
Jurnal TICOM Vol.1 No.1 September 2012

ISSN 2302 ‐ 3252 1

Analysis of Autonomic Service Oriented Architecture
Muhammad Agni Catur Bhakti

Informatics Engineering Department, University of Pancasila
Srengseng Sawah, Jagakarsa, Jakarta 12640, Indonesia

m.agni.cb@gmail.com

Abstract— Service-Oriented Architecture (SOA) enables composition of large and complex computational units out of the
available atomic services. However, implementation of SOA, for its dynamic nature, could bring about challenges in
terms of service discovery, service interaction, and service composition. SOA may often need to dynamically re-configure
and re-organize its topologies of interactions between the web services because of some unpredictable events, such as
crashes or network problems, which will cause service unavailability. Complexity and dynamism of the current and
future global network systems require service architecture that is capable of autonomously changing its structure and
functionality to meet dynamic changes in the requirements and environment with little human intervention. In this paper,
formal models of a proposed autonomic SOA framework are developed and analyzed using Petri Net. The results showed
that SOA can be improved to cope with dynamic environment and services unavailability by incorporating case-based
reasoning and autonomic computing paradigm to monitor and analyze events and service requests, then to plan and
execute the appropriate actions using the knowledge stored in knowledge database.

Keywords— Service Oriented Architecture, autonomic computing, case-based reasoning, formal model, Petri Net

I. INTRODUCTION
As the development of internet technologies has

enabled an access to many types of services over the
web, networked and distributed systems (providing
resources, services, etc.) are nowadays gaining an
increasing importance and demand. Hence, the scale
and complexity of current distributed systems are also
increasing and showing high dynamism [1].
Furthermore, on the base of existing services, large
distributed computational units can be built by
composing complex compound services out of simple
atomic ones [2]. This type of concept and architecture is
called Service-Oriented Computing (SOC) and Service-
Oriented Architecture (SOA) respectively.

Service-oriented computing is an emerging
computing paradigm that utilizes services as the basic
constructs to support the development of rapid and easy
composition of distributed applications. The visionary
promise of SOC is to assemble the application
components with little effort into network of services
that can be loosely coupled and used to create the
flexible dynamic business processes and applications
that may span organizational boundaries and computing
platforms.

Components of a service-oriented model (data,
software, platforms, etc.) should be considered as
service that can be used by users through the network,
despite of the underlying technologies being used to
provide those services. A business process engine can
be deployed using service-based integration adapters to
access a services based message broker. Service-based
business application adapters are used to access several
back-end systems, such as databases or legacy systems.
The service adapter interface is hence used to unify the
interfaces to different kinds of the back-end systems.

Current SOA frameworks offer agility,
maintainability, reusability, consistency, efficiency,
integration and reduced cost of a service [3]-[5]. Yet,
they are still lacking for adaptability and robustness.
Schneider et al. [5] stated that technologies and methods
are still needed for development of adaptive SOA
systems. The results in [6] showed that typical service
composition will be complete and correct with an
assumption that there are no exceptions or errors
occurred from the initiating user to the terminating one.
However that is not the case with the current and future
complex and dynamic systems.

The work in [1] reported that the scale and
complexity of current distributed systems are increasing
and showing high dynamism in that the global network
systems grow. Future systems also need to be able to
cope with unpredictable events that could cause services
unavailability, such as crashes or network problems.
Therefore, a more robust, more adaptive and
autonomous service architecture that can keep up with
the dynamic changes in environments and requirements
to some extent is required.

An autonomic service oriented architecture based on
autonomic computing paradigm [7]-[8] and case-based
reasoning (CBR) [9]-[10] has been proposed in [11]–
[14]. The autonomic computing paradigm, inspired by
the human autonomous nervous system, was proposed
as an approach for the development of computer and
software systems that are able to manage themselves in
accordance with only high-level guidance from
administrators. This paradigm has been used in many
researches in various domains such as those in [15] and
[16] in which the authors adapted autonomic computing
paradigm in self-configuration and self-healing software
systems.

Jurnal TICOM Vol.1 No.1 September 2012

ISSN 2302 ‐ 3252 2

We incorporated the autonomic computing cycle and
case-based reasoning in the proposed framework to
introduce learning and adaptability into SOA. The
autonomic computing mechanism in SOA will
autonomously monitors and analyses service requests,
then plans and provides the services. It will also adapt
and learn new service profiles leading to better and
faster service delivery in the future. The rest of this
paper is structured as the following: section 2 elaborates
the proposed autonomic SOA framework; section 3
presents the formal model development and analysis of
the proposed autonomic SOA; section 4 presents the
simulation development of the proposed framework;
lastly section 5 presents summary of this paper and
direction for future work.

