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Abstract. Comparing the quality of basic reservoir rock properties is a common 

practice to locate new infill or development wells for optimizing oil field 

development using reservoir simulation. The conventional technique employs a 

manual trial-and-error process to find new well locations, which proves to be 

time-consuming, especially for large fields. Concerning this practical matter, an 

alternative in the form of a robust technique is introduced in order to reduce time 
and effort in finding new well locations capable of producing the highest oil 

recovery. The objective of this research was to apply a genetic algorithm (GA) 

for determining well locations using reservoir simulation, in order to avoid the 

conventional manual trial-and-error method. This GA involved the basic rock 

properties, i.e. porosity, permeability, and oil saturation, of each grid block 

obtained from a reservoir simulation model, to which a newly generated fitness 

function was applied, formulated by translating common engineering practice in 

reservoir simulation into a mathematical equation and then into a computer 

program. The maximum fitness value indicates the best grid location for a new 

well. In order to validate the proposed GA method and evaluate the performance 

of the program, two fields with different production profile characteristics were 
used, fields X and Y. The proposed method proved to be a robust and accurate 

method to find the best new well locations for oil field development. The key to 

the success of the proposed GA method lies in the formulation of the objective 

functions. 

 

Keywords: fitness function; field development; Genetic Algorithm; objective function; 

optimization; reservoir simulation; vertical well placement; well locations. 

1 Introduction 

The development of an oil field requires a reservoir model to find the best new 

infill well locations in order to maximize oil recovery. The conventional 

technique for determining well locations is conducted manually and uses a trial-
and-error process, estimating the remaining oil saturation and reservoir rock 
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characteristics. Obviously, this process is time-consuming and cannot guarantee 

the best results, especially for large-size fields or for compositional reservoir 

simulation models, such as condensate gas fields. Therefore, it is essential to 

find a method that is much faster and sufficiently accurate. 

The genetic algorithm (GA) approach is a common method in mathematical 

research [1-3] for solving complex optimization problems, and has been applied 

in petroleum engineering for reservoir development [4], well-placement 
optimization [5-6], reservoir characterization [7-8], and geophysics [9] studies 

from the years 1997 to 2004. Basically, it is a random search method founded 

on the mechanism of natural evolution to determine the optimum solution to 

complex problems. The process involves the selection, crossover and mutation 
of a gene that, in this case, is a product of an objective function [1-3]. 

Therefore, the algorithm needs an objective function in order to solve the 

optimization problem; the more appropriate the objective function, the more 
accurate the results will be.  

The objective of this research was to implement a GA method in order to avoid 

the conventional trial-and-error process in reservoir simulation for determining 
optimal placement of infill wells to maximize oil field recovery. The very 

important first step was an investigation of the selected objective functions. 

This step was conducted by translating common reservoir simulation practice in 

petroleum engineering, i.e. the trial-and-error technique for selecting the well 
locations expected to have the best oil production in the future, using basic 

reservoir properties maps. This procedure was represented as an algorithm and 

coded into a computer program. After several logical attempts using the basic 
reservoir properties formulation, objective functions were introduced for the 

generated GA. Thus, a computer program was developed employing three basic 

reservoir properties, i.e. oil saturation, porosity and permeability, as the 

objective functions.  

Production performance of well placement obtained by the generated GA was 

validated by applying the predicted well locations into a reservoir simulator of 

two reservoirs, fields X and Y. The results of the validation prove that the 

proposed method is robust and sufficiently accurate. The benefit of using this 

method is that there is no need to run a reservoir simulator in order to find the 

best well locations by assuming various scenarios. Therefore, this new approach 
will reduce computation time, working hours, and of course, costs. 

2 Research Methodology  

The proposed GA method is depicted in the following methodology flow chart 
(Figure 1). A reservoir model developed through combining the available 
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geological model with a set of reservoir data was employed as input for the 

proposed GA method. 

 

Figure 1 Research methodology of this study: replacing the conventional trial-

and-error method by a genetic algorithm method. 

3 Field Descriptions for Reservoir Modeling Input 

A reservoir simulation using a commercial finite-difference reservoir simulator 

requires a set of reservoir data, a geological model, reservoir fluid properties, a 
rock properties model, and a driving mechanism. 

Two fields, namely X and Y, were used to evaluate the performance of the 

proposed GA. The X field is discussed in more detail than the Y field, since the 
X field was used to evaluate the proposed objective functions and performance 

of the GA, while the Y field was used only for further validation of the GA.  

