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ABSTRACT 

 

P-glycoprotein (P-gp) resistance in cancer cells decreases the intracellular accumulation of various anticancer drugs. 
This multidrug resistance (MDR) protein can be modulated by number of non-cytotoxic drugs. We have screened 
30 cinchona alkaloids derivatives as a potent P-gp inhibitor agent in silico. Hereby, we report the highest potential 
inhibitions of P-gp is Cinchonidine isobutanoate through molecular docking approach with affinity energy -8.6 
kcal/mol and inhibition constant, Ki is 4.89 × 10-7 M. Cinchonidine isobutanoate is also known has molecular weight 
below 500, Log P value 3.5, which is indicated violation free of Lipinski`s rule of five. Thus, Cinchonidine isobuta-
noate is the most potent compound as anticancer compare to other Cinchona alkaloids. Ultimately, we design 
Cinchonidine isobutanoate for further lead synthesis by using DBSA, act as a combined Brønsted acid-surfactant-
catalyst (BASC) to obtain a high concentration of organic product by forming micellar aggregates which are very 
powerful catalytic application in a water environment. 
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INTRODUCTION 

The progressive malignant cells resistance to cyto-
toxic drugs is one of the major issues for the failure of 
chemotherapy. The chemotherapeutic resistance has 
several mechanisms, i.e., 'multidrug resistance' (MDR), 
that involves an increased expression of the mdr1 gene, 
a 170 kDa glycoprotein called P-glycoprotein (P-gp) [1, 
2]. The protein belongs to a large superfamily of highly 
conserved ATP-binding cassette proteins, facilitates the 
cellular efflux of various substances by reducing their 
intracellular concentration [3, 4, 5]. In normal cells of 
different tissues, such as biliary canaliculi, endothelium 
of the blood-brain barrier and bone marrow stromal 
cells, P-gp is known could act as a detoxifying agent by 
pumping toxins or xenobiotics out of these cells [6, 7]. 
It affects the absorption, distribution, and clearance of 
multidrug including cancer drugs and xenobiotics [8-
11]. Overexpression of P-gp in cancer cells reduces in- 

tracellular accumulation of a broad range of anticancer 
medicinal products in the membrane bilayer [5, 12, 13].  

In a search for more efficient P-gp inhibitors, we 
have screened 30 cinchona alkaloids as the potential an-
ticancer through molecular docking and drug likeness 
evaluation. However, the crystal structure of human P-
gp (hP-gp) is not available yet. The homology modeling 
of the human P-gp structure is built which its sequence 
is retrieved from Uniprot (Entry Code: P08183). Multi-
drug resistance protein 1A, a refined structure of mouse 
P-gp [14] is used as a template, and it is found 87.28% 
as the highest sequence similarity aligned with the hu-
man P-gp target. The structure refinement and structure 
validation have been done to obtain the high quality of 
the three-dimensional hP-gp structure. 

The 3D structures demonstrated to be stable and 
trustworthy. Based on the 3D structure, the ligand bind-
ing modes of 3D structural diverse hP-gp binders were 
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elucidated using molecular docking. Ligand binding free 
energies of the hP-gp binders were calculated using the 
free energy method and revealed that hP-gp could ac-
commodate structurally diverse ligands having different 
electrostatic and hydrophobic properties. Docking 
method is an energy-based scoring function which iden-
tifies the energetically most favorable ligand confor-
mation that binds to the protein target. Moreover, the 
best binding mode of cinchona alkaloid will be used as 
a model for synthesis and evaluated its biological activi-
ties both in vitro and in vivo. 
 
MATERIALS AND METHODS 

Protein structure preparation 
The amino acid sequence of hP-gp (Entry Code: 

P08183) was retrieved from UNIPROT protein data-
base. The 3D structure of protein hP-gp was generated 
by web-based SWISS-MODEL program. All homology 
modeling methods consist of the following four steps: (i) 
template selection; (ii) target-template alignment; (iii) 
model building; and (iv) model evaluation. These steps 
are iteratively repeated until a satisfying model structure 
is determined. The SWISS-MODEL web server ap-
proach can be described as rigid fragment assembly [15-
18].  

 
Protein structure refinement and validation 

hP-gp 3D structure was checked by using Procheck 
[19] to validate its refined structural conformation. Ra-
machandran plot [20-23] and ERRAT [24] were used to 
analyze the allowed dihedral phi and psi rotation of 
amino acids in the protein backbones and the quality of 
refined 3D structure, respectively.  