II. PROPOSED AUTONOMIC SOA
Compared to the conventional SOA, the proposed

autonomic SOA has additional features which include
the addition of autonomic manager and the ability to
adapt to changes with the knowledge from a knowledge
base. The autonomous SOA will learn and adapt in
appropriate ways to solve problems based on the
knowledge gained from previous cases, which are stored
in the knowledge base, using CBR. It will also be able
to suggest services to the users.

Fig. 1 shows the overall architecture of the proposed
autonomic SOA that extends a typical SOA
infrastructure (i.e. consists of service requestor and
service provider) by incorporating the autonomic
computing cycle into the business process layer. The
architecture is separated into the three tiers:

1. The top that is a presentation tier to provide
access to various users through web

2. The mid that is a processing tier to perform and
coordinate several jobs and

3. The bottom that is a service / resource tier to
enable the utilization of the distributed
resources via Web Services.

The service/resource tier refers to service providers in
a typical SOA framework. The brokers in processing
tier act as service requestors. Here, the functionality of
the service registry, by adding a knowledge base as
required by the autonomic computing paradigm, is
extended. The knowledge base provides the capability
to store the previous services profiles (cases) whose
features include:

• Name of the service.
• Description of the service.
• The type of service (atomic, composite).
• If the service is a composite service, then the

profile will also include profile of the atomic
services required to compose the composite
service (“ingredients”).

• Where, when, how (sequence) to access (and
compose if necessary) the service (“recipe”).

The autonomic computing paradigm is incorporated
in the processing tier which has the autonomic manager
in it. In the context of autonomic computing paradigm,
the autonomic manager will perform the autonomic
cycle, i.e. monitoring, analyzing, planning, and
executing, which of each is described below.

Fig. 1 Architecture of the proposed autonomic SOA
framework

A. Monitoring
The manager will monitor both its own behaviour

and the overall system, including the following:
• The availability of the services
• Addition of new services
• Removal of services
• Request / query from user

A sentinel or monitoring module will provide
monitoring services to the SOA elements. Along with
service registry, it would provide service discovery. The
service monitor continuously monitors the system to
detecting and identifying request from user and the
status of services. If a service request input is available
from user, it will be forwarded into analysis. Then if
there is a change in service status, the status of that
particular service in knowledge base will be updated. A
change in service status will be considered as a new
request that will be treated as such (forwarded to
analysis module and so forth).

B. Analyzing

Broker(1)

`
UserUser

Monitoring

Interface

Analysis

Planning

Execution Composer /
Aggregator Broker(i)

Service
wrapper Service

Service
wrapper Service

Service
wrapper Service

Knowledge & registry
database

Web Services

Internet /
Intranet

Presentation
Tier

Business
Process Tier

Service / Resource
Tier

Service request &
response

ProvidersRegister
services

Service binding

Instantiate
Brokers

Retrieve &
Retain

Plan execution
& response

Jurnal TICOM Vol.1 No.1 September 2012

ISSN 2302 ‐ 3252 3

It means to analyze the requests. The manager will
retrieve previous cases from the knowledge base, whose
features include description of services, type of service
(atomic or composite), their providers, and access to the
providers. The cases then will be reused or revised as
necessary to provide the (composite) service requested.

Fig. 2 illustrates the adaptation of Case-based
Reasoning (CBR) and autonomic computing cycle in
the proposed autonomic SOA framework. The analysis
process described below is adapted from the CBR cycle
(retrieve, reuse, revise, and retain) for adaptive and
learning functionality, which include both the analysis
and planning processes using the knowledge base as the
case base.

1) Case-Based Reasoning (CBR): CBR is a process of
solving a new problem by remembering a previous
similar situation and reusing information and knowledge
of that situation [10]. CBR is able to utilize the specific
knowledge of previously experienced, concrete problem
situations, called ‘cases’. In it, a new problem is solved
by finding a similar past case, and reusing it in a new
problem situation. CBR systems store past experiences
as individual problem solving episodes [9]. CBR also
refers to an approach to incremental, sustained learning.
Since a new experience is retained each time a problem
has been solved, CBR comes to be immediately
available for future problems. CBR can either mean
adapting old solutions to meet new demands, or using
old cases to explain new situations, or reasoning from
precedents to interpret new situation, or creating
equitable solution to a new problem [9]. Kolodner [9]
listed the advantages of CBR as the following:

• It allows the reasoner to propose solutions to a
problem quickly.