Fields X and Y had a similar geological depositional environment. However, 

the X field was relatively small and was still in its early development, whereas 
the Y field was relatively large and was a mature field. Thus, the profile 

characteristics that differentiate both fields are that the latter is in a stage of 

declining production, has poorer reservoir rock properties and does not have as 
many faults as the previous field does. Thus, the oil saturation profiles of both 

fields should have significantly different characteristics. Figure 2 shows the Y 

field in a three-dimensional map, constructed using [10]. It has a top depth 

structure that consists of several small anticlines, indicating a big field with 
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many production wells. The depth structure map was put into the reservoir 

simulator using reference [10], and the reservoir was divided into grid blocks.  

 

Figure 2 Three-dimensional map of top depth structure of field Y. 

Also, petrophysical properties that were obtained from well logs and reservoir 

core sample analyses were required for the development of the reservoir model. 

For example, the X field consisted of six reservoir zones, namely (from top to 
bottom) L-1, L-2, L-3, L-4, L-5 and L-6, as depicted in Figure 3. This is a 

typical well log, indicating that the L3 zone had a better quality due to its higher 

porosity and oil saturation (low water saturation). 
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Figure 3 Typical well logs of field X. 

Interest Zone High Porosity, Low  
Water Saturation  

(High Oil Saturation) 
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3.1  Fluid Properties of Field X 

The initial reservoir pressure was 2440 psi, with bubble point pressure ranging 
from 1901 to 2097 psi. The oil gravity in this field was 32

o
 API, with viscosity 

0.94 cp and an oil formation volume factor (FVF) of 1.325 Bbl/STB. It can be 

concluded that the reservoir fluid type was black oil. In this field, there were 
two exploration wells, X-2 and X-7. From tests on the X-2 well it was found 

that in the initial reservoir conditions, significant oil production was present in 

several layers (L-1, L-2, L-3, and L-4). 

3.2 Property Model of Field X 

The sequential Gaussian simulation (SGS) distribution method was used to 
distribute the reservoir properties, i.e. porosity, permeability, and water 

saturation (or oil saturation), for all grids. The average porosity and 

permeability of field X were 12% and 147mD, respectively. Figure 4, 5, 6 show 
the results of using a simulator [11] that describes porosity, water saturation and 

permeability distributions, respectively. 

 

Figure 4 Porosity distribution of the interest zone in field X. 
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Figure 5 Water saturation distribution of the interest zone in field X. 

 

Figure 6 Permeability distribution of the interest zone in field X. 
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4 Reservoir Simulation Model of Field X 

This study focuses on zone L-2, which contained the highest level of 

hydrocarbon. Consequently, other layers were deliberately not included. In this 
model a corner-point grid was applied and a black-oil reservoir-fluid simulator 

was used. The reservoir model of this field was scaled up into 28 x 39 x 1 

simulation grid blocks; the number of active cells was therefore 1092. 

5 Reservoir Simulation Model of Field Y  

To further validate this study, another field was examined by the proposed well-

location method to find the best infill-well location, field Y. A reservoir model 
of this field was available, which had more than 25 development wells. The 

main goal of this application was to further validate the proposed selection 

method with a different field profile, specifically the production performance of 

a mature field with a large number of wells. The reservoir characteristics of 
field Y are not described in detail in this paper. Figures 7, 8, and 9 show the 

maps of porosity, water saturation and permeability distribution of this field. 

The figures show that there was only one small area with potentially remaining 
oil reserves, which created a challenge for the method to locate that area. 

 

Figure 7 Porosity distribution of the interest zone in field Y. 
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Figure 8 Water saturation distribution of the interest zone in field Y. 

 

Figure 9 Permeability distribution of the interest zone in field Y. 

6 Genetic Algorithm Process and Application 

The genetic algorithm, which was initially developed by Holland [1] in 1968, is 
a computer-based process with a random search technique that was inspired by 

the Darwinian theory of natural evolution processes [2]. The main idea behind 

the GA method is to find a solution from the genetics of probable solutions. 
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The GA method can be implemented in different disciplines of knowledge, such 

as business, engineering and science. It is quite robust, resulting in solutions 

near optimum and not easily trapped in a local optimum [7]. Another advantage 

of this method is that it is flexible and does not require stringent requirements of 
differential mathematics, continuity and others. Therefore, this method is 

recommended when problems are too complex and too difficult to be solved by 

conventional techniques. 