Figure 1. Structures of parental Cinchona alkaloids 

Cinchona alkaloid derivative structures preparation 
All 30 Cinchona alkaloid 3D structures were gener-

ated by ChemDraw Ultra 12.0 [25, 26] for the molecular 
docking experiments and their conformational energy 
was minimized by using a MMFF94 force field. 30 mol-
ecules of Cinchona alkaloids were designed by substitut-
ing the –R group positions of Cinchona (Table 1). The 
parental molecule structures of Cinchona alkaloids are 
depicted in Figure 1. The structures were scored based 
on their physicochemical properties under Chemicalize 
(ChemAxon) [27] and Molsoft [28] platforms. These 
physicochemical properties are essential for developing 
drug candidate at every stage from design to pre-clinical 
study.  

 
Drug-likeness analysis of Cinchona alkaloids  

Structures of 3D of Cinchona alkaloids were ana-
lyzed using a program based on the physicochemical 
properties, Molsoft - Drug Likeness. Physicochemical 
properties are important in rational drug design as the 
transition from early state development to pre- clinical 
trial applications. 

  
Molecular docking analysis of hP-gp protein and Cin-
chona alkaloids 

Molecular docking of hP-gp protein and Cinchona 
alkaloids was performed using AutoDock Vina. Auto-
dock Vina is known to have high speed and accuracy, 
which is magnitude faster than   AutoDock  4.2.  

AutoDock Tools was utilized to prepare the input 
file as pdbqt format of hP-gp, also to set grid box to be 
resized and centered. Kollman charges and polar hydro-
gen atoms were added to hP-gp protein structure. The 
hP-gp protein cavity size was adjusted at 30 × 30 × 30 in 
the dimensions size of x, y and z, respectively using 
1,000 Å spacing. Ligands from Cinchona alkaloids were 
also required to be prepared as output pdbqt file formats 
using AutoDock Tools. The predicted energy affinity 
(kcal/mol), which indicates the strength of ligand bind-
ing to the receptor, is calculated based on the scoring 
function used in AutoDock Vina program. The scoring 
function in AutoDock Vina depends on the confor-
mation-dependent part as a sum of intramolecular and 
intermolecular interactions, including effect steric, hy-
drogen bonding and hydrophobic interactions. It also 
depends on the number of rotatable and non-rotatable 
bonds between heavy atoms in the ligand. Each interac-
tion including the interaction of effect steric, hydrogen 
bonding, hydrophobic and some rotatable bonds, is ob-
tained as different weight  in   AutoDock Vina  scoring  
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function [31]. 
 

RESULTS AND DISCUSSION 

In investigating the anticancer potency of the Cin-
chona alkaloids, the chimeric enzyme was obtained and 
the structure was modeled followed by energy minimi-
zation. The model structure was subjected to molecular 
modeling analysis using Autodock Vina (The Script In-
stitute). Autodock Vina is a well heuristic search algo-
rithm which is based on guided differential evolution, 
which in turn is an algorithm that combines the differ-
ential evolution optimization technique and cavity pre-
diction. The automatic cavity prediction along with au-
tomatic preparation of protein and ligand fully auto-
mates the entire benchmarking process. 

The interactions resulted in this docking were found 
that Cinchona alkaloids exhibit excellent interactions 
with hP-gp in term of the ability in inhibiting this trans-
membrane efflux pump (Figure 2). Cinchonidine isobu-
tanoate is found as the best inhibitor based on its affinity 
energy value is -8.6 kcal/mol compared to other  Cin- 

chona alkaloids (Table 2). Based on affinity energy val-
ues of other cinchona alkaloids which are derived from 
quinine, quinidine, cinchonine, and cinchonidine in two 
isomer forms have shown that all are low affinity when 
docked to P-gp.  

The P-gp crystal structure opens its drug pathway 
at the level of the internal membrane process by lower-
ing the intracellular concentrations of many drugs to 
sub-therapeutic levels by translocating them out of the 
cell. In the helical flanking site, the extended loops could 
mediate drug binding, which its function as hinges at 
the gated pathway [13, 29, 30]. The transitions of P-gp 
dynamics as it moved through conformations based on 
crystal structures of homologous ABCB1 proteins has 
been targeted in the previous study. We expanded our 
study by docking transport drug to natural inhibitors 
binding sites of P-gp in conformations. These results in-
crease our understanding of the structure and function 
of this important molecule. Thus, based on the binding 
energy and hydrogen bond interaction, it can be con-
firmed that Cinchonidine isobutanoate inhibits the hu- 