• It allows the reasoner to propose solutions in
domains that tare not completely understood by
the reasoner.

• It gives the reasoner a means for evaluating
solutions when no algorithmic method is
available for evaluation.

• Cases are useful in interpreting open-ended and
ill-defined concepts.

• Remembering previous experience is useful to
help learners to avoid repeating past mistakes.

• Cases help the reasoner to focus on its
reasoning on important parts of a problem by
pointing out what features of a problem are
important ones.

For its benefits, features, and successful
implementation in the systems found in the following
works, CBR here becomes the chosen method in the
analysis and planning processes:

• Montani & Anglano [16] used CBR in
developing self-healing software system

• Cheetham [17] and Morgan [18] deployed
CBR applications at GE Plastics and General
Motors work places respectively

• Manufacturing [19]
• Engineering sales support [20]
• Wireless networks management [21]
• Project management [22]
• Fault diagnosis [23]

Fig. 2 Adaptation of autonomic cycle and CBR in the
proposed autonomic SOA

2) The analysis process: the process is described as the
following:

1. Once receiving a request of service, the system
starts by first searching for that particular
service profile (as represented by a case) in
knowledge base / case base. If that particular
service profile is available, then it is retrieved
for action planning.

2. If there is no service profile of that particular
service in the knowledge base, then cases that
are having similar properties / features would
be retrieved. Various metrics can be used to
calculate the similarity distance. For example,
the work by [16] used heterogeneous
Euclidian-overlap metric (HEOM) [24]. The
distance calculation returns a value which is
typically in the range of 0..1 with 0 value
means zero distance, i.e. x = y.

3. The similar cases found shall be used for action
planning (by revising them). The new case
afterward will be used for action planning and
then added to the knowledge base.

4. If there are no similar previous cases, the
monitoring module will search for the
composite service in service registry (or search
for atomic services that could be composed
into the requested service). For scalability, the
system should also be able to search in other
service registries (e.g. online service registry
on the internet or other service ecosystems) if
the local service registry does not have the

Case base
(KB)

Retain
(update)

PlanningAnalysis

Retrieve

Reuse-revise

ExecutionMonitoring

CBR

Composition
(BPEL, CDL)

Action
plans

Services,
possible solutions,

exceptions

Requests,
possible
solutions

Jurnal TICOM Vol.1 No.1 September 2012

ISSN 2302 ‐ 3252 4

services needed. The new service profile will
then be used for action planning and added
(retained) to the knowledge base.

5. The autonomic manager will also suggest other
services to the users which are related to the
requested services (e.g. other services that are
also typically used) based on the previous cases
in the knowledge base.

The mechanisms of the CBR in the autonomic SOA
are described in the following algorithm:
• Overall CBR mechanism:

The system will retrieve every record from
Knowledge Base (KB) by firstly trying to find
exact match of the current case in those records. If
an exact match is found, the solution then is
forwarded to the next phase, yet if not, the system
will select cases that are similar with the current
case. The solutions of those selected cases (list of
possible solutions) are forwarded to the next phase.
However, if there are no similar cases found, the
system will search for the service at external /
remote service registries.

• Retrieve mechanism:
Retrieving every record in KB (and put them in an
array / list).

• Reuse mechanism:
Calculate the distance between every record and
current case. Find an exact match by comparing
every record with the current case (i.e. find the case
with zero distances to the current case; because
when the distance is 0, it means that it is an exact
match). If it is found, then return that record’s
solution as the current solution.

• Revise mechanism:
If there is no case with 0 distances, select cases
with distances below the distance threshold and
save their solutions as a list of possible solution,
and forward it to the next phase.
Eventually, solution that is accepted by users (i.e.
used by many users, high usage numbers) will be
retained, while other solutions with low usage
numbers will be discarded from KB.

• Retain mechanism:
Record new or updated cases and service status.
At the end of the retain mechanism, there will be a
status update process if there are new cases to be
retained.

C. Planning
Autonomic manager will plan actions to provide the

requested composite service. It plans the suitable actions
for the requested service. If it is a composite service,
then the action plans will include the following:
• The list of available atomic services needed to

compose the required composite service

• Where and how to access the atomic service
• The sequence of accessing the atomic service

It will also update the knowledge base if new action
plan is created (or revised from the previous ones) so
that these plans can be readily available and prepared
faster when the same composite service is re-requested
in the future. After receiving the service information
from analysis module, the planning module will either
create an action plan to invoke the service solution or it
will create several action plans of the previous similar
cases. The action plan(s) will then be forwarded to
execution module.