 

Figure 10 Flowchart of a genetic algorithm. 
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The characteristics of the GA method are the following [1-2]: 

1. The GA works with a coding of the parameters, but it does not directly 

manipulate them.  

2. The GA searches not only one point as a solution to the problem, but 
investigates several numbers of points as possible solutions. 

3. In running the GA, the presence of objective functions to solve the problem 

is required.  
4. The realization of the GA uses probabilistic rules.  

A flowchart of the GA process in simple terms is shown in Figure 10. 

Following the above flowchart, the GA model used in this research is as 

follows: 

1. Representation of the population. It is known that the desired solution is the 

location represented by (x,y) coordinates. 

2. The length of the binary variable of the population is determined by the 
bit_var parameter given by the user.  

3. The operators of selection, crossover and mutation. These operators are 

used to get a new population, representing promising well locations. In this 
research, the model used the basic rules of selection, crossover and 

mutation.  

4. The determination of fitness function that represents the objective function.  

 
To explain the GA model briefly, we give the following example. The first step 

is to determine values for crossover probability, mutation probability and 

population size, i.e., 0.85, 0.01 and 10, respectively. Then, an initial population 
is generated using random binary numbers as depicted in Figure 11(a), which 

shows the initial population of well locations in a binary representation of X and 

Y coordinates. This initial population is then evaluated by calculating the fitness 

values with the developed fitness function. The maximum value of the fitness 
function is the optimal solution. In order to find this optimum, evolution 

operators (selection, crossover and mutation) are applied to obtain a better 

quality of the new population. Figures 11(b) and (c) show the examples of the 
crossover and mutation processes. 
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(a) 

 

 

        (b)     (c) 

Figure 11  (a) Binary representation of well location. (b) Illustration of 

crossover. (c) Illustration of mutation. 

7 Objective-Function Development 

The locations of the development and/or infill wells in the oil reservoir model 

are selected on the basis of the values of oil saturation/water saturation, 

permeability and porosity of rock at a particular grid block, and oil and water 
viscosity and the distribution of rock properties and saturation in adjoining grid 

blocks. Porosity and oil saturation represent the amount of hydrocarbon in the 

reservoir, while permeability represents the ability of fluid to flow through 
porous media. These parameters represent the well productivity. The grid block 

where the well will be located should have a good flow potential, supported by 

the same parameters in the adjoining grid blocks, in i, j, k directions. These 

adjoining grid blocks will form the drainage area of the well, therefore, if the 
values of these parameters in the adjoining grid blocks are maximal, well 

productivity will be high. In this research, these parameter values are presented 

as a function that consists of the amount of oil in the grid block (porosity, oil 
saturation, and grid block thickness), oil mobility (permeability and viscosity of 

oil), and pressure gradient. Basically, a single representation of each grid block 

can show its productivity value if the dynamic parameter of differential pressure 

Parent 1  1 0 0 0 1 0 0 1 1 1 

Parent 2  0 1 1 0 1 1 0 0 0 1 

New string 1 1 0 0 0 1 1 0 0 0 1 
New string 2 0 1 1 0 1 0 0 1 1 1 

Old string 1 1 0 0 0 1 0 1 1 1 0 

New string 1 1 0 0 1 1 0 1 1 1 0 
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is included. However, this study was based on a static quantitative 

representation of each grid block, which we call the fitness function. Based on 

its definition, the grid block to be selected as the location of the well should 

have the maximal fitness value. The fitness function indicates whether an 
individual from a population has good quality or not. For practicality, the 

individuals in this study were the reservoir simulation grid blocks; their three 

most important basic reservoir properties (porosity, oil saturation and 
permeability) were used as variables in the objective function. As a logical 

consequence, in the selection process the amount of hydrocarbon had a higher 

level of priority than the permeability. 

As a consequence, two sequential objective functions were proposed for this 
study. The first one was to classify candidate grids based on their porosity and 

saturation, represented as: 

{( , ) : ( ( , ), ( , )) [0.4,1]}

{( , ) : ( ( , ), ( , )) [0.2,0.4]}

{( , ) : ( ( , ), ( , )) [0.1,0.2]}

{( , ) : ( ( , ), ( , )) [0,0.1]}

A

B

C

D

D x y D f g x y h x y

D x y D f g x y h x y
Classification of grids

D x y D f g x y h x y

D x y D f g x y h x y

   
         
    

 

 
with 

 ( ( , ), ( , )) ( , )* ( , )f g x y h x y g x y h x y  (1) 

where D is the domain representing the reservoir grid, f is a function of the 

combined values of porosity and saturation in a particular grid block, g(x,y) is 
the porosity value on x,y coordinates, and h(x,y) is the saturation value on x,y 

coordinates. 