Table 1. Compounds derived from parental Cinchona alkaloids were designed by substituting the –R group 
No. Compound R-substitution MW 

1. Quinine -OH 324.18 

2. Quinine butanoate -OC(O)CH2CH2CH3 364.22 

3. Quinine isobutanoate -OC(O)CH(CH3)2 394.23 

4. Quinine isovalerate -OC(O)CH2CH(CH3)2 408.24 

5. Quinine tiglate -OC(O)C(CHCH2)(CH3) 406.23 

6. Quinidine -OH 326.2 

7. Quinidine butanoate -OC(O)CH2CH2CH3 394.23 

8. Quinidine isovalerate -OC(O)CH(CH3)2 408.24 

9. Quinidine tiglate -OC(O)CH2CH(CH3)2 406.23 

10. Cinchonidine -OH 294.17 

11. Cinchonidine butanoate -OC(O)CH2CH2CH3 364.22 

12. Cinchonidine isobutanoate -OC(O)CH(CH3)2 364.22 

13. Cinchonidine isovalerate -OC(O)C(CHCH2)(CH3) 340.22 

14. Cinchonidine tiglate -OC(O)CH2CH(CH3)2 376.22 

15. Cinchonine -OH 337.18 

16. Cinchonine butanoate -OC(O)CH2CH2CH3 364.22 

17. Cinchonine isovalerate -OC(O)CH(CH3)2 357.27 

18. Cinchonine tiglate -OC(O)CH2CH(CH3)2 376.22 

19. Hexyl quinine ether -OC6H13 408.28 

20. Hexyl quinidine ether -OC6H13 408.28 

21. Hexyl cinchonidine ether -OC6H13 378.27 

22. Hexyl cinchonine ether -OC6H13 378.27 

23. Isopropyl quinine ether -OCH(CH3)2 366.23 

24. Isopropyl quinidine ether -OCH(CH3)2 366.23 

25. Isopropyl cinchonine ether -OCH(CH3)2 336.22 
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man P-glycoprotein. 
Furthermore, we determine the chemical interaction 

that is involved in Cinchonidine isobutanoate (red) and 
hP-gp docking complex which has the best affinity en-
ergy (-8.6 kcal/mol). This interaction is stabilized by 
nine amino acid residues of the hP-gp present in the 
binding pocket, including Met-69, Pro-205, Tyr-307, 
Tyr-310, Phe-336, Phe-343, Gln-725, Phe-728, and Phe-
732. The type of chemical interactions between amino 
acid residues of hP-gp with Cinchonidine isobutanoate 
involved hydrophobic interactions which could stabilize 
its binding mode. 

According to molecular docking, Cinchonidine iso-
butanoate is the best candidate as anticancer from 30 
designed molecules of Cinchona alkaloids derivatives. 

This study will be used as a model for organic molecule 
synthesis and bioactive evaluation both in-vivo and in-
vitro in the future [31, 32, 33] (Figure 3). In addition, 
Cinchonidine isobutanoate is ester derivative from cin-
chona alkaloids which has an isobutanoil group on its 
side chain as R-group. The inhibition constant (Ki) 
value of Cinchonidine isobutanoate is 4.89 × 10-7 M 
which indicates that Cinchonidine isobutanoate is the 
most efficient in inhibiting hP-gp over the other cin-
chona alkaloids. The inhibition constant (Ki) value is 
presented by the equation below:  

 ∆𝑮 =  −𝑹𝑻 𝒍𝒏 𝑲𝑨   ;    𝑲𝑨 = 𝑲𝒊−𝟏 = [𝑬𝑰][𝑬][𝑰]  𝑲𝒊 = 𝒆(∆𝑮𝑹𝑻) 

Table 2. Binding energies and drug likeness properties of Cinchona alkaloids with hP-gp  
No. Compound Log P Affinity Energy (Kcal/mol) Violation of Lipinski`s Rule Ki (M) 