D. Executing
Autonomic manager will execute a plan to provide a

requested service, and brokers will assist in interacting
and negotiating with the service providers to obtain the
required services, including translating messages from
the formal messaging protocol of the sender to the
formal messaging protocol of the receiver if necessary
(in the case where sender and receiver are using
different platforms). Upon receiving action plan, the
execution module will execute it utilizing the brokers as
necessary to interact with service providers.

If the requested service is an atomic service, then the
service will be simply provided by the service provider.
Meanwhile if it is a composite one, then the autonomic
manager will execute the action plan and then provide
the composite service, which is by composing the
atomic services that can be based on Business Process
Execution Language (BPEL) or Choreography
Description Language (CDL).

III. FORMAL MODELS
By using Petri Nets which provides further insight on

the behaviour of the autonomic SOA, especially in
situations where actual system testing is not applicable,
formal modelling and analysis of the proposed
architecture are conducted.

A. Petri Nets based Validation Methodology
Petri Nets [25]-[26] based functional validation

framework is used to analyze the SOA framework
proposed in this research. This framework was
introduced in [6] to validate service composition in
SOA. Fig. 3 shows the functional validation
methodology. Later on, the state transitions using Petri
Nets modeling will be analyzed for enabling the process
of validation on service’s behavioral correctness and
other properties.

Jurnal TICOM Vol.1 No.1 September 2012

ISSN 2302 ‐ 3252 5

Fig. 3 Petri Nets based functional validation
methodology [6]

Coloured Petri Nets (CPNs) [27] is a modelling

language developed for systems in which
communication, synchronization, and resource sharing
play an important role. CPNs combine the strengths of
ordinary Petri nets with the strengths of a high-level
programming language. Petri nets provide the primitives
for a process interaction, while the programming
language provides the primitives for the definition of
data types and the manipulations of data values.

CPN models can be made with or without explicit
reference to time:

• Untimed CPN models are usually used to
validate the functional/logical correctness of a
system.

• Timed CPN models are used to evaluate the
performance of the system.

CPNs also offer more formal verification methods, i.e.
state space analysis (reachability, boundedness, home
properties, liveness, and fairness) and invariant analysis.

B. Modelling Web Services
Details about web services are based on information

from Web Service Description Language (WSDL)
descriptions. Thus to model a web service it is necessary
to provide the following WSDL data:

• the name of the web service
• contents of the XML message sent to the

external web service (types and names of
arguments)

• contents of the response XML message from
the external web service (types and names of
arguments)

• exceptions for the web service
To invoke a web service and to get a result, the XML

messages are used, which contain names and values of
input parameters or responses. Meanwhile, to model
these XML messages in Petri Nets, appropriate colour
sets have to be declared. Record type is used, for
enabling mapping names and values as defined in a
WSDL description of messages.

A web service composition involves three main
interactions; namely invoking, sending, and receiving
[28]. In the colored Petri nets those interactions are
modeled as transitions, thus in this work those three
subsets of transitions to represent those operations are
derived and enhanced from [28] to cope with
exceptional and no response messages and to support
the CBR processes, which are:
TinvokeWS, TsendWS, and TreceiveWS.

A transition t that represents an invoke operation can
be defined as the following:

t ∈ TinvokeWS iff (t ∈ T) ^ (size(In(t)) = 1) ^

(size(Out(t)) >= 2) ^ (∃ p ∈
In(t) : C(p) → inMsg) ^ (∃ p1
∈ Out(t) : C(p1) → outMsg)
^ (∃ p2 ∈ Out(t) : C(p2) →
Revise)

where:
• T is a set of all transitions in a net,
• In and Out are functions that map a node to its

input and output nodes, respectively,
• size refers to a size of a set,
• C maps a place into its color set,
• → maps WS messages into record types,
• inMsg and outMsg represent accordingly all

input and all output messages defined in a WS
description for a web service.

The definition shows that a transition modelling an
invoke operation has one input place with the colour set
mapped from a WSDL input message, and at least two
output places - one with the colour set mapped from a
WSDL output message and another with the unit colour
set (it represents “no response” type of output). The size
of the set of output can be bigger than two as in WSDL
description it is possible to have fault messages, each of
which is modelled as an output place. Fig. 4 shows the
Petri net model of the invoke operation.