The next step was based on the evaluation of the drainage radius. A reservoir 
system involves a dynamic process of fluid-flow from reservoir to well bore, 

thus, the surrounding grids of a well contribute to the well’s production. In the 
GA computer program using the abovementioned objective functions, the 

problem was to quantify the contribution of fluid-flow in the surrounding grid 

blocks to the well’s production. It is obvious that the closer a grid block is 

located to the well, the larger will be its contribution to the well’s production. 
The assumed drainage area was taken into consideration in the objective-
function calculation called radius of evaluation R, using the properties of the 

grid blocks surrounding the production well. The formulation of this objective 

function is as follows: 
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( , )
max ( ( , ), ( , ), ( , )) ( , )* ( , )* ( , )
x y R

F g x y h x y i x y g x y h x y i x y


  (2) 

where ( , )g x y  is the average of the porosity value on x,y coordinate, ( , )h x y  is 

the average of the saturation value on x,y coordinate, ( , )i x y  is the average of 

the permeability value on x,y coordinate. 

In this research, alternative well locations could also result from sorting the best 

individuals based on fitness-function values and then considering the euclidean 

distance from each other. 

It has been mentioned that in the GA application, the radius of evaluation 

should be determined and evaluated. For field X, it was proven that when R=0, 

it gave the best solution. Using the same procedure, it was found that R=1 gave 

the best solution for field Y. 

8 Results and Discussion 

To evaluate the performance of the proposed GA, results of its application were 
compared with results of a conventional manual well-location selection method. 

Two scenarios were investigated, i.e. a one-well scenario and a three-wells 

scenario. Both scenarios were set with the same constraints as on objective 
function evaluation, and all wells were opened simultaneously. 

8.1 Conventional Manual Trial-and-Error Reservoir Simulation 

Results  

In a conventional manual reservoir simulation, a trial-and-error process of 

selecting the best grid block locations is conducted by iteratively considering 

the three basic reservoir properties (porosity, oil saturation, and permeability) 
running a one-by-one reservoir simulation at the chosen locations. Logically, 

the best location is where the highest values of these three properties occur at 

the same place, even though finding this location with the conventional method 
is almost impossible or unrealistic, especially for a large field. Nevertheless, for 

this considerably sized field the resulting best grid locations were ranked. We 

also present the results of a multiple-wells scenario, for which a drainage radius 
was considered. As a rule of thumb it was assumed to be 2 neighboring grid 

blocks. A radius of evaluation equal to zero (R=0) means that the drainage 

radius consisted of the well grid block only; R=1 means that a radius of one grid 

block surrounding the well grid block was considered, and R=2 means a radius 
of two grid blocks was considered. 
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Table 1 and 2 describe well locations and oil recovery for field X resulting from 

the conventional trial-and-error method, compared to the results of the previous 

reservoir simulation, for the one-well scenario and the three-wells scenario, 

respectively.  

Table 1 The one-well scenario for field X, with R = 0. 

Location Oil Recovery  Recovery Factor ∆ RF with Res. Simulation 

X Y (STB) (%) (%) 

7 27 2891840.5 17.94 0 

 

Table 2 The three-wells scenario for field X, with R = 0. 

Location Oil Recovery Recovery Factor ∆ RF with Res. Simulation 

X Y (STB) (%) (%) 

7 27 3521585 21.85 0.15 

18 24    

9 27    

∆ RF with reservoir simulation: differences with respect to the previous reservoir 

simulation results. 

Tables 3 and 4 describe the well locations and oil recovery for field Y, for the 

one-well scenario and three-wells scenario, respectively. 

Table 3 The one-well scenario for field Y, with R = 0. 

Location Oil Recovery Recovery Factor ∆ RF with Res. Simulation 

X Y (STB) (%) (%) 

90 36 9825374 8.98 0.41 

Table 4 The three-wells scenario for field Y, with R = 0. 

