}$, then $ab, ba \in S_{\alpha\beta}$. Since $S_{\alpha\beta}$ is a group, $ba \in abS \cap Sab$. Since $a, a^2 \in S_{\alpha}$, we conclude that $a^2|_t a$.

Conversely, we define the relation η on S as follows:

$$a \eta b \Leftrightarrow a|_t b, b|_t a.$$
 (2)

Obviously, $\eta \subseteq \mathcal{H}$, where \mathcal{H} is the Green relation. Now, suppose that $a\mathcal{H}b$. Then, $a \in bS \cap Sb$ and $b \in aS \cap Sa$. Hence, $a \eta b$, and so $\mathcal{H} = \eta$. Suppose that $a\mathcal{H}b$ and

 $c \in S$. Then, $ac \in bSc$. Thus, there exists $t \in S$ such that ac = btc. By (1), we have

$$ac = btc \in btc^2 S \subseteq bc^2 tS \subseteq bcS.$$

Similarly, $bc \in acS$. Hence, $ac\mathcal{R}bc$ and so \mathcal{R} is a right congruence relation. By Lemma 2.1, we conclude that \mathcal{R} is a congruence relation. Since $a \in Sb$, there exists $m \in S$ such that a = mb. By (1), we obtain

$$ca = cmb \in Smcb \subseteq Scb.$$

So, \mathcal{L} is a left congruence relation. By Lemma 2.1, we conclude that \mathcal{L} is a congruence relation. Therefore, $\mathcal{H} = \mathcal{R} \cap \mathcal{L}$ is a congruence relation. For every $a \in S$, we have $a^2 \in aS \cap Sa$. Then, by (1), $a \in a^2S \cap Sa^2$ which implies that $a\mathcal{H}a^2$. Also, by (1), we obtain $ab\mathcal{H}ba$. Therefore, \mathcal{H} is a congruence semilattice. Now, let $S = \bigcup_{\alpha \in \mathcal{C}} S_{\alpha}$, where \mathcal{C} is a semilattice and S_{α} is \mathcal{H} -class, for every $\alpha \in \mathcal{C}$. We prove

that S_{α} is a group, for every $\alpha \in \mathcal{C}$. Suppose that $a\mathcal{H}b$. Then, for some $\alpha \in \mathcal{C}$, $a, b \in S_{\alpha}$ and $a\mathcal{H}b^2$. Hence, there exists $x \in S$ such that $a = b^2x$. If $a, b \in S_{\alpha}$ and $x \in S_{\beta}$, then $\alpha\beta = \alpha$. From (1), we conclude that there exists $y \in S$ such that $a = a^2y$. If $y \in S_{\gamma}$, then $\alpha\gamma = \alpha$. So, we have

$$a = a^2y = aay = b^2xay = bbxay \in bS_{\alpha\beta\alpha\gamma} = bS_{\alpha}.$$

Similarly, we can prove that $a \in S_{\alpha}b$ and $b \in S_{\alpha}a \cap aS_{\alpha}$. Thus, $a|_{t}b$ and $b|_{t}a$ in S_{α} . Therefore, S is a semilattice of groups S_{α} .

Definition 2.3. A band \mathcal{B} is called normal if for every $a, b, c \in \mathcal{B}$, cabc = cbac.

Theorem 2.4. A semigroup S is a normal band of groups if and only if

$$(\forall a, b, c, d \in S) \ abcd|_{t} acbd, \ a|_{t} a^{2}. \tag{3}$$

PROOF. Suppose that a semigroup S is a normal band of groups and $S = \bigcup_{\alpha \in \mathcal{C}} S_{\alpha}$. If $a \in S_{\alpha}$, $b \in S_{\beta}$, $c \in S_{\gamma}$ and $d \in S_{\delta}$, then $abcd \in S_{\alpha\beta\gamma\delta}$. Since \mathcal{C} is a normal band, acbdbacd, $abdcacbd \in S_{\alpha\beta\gamma\delta}$. So, we have

 $(\forall a, b, c, d \in S)$ abcd $\in acbdbacdS \subseteq acbdS$ and $abcd \in Sabdcacbd \subseteq Sacbd$.

Conversely, we consider the relation η . Similar to the proof of Theorem 2.2, we obtain $\mathcal{H} = \eta$. In order to prove \mathcal{H} is a congruence relation, it is enough to show that \mathcal{R} is a right congruence relation and \mathcal{L} is a left congruence relation. Suppose that $a\mathcal{R}b$. Then, there exists $s \in S$ such that

$$ac = bsc \in bsc^2S \subseteq bcscS \subseteq bcS$$
.

Similarly, $bc \in acS$. Suppose that $a\mathcal{L}b$. Then, there exists $m \in S$ such that

$$ca = cmb \in Sc^2mb \subseteq Scmcb \subseteq Scb.$$

Similarly, $cb \in Sca$. Let $a, b, c \in S$. By (3), $abca\mathcal{H}acba$ and $a\mathcal{H}a^2$. Therefore, \mathcal{H} is a congruence normal band.