Jurnal TICOM Vol.1 No.1 September 2012

ISSN 2302 ‐ 3252 6

Fig. 4 Petri Net model of the invoke operation

A transition t that represents a send operation can
be defined as the following:

t ∈ TsendWS iff (t ∈ T) ^ (size(In(t)) = 1) ^

(size(Out(t)) = 1) ^ (∃ p ∈
In(t) : C(p) → inMsg) ^ (∃ p1
∈ Out(t) : C(p1) → reqMsg)

Different from invoke operation, in send operation

there is no any different output type but only the request
service message (reqMsg) colour set. Fig. 5 shows the
Petri net model of the send operation.

Fig. 5 Petri Net model of the send operation

A transition t that represents a receive operation

can be defined as the following:

t ∈ TreceiveWS iff (t ∈ T) ^ (size(In(t)) = 1) ^
(size(Out(t)) >= 2) ^ (∃ p ∈
In(t) : C(p) → respMsg) ^
(∃ p1 ∈ Out(t) : C(p1) →
outMsg) ^ (∃ p2 ∈ Out(t) :
C(p2) → Revise)

The difference between this definition and the

invoke operation is that for input there is the respMsg
colour set. Thus, an input message is not modelled. Fig.
6 shows the Petri net model of the receive operation.

Fig. 6 Petri Net model of the receive operation

The set of all interactions for composite web
service can be defined as the following:

TWS = TinvokeWS U TsendWS U TreceiveWS
One of the Petri Nets analysis methods are

occurrence graphs which in this work are used to
analyze composite web services to identifying how
failures of required web services may influence the
overall SOA execution. An occurrence graph is a graph
with a node for each reachable marking (a distribution
of tokens between places) and an arc for a transition and
its binding (called binding elements). This graph is the
basis for checking whether composite web service can
be successfully executed even if one or more used web
services do not respond or give out exceptional message,
which is modelled as “no response” and “exceptional”
type of output respectively, and in the colored Petri Nets
as output place of an interaction with the unit color set.
To perform such checking it is necessary to infer the
reachability of a marking representing a success of
composite web service composition from markings
representing different outputs from external web
services. This analysis was also extending the work by
Zurowska & Deter [28].

The nodes and markings in an occurrence-
equivalence graph (OE-graph), that represent
exceptional or no response types of output for each used
external web service, are identifiable in the research.
Then it is followed by checking the reachability of

revise excp plan revise plancreate WS result

invoke WS

create req msg

output WS

output WS noRespoutput WS excp output WS resp

input WS msg

input WS

send WS req

create req msg

out

input WS msg

input WS

revise planrevise excp plan create WS result

receive WS msg

output WS

output WS excp output WS noRespoutput WS resp

in

Jurnal TICOM Vol.1 No.1 September 2012

ISSN 2302 ‐ 3252 7

Msuccess from all those states. If the success is reachable,
it enables to execute composite web service even if
there is an exception or no response; otherwise in case
of a failure of a component, composite web service in
conventional SOA framework could not be successfully
executed. The additional revise node makes the
proposed framework potentially able to reach Msuccess
even in the case where exceptional error message is
received from the web service WSn. The framework will
revise the composition plan and it will invoke the next
web service (WSn+1) instead. Fig. 7 shows the
occurrence graph with equivalence classes for web
service composition, in which the successful marking is
represented by node 9. Thus it can be concluded that
even if the external web services is not responding or
giving exceptional messages, the service composition is
likely will still be successful.

Fig. 7 Occurrence graph of web service composition in
autonomic SOA

IV. SIMULATION DEVELOPMENT
To simulate and test the framework proposed in this

research, soapUI, a Java-based free and open source
cross-platform testing solution for SOA, is used.
Equipped with a graphical interface, and enterprise-
class features, soapUI allows users to create and execute
automated functional, regression, compliance, and load
tests. In a single test environment, soapUI provides
complete test coverage and supports all standard
protocols and technologies, including SOAP and REST-
based Web services, JMS enterprise messaging layers,
databases, and Rich Internet Applications.

A. Currency Conversion Services
A test environment whose goal is to show the ability

of the proposed framework to cope with unavailable
services was developed by using the following WSDL
files available in the internet:

1. Currency Convertor web service [29]
2. Currency Service web service [30]

This case study will show the ability of the
autonomic SOA framework to cope with erroneous or
unavailable atomic services. These currency converter
services were selected as they are freely available on the

internet, and they provide the equal atomic service, i.e.
providing conversion rate for a given two currencies.