Location Oil Recovery Recovery Factor ∆ RF with Res. Simulation 

X Y (STB) (%) (%) 

90 36 16448811 14.03 1.31 

105 34    

79 36    

We can see that the one-well scenario gave perfect results for both fields, as 
shown by the small differences with the reservoir simulation results. However, 
the bigger field Y showed a larger difference. Moreover, the three-wells 

scenario yielded larger differences than the one-well scenario. This clearly 

shows that the more complex the problems are, i.e. the higher the number of 
wells and the larger the field, the bigger the differences are. Thus, the 

conventional trial-and-error method is likely to be harder and more time-
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consuming when trying to find the best well location when the investigated field 

is larger. 

8.2 Objective-Functions Evaluation of the Proposed GA Method 

The objective functions of the proposed GA method should be evaluated first 
with respect to avoiding local optimum solutions. Also, in order to find the 

proper radius of evaluation, the GA application is run for various radii. 

Some statistical parameters should be properly assumed to run the GA 

application for this optimization problem study. Table 5 shows the suitable GA 
parameters for this case study. The population size means the number of grid 

blocks that have specific properties of porosity, permeability, and water 

saturation. The maximum number of iterations was set to guarantee that the 

maximum value of the objective function could be achieved. Crossover 

probability was set to 0.9 to give a high probability for the process of crossover 

to occur, though not equal to always happening (100%). On the other hand, 
setting the mutation probability to 0.01 was meant to limit mutation, so new 

individuals were generated mostly through a combination of individuals. 

Table 5 GA calculation parameters for the proposed GA method. 

Population size 100 

Maximum Number of iteration 1500 

Crossover Probability 0.9 

Mutation Probability 0.01 

Number of variables 2 (x and y) 

Chromosome Length 20 for each variable 

Interval [1 - 28] for x and [1 - 39] for y 

Radius of evaluation 0, 1, 2, 3, 4 

 
To check the application, the results from a number of iterations were 

investigated by comparing them with the proposed well locations obtained from 

the reservoir simulation runs. For all simulation runs, the well production time 
was set to 15 years, with an oil rate target of 2000 STB/day. Table 6 shows the 

results of some iterations for R=0. Figures 12 and 13 illustrate the relationships 

between number of iterations, fitness value, and oil recovery. As can be seen, 
the proposed well location moved from iteration to iteration, which indicates 

that the proposed GA method effectively searched for the best location in 

different places. The fitness value consistently became higher during the 
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successive iterations of the calculation (Figure 12). The same goes for the 

recovery factor (Figure 13). This also means that the proposed GA method will 

not be trapped in a local minimum. 

Table 6 The proposed GA and reservoir simulation results for R = 0. 

Iteration 
Location 

Fitness 

Values 
Porosity 

Oil 

Saturation 

Permeability 

(mD) 

Oil Recovery 

(STB) x y 

1 5 27 30.096 0.27 0.817 270.3 2089725.3 

5 5 27 30.096 0.27 0.817 270.3 2089725.3 

10 5 27 30.096 0.27 0.817 270.3 2089725.3 

100 7 28 30.219 0.32 0.818 516.1 2777452.3 

500 7 28 30.219 0.32 0.818 516.1 2777452.3 

900 7 28 30.219 0.32 0.818 516.1 2777452.3 

1000 7 27 30.274 0.34 0.818 614.8 2891840.5 

1500 7 27 30.274 0.34 0.818 614.8 2891840.5 

Furthermore, the same analyses were implemented for R=1, 2, 3 and 4; the 

results are summarized in Table 7. These results show that the proposed GA 
method was not trapped in a local optimum, except for R=1. And, R=0 was the 

best radius of the evaluated parameters for field X, because its location gave the 

highest oil recovery. 

Table 7 Results of various values for R. 

Radius 
Location Fitness Value - Oil 

Recovery Relation 
Oil Recovery (STB) 

x Y 

0 7 27 Positive 2891840.5 

1 6 27 Negative 2310701.8 

2 8 27 Positive 2418505.0 

3 8 27 Positive 2418505.0 

4 9 28 Positive 1881947.1 
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Figure 12 Fitness function value evaluation with respect to number of 

iterations. 

 

 

Figure 13 Oil recovery evaluation with respect to fitness function. 

 

 

 



124 Tutuka Ariadji, et al. 

8.3 Proposed GA Method Results 

The results of the proposed GA method for both fields are described in Tables 

8-11. A situation similar to the one-well scenario still gave perfect results, as 
shown by the small differences compared to the reservoir simulation results for 

both fields. However, the larger field yields a larger difference. Also, the three-

wells scenario yielded larger differences than the one-well scenario. In other 

words, the proposed GA method, which is accurate and robust, might be able to 
take hurdles in more complex problems, i.e. when a higher number of wells and 

a larger field are involved. Using the conventional trial-and-error method 

requires hard work and plenty of time to accurately find the best well locations.  