1. Quinine 2.41 -7.6 0 2.65 × 10-6 

2. Quinine butanoate 3.76 -6.9 0 8.64 × 10-6 

3. Quinine isobutanoate 3.59 -8 0 1.35 × 10-6 

4. Quinine isovalerate 4.18 -8.1 0 1.14 × 10-6 

5. Quinine tiglate 4.22 -8 0 1.35 × 10-6 

6. Quinidine  1.96 -8.4 0 6.85 × 10-7 

7. Quinidine butanoate 3.85 -7.8 0 1.89 × 10-6 

8.. Quinidine isovalerate 4.18 -7.5 0 3.14 ×10-6 

9. Quinidine tiglate 4.22 -7.7 0 2.24 × 10-6 

10. Cinchonidine 2.32 -8.1 0 1.12  × 10-6 

11. Cinchonidine butanoate 3.76 -8.4 0 6.86 × 10-7 

12. Cinchonidine isobutanoate 3.5 -8.6 0 4.89 × 10-7 

13. Cinchonidine isovalerate 4.1 -7.3 0 4.40 × 10-6 

14. Cinchonidine tiglate 4.13 -7.1 0 6.16 ×10-6 

15.. Cinchonine 2.41 -8.5 0 2.49 × 10-7 

16. Cinchonine butanoate 3.76 -7.7 0 2.49 × 10-7 

17. Cinchonine isovalerate 4.68 -5.7 0 6.57 × 10-5 

18. Cinchonine tiglate 4.13 -7.6 0 2.65 × 10-6 

19. Hexyl quinine ether 5.27 -6.6 1 1.43 × 10-5 

20. Hexyl quinidine ether 5.27 -7.3 1 4.40 × 10-6 

21. Hexyl cinchonidine ether 5.18 -8.1 1 1.14 × 10-6 

22. Hexyl cinchonine ether 5.18 -6.9 1 8.64 × 10-6 

23. Isopropyl quinine ether 3.66 -7.6 0 2.65 × 10-6 

24. Isopropyl quinidine ether 3.66 -7.4 0 3.71 × 10-6 

25. Isopropyl cinchonine ether 3.57 -7.8 0 1.89 × 10-6 

26. Isopropyl cinchonidine ether 3.57 -7.3 0 4.40 × 10-6 

27. Buthyl quinine ether 4.3 -7.4 0 3.71 × 10-6 

28. Buthyl quinidine ether 4.3 -8 0 1.35 × 10-6 

29. Buthyl cinchonine ether 4.21 -7.8 0 1.89 × 10-6 

30. Buthyl cinchonidine ether 4.21 -7.2 0 5.21 × 10-6 
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Figure 2. Molecular docking interaction of hP-gp (cyan) and 

Cinchonidine isobutanoate (red) 
 

Figure 3.  Chemical interaction between Cinchonidine isobuta-

noate (red) and hP-gp (cyan) complex 

 
Here, we propose synthesis design of cinchona al-

kaloid which is less toxic and more active compared to 
cinchona parents (Figure 4). Dehydration reactions in 
water have been mediated by a surfactant-type catalyst, 
dodecylbenzene sulfonic acid (DBSA). These reactions 
include dehydrative esterification, etherification, thi-
oesterification, and dithiol acetalization. In these reac-
tions, DBSA and substrates form emulsion droplets 
where the interior side is hydrophobic enough to repel 
water molecules generated during the reactions [34, 35, 
36].  Previous studies on the esterification-mediated sur-
factant catalyst showed that the yields of esters and ether 
quinine derivatives were affected by temperature, 
amounts of DBSA, and the substrates. Cinchona ester 
derivatives could be obtained in high yield under DBSA-
catalyzed conditions and those compounds were also 
found proceeding smoothly. This work not only may 
lead to mild environmental systems but also will serve a 
new aspect of organic chemistry synthesis in water [35, 
37, 38]. By utilizing an efficient, catalytic, rapid, stable 
and high-yielding protocol for the cinchona alkaloids 
synthesis by DBSA with amphipathic Brønsted acid, this 
will make commercially available, highly reactive, cheap, 
stable, excellent emulsifier and activator very powerful 
in obtaining pure high yields of synthesized product. 

Figure 4. Esterification and etherification reaction of cinchona 

alkaloids-mediated surfactant-type catalyst 

 
CONCLUSION 

In conclusion, a 3D model of human P-glycoprotein 
was successfully built through homology modeling. The 
energy affinity of potential cinchona alkaloids were eval-
uated by molecular docking approach.  The molecular 
docking study revealed that Cinchonidine isobutanoate 
acts as the highest potent inhibitor upon hP-gp as they 
exhibit interaction with protein residues which present 
in the active site with high binding energy. Cinchoni-
dine isobutanoate is proposed for further lead synthesis 

R’COOH esterification- 

mediated surfactant catalyst 

ROH etherification- 

mediated surfactant catalyst 
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by using DBSA, act as a combined Brønsted acid-surfac-
tant-catalyst (BASC) to obtain a high concentration of 
organic product by forming mini emulsions which are 
powerful catalytic application in an aqueous solution. 
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