It is then followed by creating the mock services of
those services. Mock services can be used to create a
proof of concept, either as a wire frame or as a demo for
the proposed framework. This is a powerful means and
provides a good ground for decision-making of the
framework.

The simulation program was executed several times
for the following conversion:

• US Dollar (USD) to Malaysia Ringgit (MYR)
• Euro (EUR) to Malaysia Ringgit (MYR)
• Malaysia Ringgit (MYR) to Indonesia Rupiah

(IDR)
The web service providers were simulated to be

down (unavailable) alternatingly. Table 1 shows the
currency converter simulation results.

TABLE I
CURRENCY CONVERSION SIMULATION RESULTS

Conversion Currency
Convertor

Currency
Service

Conversion
Result

Reachable?
USD to
MYR

Output
message

No response Yes

USD to
MYR

No response Output message Yes

EUR to
MYR

Output
message

No response Yes

EUR to
MYR

No response Output message Yes

MYR to IDR Output
message

No response Yes

MYR to IDR No response Output message Yes

The results showed that the proposed autonomic SOA

framework was able to keep providing currency
conversion rate service to the user every time. The
autonomic SOA will seamlessly switch and access the
CurrencyConvertor when CurrencyService was
unavailable and vice versa, thus increasing the overall
system robustness and reliability.

Without the autonomic feature activated, erroneous
web service in the simulation, e.g. CurrencyConvertor
service, will produce the socket time out exception
message after the system tried for some times to connect
to the web service. The simulation stopped and user
must create new request to try to re-connect or try other
service provider. However, with the autonomic feature
activated, when the CurrencyConvertor web service
was unavailable, the system was still able to provide the
currency conversion rate by seamlessly switch to the
other service provider, i.e. CurrencyService.

B. Travel Scheduling / Vacation Planner

Jurnal TICOM Vol.1 No.1 September 2012

ISSN 2302 ‐ 3252 8

To compare the research as peer-to-peer, the
following works that also used Petri Nets modeling are
chosen and presented. This case study will show the
ability of the proposed autonomic SOA framework to
cope with unavailable services in service composition.

1) Travel scheduling: Yoo et al. [6] used travel
scheduling as a case study. The conditions of their work
are the following:

The validation conditions:
• Visit = AirlineBooking & HotelReservation &

CarRental
• Initial input = TravelInfo
• Final output = TravelSchedule
• Final status = Success (Accept) | Failure (Reject)

Their results stated that “the service composition is
complete and logically correct if no exception / error
occurs from the (initiating) user to the (terminating)
user” [6]. In this aspect, the autonomic SOA framework
in this research is better for being able to cope for non
responsive atomic services, exceptions and errors
messages happened in service composition as shown in
the formal models and analysis in the previous section.

If any error or exception is raised in service
composition, it will be captured by the monitoring
module and the CBR process will analyze the error and
plan action to overcome the error accordingly. The
action plan may include usage of other service provider
(in case of web service provide error or unavailability)
or usage of other channel of communication (in case of
network problem).

2) Vacation planner: Zurowska and Deter [28] used
vacation planner as a case study in their work. Their
result showed that their framework was able to void
interactions with optional components (web services)
that are not working. However, in the case when the
faulty web service is compulsory to successfully
execute composite web service (like FindFlight in their
example), the system was unable to overcome it. This is
shown in their reachability analysis in Table 2.

TABLE II
REACHABILITY ANALYSIS FOR THE VACATION PLANNER

[28]

In their case study, the FindFlight web service is a

compulsory service and the FindAttractions web service
is an optional one. If there is a valid output message
from the FindFlight web service and no valid output
from the FindAttractions web service, the end state is
still reachable. However if there is no valid output from

the FindFlight, even if there is a valid output from
FindAttractions, the end state will be unreachable.

This case study was simulated using the WSDL
descriptions given by [28] in soapUI environment.
Table 3 shows simulation results of the vacation planner
in the proposed autonomic SOA.

TABLE III
VACATION PLANNER SIMULATION RESULTS

FindAttractions FindFlight Vacation
Booking Result

Reachable?
No response Output

message
Yes

Output message No response Yes

From this aspect, the proposed autonomic SOA
framework of this research is also better compared to
the conventional SOA framework analyzed by [28],
because it is still able to reach success end state (Msuccess)
even if there is no valid output from FindFlight (no
response or exceptional message) as shown in the
simulation results and also described in the formal
analysis in section 3. This is true due to the ability of the
framework to revise its action plan and look for other
services similar to what FindFlight provides, either
within the service ecosystem or searching at other
service ecosystems.