Table 8 The one-well scenario for field X, with R = 1. 

Location Oil Recovery  Recovery Factor ∆ RF with Res. Simulation 

x y (STB) (%) (%) 

7 27 2891840.5 17.94 0 

Table 9 The three-wells scenario for field X, with R = 1. 

Location Oil Recovery  Recovery Factor ∆ RF with Res. Simulation 

x y (STB) (%) (%) 

7 27 3545128.3 22 0.15% 

18 25    

15 30    

Table 10 The one-well scenario for field Y, with R = 1. 

Location Oil Recovery  Recovery Factor ∆ RF with Res. Simulation 

x y (STB) (%) (%) 

91 34 10275948 9.39 0.41 

Table 11 The three-wells scenario for field Y, with R = 1. 

Location Oil Recovery  Recovery Factor ∆ RF with Res. Simulation 

x y (STB) (%) (%) 

91 34 16790774 15.34 1.31 

90 36    

79 36    

 

Figure 14 shows the selected well locations based on previous study results and 
those based on the proposed GA method. 
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Figure 14 Selected well locations of a previous study compared to those using 

the proposed GA method. 

8.4 Discussion of the Proposed GA Calculation Procedure 

In the proposed GA method, a two-step calculation procedure is introduced that 
employs two sequential objective functions. The first objective function is used 

for classifying the hydrocarbon volume and at certain values for classifying 

interval criteria. These assigned values are based on qualitative investigation of 

running experiments for the whole field, using geological software. Thus, some 
subjective reservoir engineering judgments are embedded in the first objective 

function. 

The proposed GA needed statistical parameters that had to be set properly in 
order to make sure the algorithm calculation process worked well. The 

maximum number of iterations was set to a certain number so that the 

calculation of the objective function reached the maximum value as the iteration 
proceeded; it did not produce significantly higher values. The crossover 

probability was set to a relatively high value, i.e. 0.9, in order to make the 

algorithm permissive towards the occurrence of crossover. On the other hand, 

the mutation probability was set to a small value, i.e. 0.01, to limit the number 
of mutations. These conditions were intended to yield more heterogeneous 

individuals, since crossover allows a new individual to be generated from 

combustion among individuals, whereas mutation allows a new individual to be 
generated from the individual itself. 

The proposed GA method proved to be a robust way of finding the best well 

location, as shown by its capability to yield better oil production performance 

results than the conventional reservoir simulation methods for both studied 
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fields, X and Y. For the simple problem of a one-well scenario for field X, the 

proposed GA method gave the same result as the conventional method. For the 

three-well scenario, the GA method could give at least the same or even better 

well locations by producing a 0.15% higher oil recovery compared to the 
conventional method. Furthermore, in the case of field Y, the proposed method 

also gave better well locations for both the one-well and the three-wells 

scenario, by producing higher oil recoveries, 0.41% and 1.31% higher 
respectively, compared to the conventional method.  

The proposed GA also involved the contribution of surrounding grid blocks for 

determining well locations. However, defining the radius of evaluation that 

determines the number and position of neighboring grid blocks needs further 
study, since the radius of evaluation still affects the well production set 

manually; the heterogeneity of the reservoir influenced the setting. 

Nevertheless, this simplification was powerful, since the proposed GA was able 
to give good results for well location selection. 

9 Conclusions 

The proposed GA method is proven to be a robust and accurate method to help 
find the best well locations for oil field development by employing three static 

reservoir rock parameters, i.e. porosity, permeability, and saturation, which are 

also used in conventional reservoir simulation practice. This method avoids the 
time-consuming reservoir simulation process in searching the best field 

development scenario by running various future performance scenarios using 

the conventional, trial-and-error reservoir simulation method, especially when 
large-size fields or condensate gas fields are involved that need compositional 

simulators. 

The key for success of the proposed GA method mainly lies in the formulation 

of the objective functions, which requires skill and experience with oil field 
development best practices using reservoir simulation and the ability to 

transform those skills into a GA formulation in order to fulfill the objective 

functions and solve the problem. 

 

The inclusion of a radius of evaluation in the proposed GA method gave more 

realistic results in locating the best development-well locations. However, the 

radius of evaluation function needs to be studied further in order to develop an 
automatic determination technique. 
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