Now, suppose that $a\mathcal{H}b$. Then, $a\mathcal{H}b^2$ and so $a\mathcal{L}b^2$. Hence, there exists $x \in S$

such that $a = xb^2$. If $\alpha, \beta \in \mathcal{C}$, $a, b \in S_{\alpha}$ and $x \in S_{\beta}$, then $\alpha = \beta \alpha$. By (3), for every $a \in S$ there exists $y \in S$ such that $a = ya^2$. If $y \in S_{\gamma}$, then $\alpha = \gamma \alpha$. Thus, we have

$$a = ya^2 = yaa = yaxb^2 = yaxbb \in S_{\gamma\alpha\beta\alpha}b = S_{\alpha}b.$$

Similarly, we can prove that $b \in S_{\alpha}a$. Since $a\mathcal{R}b$, we conclude that $a \in bS_{\alpha}$ and $b \in aS_{\alpha}$. Therefore, S_{α} is a group and S is a normal band of groups.

Definition 2.5. A semigroup S is called a rectangular band if for every $a, b \in S$, aba = a.

Theorem 2.6. A semigroup S is a rectangular band of groups if and only if

$$(\forall a, b \in S) \ a|_t aba. \tag{4}$$

PROOF. Suppose that a semigroup S is a rectangular band of groups and $S = \bigcup_{\alpha \in \mathcal{C}} S_{\alpha}$. Then, for every $a, b \in S$, $aba \in S$. Therefore,

$$a \in abaS$$
 and $a \in Saba$.

Conversely, suppose that (4) holds. If $a\mathcal{H}b$, then for every $c \in S$ we have $ac \in bSc \subseteq bcbSc \subseteq bcS$. Similarly, $bc \in acS$ and so $ac\mathcal{R}bc$. On the other hand, $ca \in cSb \subseteq cSbcb \subseteq Scb$ and $cb \in Sca$. Thus, $ca\mathcal{L}cb$. Therefore, \mathcal{R} is a right congruence relation and \mathcal{L} is a left congruence relation, and so \mathcal{H} is a congruence relation. Since for every $a,b \in S$, $a \in Saba$ and $a \in abaS$, S is a congruence rectangular band.

Now, suppose that $a\mathcal{H}b$. Then, $a\mathcal{H}b^2$ and there exists $\alpha \in \mathcal{C}$ such that $a, b \in S_{\alpha}$. So, there exist $m, n \in S$ such that $a = mb^2$ and b = na. If $\beta, \gamma \in \mathcal{C}$, $m \in S_{\gamma}$ and $n \in S_{\beta}$, then $\alpha = \gamma \alpha$ and $\alpha = \beta \alpha$. So, we have

$$a = mb^2 = mnab \in S_{\gamma\beta\alpha}b = S_{\alpha}b.$$

Similarly, we can prove that $a \in bS_{\alpha}$ and $b \in aS_{\alpha} \cap S_{\alpha}a$. Therefore, S_{α} is a group.

Corollary 2.7. S is a left zero band of groups if and only if for every $a, b \in S$, $a|_t ab$.

3. Concluding Remarks

In this article, we studied some aspects of band of semigroups and groups. Let H be a non-empty set and let $\mathcal{P}^*(H)$ be the family of all non-empty subsets of H. A hyperoperation on H is a map $\star: H \times H \to \mathcal{P}^*(H)$ and the couple (H, \star) is called a hypergroupoid. If A and B are non-empty subsets of H, then we denote $A \star B = \bigcup_{a \in A, b \in B} a \star b$. A hypergroupoid (H, \star) is called a semihypergroup if for all x, y, z of H, we have $(x \star y) \star z = x \star (y \star z)$ [5]. In future, we shall study the band of semihypergroups.

Acknowledgement. The authors are highly grateful to the referees for their valuable comments and suggestions for improving the paper.

References

- [1] Bogdanovic, S. " Q_r -semigroups", Publ. Inst. Math. (Beograd) (N.S.), 29(43) (1981), 15–21.
- [2] Bogdanovic, S., Popovic, Z. and Ciric, M., "Bands of λ -simple semigroups", Filomat, 24(4) (2010), 77-85.
- [3] Ciric, M. and Bogdanovic, S., "Sturdy bands of semigroups", Collect. Math., 41 (1990), 189-195.
- [4] Clifford, A.H., "Bands of semigroups", Proc. Amer. Math. Soc., 5 (1954), 499-504.
- [5] Davvaz, B., Polygroup Theory and Related Systems, World Scientific, 2013.
- [6] Juhasz, Z. and Vernitski, A., "Using filters to describe congruences and band congruences of semigroups", Semigroup Forum, 83(2) (2011), 320–334.
- [7] Lajos, S., "Semigroups that are semilattices of groups. II", Math. Japon., 18 (1973), 23–31.
- [8] Lajos, S., "A characterization of semigroups that are semilattices of groups", Nanta Math., **6(1)** (1973), 1–2.
- [9] Lajos, S., "Notes on semilattices of groups", Proc. Japan Acad., 46 (1970), 151–152.
 [10] Lajos, S., "A characterization of semigroups which are semilattices of groups", Colloq. Math., **21** (1970), 187–189.
- [11] Mitrovic, M., "On semilattices of Archimedean semigroups a survey", Semigroups and Languages, 163-195, World Sci. Publ., River Edge, NJ, 2004.