V. CONCLUSIONS
The Petri Net analysis showed that in the proposed

autonomic SOA framework, web service composition
will still be successful even if the atomic web services
are not responding or giving error messages. The revise
process makes the proposed framework potentially able
to reach successful end marking even in the case where
exceptional error message is received from web service
provider. The framework will revise the composition
plan and it will invoke the next service provider instead.

The simulation results showed the ability of the
proposed framework to work around unavailable
services and seamlessly provide user with the same type
of service from different service providers. Therefore
the framework will improve the success rate of
providing not only atomic service, but also composite
service since it improves the availability and reliability
of the atomic services. If all the required atomic services
to compose a composite service are obtainable, then the
service composition will be successful since the service
composition process itself executed internally within the
business process layer of the framework. Thus it can be
concluded that the proposed framework will also
improve the success rate of providing a composite

Jurnal TICOM Vol.1 No.1 September 2012

ISSN 2302 ‐ 3252 9

service by ensuring the availability and reliability of its
atomic services.

The proposed autonomic SOA framework is yet to be
implemented in real world system applications. In this
research, the proposed framework has been modeled
and simulated. Yet to comparing it with other SOA
implementation equally, it needs to be implemented in
real applications. Future works could focus on
implementing the proposed framework in a specific
application domain, then analyzing and benchmarking it
with other SOA implementations.

The presented research analysis on the proposed
framework also has not included a thorough quantitative
evaluation and analysis to measure the quantitative
improvements over conventional SOA framework,
especially in term of Quality of Services (QoS) and its
usage in Service Level Agreement (SLA). Further
quantitative study is needed after the proposed
framework has been fully implemented.

REFERENCES
[1] A. Montresor, H. Meling, and O. Babaoglu,

“Toward self-organizing, self-repairing, and
resilient large-scale distributed systems,”
Technical Report UBLCS-2002-10, Sep. 2002.

[2] A. Lazovik and F. Arbab, “Using Reo for service
coordination,” in Proc. of ICSOS 2007, LNCS
4749, Springer-Verlag, Berlin, Heidelberg, 2007,
pp. 398-403.

[3] M. Bell, Service-Oriented Modeling: Service
Analysis, Design, and Architecture, John Wiley &
Sons, Inc., Hoboken, New Jersey, 2008.

[4] M. Rosen, B. Lublinsky, K. T. Smith, and M. J.
Balcer, Applied SOA: Service-Oriented
Architecture and Design Strategies, Wiley
Publishing, Inc., Indianapolis, Indiana, USA, 2008.

[5] D. Schneider, C. Bunse, and K. Schmid, “Towards
Adaptive Service Engineering”, in Proc. of the
International Workshop on the Foundations of
Service-Oriented Architecture, Special Report
CMU/SEI-2008-SR-011, June 2008.

[6] T. Yoo, B. Jeong, and H. Cho, “A Petri Nets based
functional validation for services composition,”
Expert Systems with Applications 37 (2010), pp.
3768–3776, Elsevier, 2009.

[7] Autonomic computing: IBM’s perspective on the
state of information technology, IBM, USA,
October 2001.

[8] J. O Kephart and D. M. Chess, “The vision of
autonomic computing,” in Computer, vol. 36, No.
1, IEEE Computer Society, pp. 41-50, Jan. 2003.

[9] J. L. Kolodner, “An Introduction to Case-Based
Reasoning”, Artificial Intelligence Review, vol. 6,
pp. 3-34, 1992.

[10] A. Aamodt and E. Plaza, “Case-based reasoning:
foundational issues, methodological variations,

and system approaches,” in AI Communications,
7:39-59, 1994.

[11] M.A.C. Bhakti, A.B. Abdullah, and L.T. Jung,
“Autonomic, Self-Organizing Service Oriented
Architecture in Service Ecosystem,” in Proc. of
International Conference on Digital Ecosystems
and Technologies (IEEE DEST 2010), Dubai,
United Arab Emirates, 12-15 April 2010.

[12] M.A.C. Bhakti, A.B. Abdullah, “Towards an
Autonomic Service Oriented Architecture in
Computational Engineering Framework,” in Proc.
of the 10th International Conference on
Information Science, Signal Processing and their
Applications (ISSPA 2010), Kuala Lumpur,
Malaysia, 10-13 May 2010.

[13] M.A.C. Bhakti, A.B. Abdullah, “Design of an
Autonomic Service Oriented Architecture,” in
Proc. of the 4th International Symposium on
Information Technology (ITSim 2010), volume 2,
pp. 805-810, Kuala Lumpur, Malaysia, 15-17 June
2010.

[14] M.A.C. Bhakti, A.B. Abdullah, “Autonomic
Computing Approach in Service Oriented
Architecture,” in Proc. of IEEE Symposium on
Computers and Informatics (ISCI 2011), pp. 231-
236, Kuala Lumpur, Malaysia, 20-22 March 2011.

[15] H. Arora, T. S. Raghu, A. Vinze, and P.
Brittenham, “Collaborative Self-Configuration and
Learning in Autonomic Computing Systems:
Applications to Supply Chain,” in Proc. IEEE
International Conference on Autonomic
Computing, June 2006.

[16] S. Montani and C. Anglano, “Achieving self-
healing in service delivery software systems by
means of case-based reasoning,” Journal of
Applied Intelligence, vol. 28, No. 2, Springer
Netherland, Apr. 2008, pp. 139-152.

[17] W. Cheetham, “Tenth Anniversary of the Plastics
Color Formulation Tool”, in Proc. of the 16th
Innovative Applications of Artificial Intelligence
Conference, Published by The AAAI Press,
California, July 2004.

[18] A. P. Morgan, J. A. Cafeo, K. Godden, R. M.
Lesperance, A. M. Simon, D. L. McGuinness, and
J. L. Benedict, “The General Motors Variation-
Reduction Adviser: Deployment Issues for an AI
Application”, in Proc. of the 16th Innovative
Applications of Artificial Intelligence Conference,
AAAI Press, California, July 2004.

[19] D. Hinkle and C. Toomey, “Applying Case-Based
Reasoning to Manufacturing”, AI Magazine 16(1),
pp. 65-73, Spring, 1995.

[20] I. Watson and D. Gardingen, “A Distributed Case-
Based Reasoning Application for Engineering
Sales Support”, in Proc. of the 16th International
Joint Conference on Artificial Intelligence (IJCAI-

Jurnal TICOM Vol.1 No.1 September 2012

ISSN 2302 ‐ 3252 10

99), Vol. 1, pp. 600-605, Morgan Kaufmann
Publishers, 1999.

[21] M. Barbera, C. Barbero, P. D. Zovo, F. Farinaccio,
E. Gkroustiotis, S. Kyriazakos, I. Mura, and G.
Previti, “An Application of Case-Based Reasoning
to the Adaptive Management of Wireless
Networks”, in Proc. of the 6th European
Conference on Case-Based Reasoning (ECCBR),
Lecture Notes in Artifical Intelligence (LNAI) 2416,
pp. 490–504, Springer-Verlag Berlin Heidelberg,
2002.

[22] K. Xu and H. Muñoz-Avila, “CaBMA: Case-
Based Project Management Assistant”, in Proc. of
the 16th Innovative Applications of Artificial
Intelligence Conference, Published by The AAAI
Press, California, July 2004.

[23] B.-S. Yang, S. K. Jeong, Y.-M. Oh, and A. C. C.
Tan, “Case-based reasoning system with Petri nets
for induction motor fault diagnosis”, Expert
Systems with Applications 27, pp. 301–311,
Elsevier Ltd., 2004.

[24] D.R. Wilson and T.R. Martinez, “Improved
Heterogeneous Distance Functions”, J. Artificial
Intelligence Research, 6, pp. 1—34, 1997.

[25] C. A. Petri, “Communication with Automata,”
New York: Griffiss Air Force Base. Tech. Rep.
RADC-TR-65-377, vol. 1, suppl. 1, 1966.

[26] T. Murata, “Petri Nets: Properties, Analysis, and
Applications,” in Proc. of the IEEE, vol. 77, no. 4,
April 1989.

[27] K. Jensen, “Coloured Petri Nets. Basic Concepts,
Analysis Methods and Practical Use”, Volume 1,
Basic Concepts, Monographs in Theoretical
Computer Science, Springer-Verlag, 1997.

[28] K. Zurowska and R. Deters, “Overcoming failures
in composite web services by analysing colored
petri nets,” in CPN'07 - Workshop and Tutorial on
Practical Use of Coloured Petri Nets and CPN
Tools, Denmark, 2007.

[29] Currency Convertor web service. [Online].
Available:
http://www.webservicex.net/CurrencyConvertor.as
mx?wsdl

[30] Currency Service web service. [Online]. Available:
http://www.restfulwebservices.net/wcf/CurrencySe
rvice.svc?wsdl

