
J. Indones. Math. Soc.
Vol. 18, No. 2 (2012), pp. 85–92.

THE METRIC DIMENSION OF
A GRAPH COMPOSITION PRODUCTS WITH STAR

S.W. Saputro1, D. Suprijanto2, E.T. Baskoro 3, and A.N.M.

Salman 4

1Combinatorial Mathematics Research Group
Faculty of Mathematics and Natural Sciences

Institut Teknologi Bandung
Jl.Ganesa 10 Bandung 40132 Indonesia

suhadi@math.itb.ac.id
2Combinatorial Mathematics Research Group
Faculty of Mathematics and Natural Sciences

Institut Teknologi Bandung
Jl.Ganesa 10 Bandung 40132 Indonesia

djoko@math.itb.ac.id
3Combinatorial Mathematics Research Group
Faculty of Mathematics and Natural Sciences

Institut Teknologi Bandung
Jl.Ganesa 10 Bandung 40132 Indonesia

ebaskoro@math.itb.ac.id
4Combinatorial Mathematics Research Group
Faculty of Mathematics and Natural Sciences

Institut Teknologi Bandung
Jl.Ganesa 10 Bandung 40132 Indonesia

msalman@math.itb.ac.id

Abstract. A set of vertices W resolves a graph G if every vertex is uniquely

determined by its coordinate of distances to the vertices in W . The minimum

cardinality of a resolving set of G is called the metric dimension of G. In this

paper, we consider a graph which is obtained by the composition product between

two graphs. The composition product of graphs G and H, denoted by G[H], is the

graph with vertex set V (G) × V (H) = {(a, v)|a ∈ V (G); v ∈ V (H)}, where (a, v)

adjacent with (b, w) whenever ab ∈ E(G), or a = b and vw ∈ E(H). We give a

general bound of the metric dimension of a composition product of any connected

graph G and a star. We also show that the bound is sharp.
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Abstrak. Himpunan titik W membedakan graf G jika setiap titik ditentukan secara

tunggal oleh koordinat jaraknya ke titik-titik di W . Kardinalitas minimum dari

sebuah himpunan pembeda dari G disebut dimensi metrik of G. Pada paper

ini, kami meneliti graf yang diperoleh dari hasil kali komposisi antara dua graf.

The Hasil kali komposisi dari graf G dan H, dinyatakan dengan G[H], adalah graf

dengan himpunan titik V (G)× V (H) = {(a, v)|a ∈ V (G); v ∈ V (H)}, dengan (a, v)

bertetangga dengan (b, w) bilamana ab ∈ E(G), atau a = b dan vw ∈ E(H). Kami

menunjukkan sebuah batas umum dari dimensi metrik hasil kali komposisi dari

sebarang graf terhubung G dengan graf bintang. Kami juga menunjukkan bahwa

batas tersebut tajam.

Kata kunci: Basis, hasil kali komposisi, dimensi metrik, himpunan pembeda, graf
bintang.

1. Introduction

Throughout this paper, all graphs are finite, simple, and connected. Let G
be a graph. We denote by VG or V the vertex set of G, and EG or E the edge set
of G.

The metric dimension were first studied by Harary and Melter [8], and inde-
pendently by Slater [16, 17]. The basic parameter for this topic is the distance of
two vertices in a graph. For any two distinct vertices u, v ∈ V (G), the distance
dG(u, v) between u and v is the length of a shortest (u, v)-path in G. In particular,
if dG(u,w) ̸= dG(v, w), then we say that u and v are resolved by w. For an ordered
k-tuple W = {w1, w2, . . . , wk} of V (G) and a vertex v ∈ V (G), the representa-
tion of v with respect to W is the k-tuple r(v|W ) = (dG (v, w1) , . . . , dG (v, wk)).
We call W as a resolving set if r (u|W ) ̸= r (v|W ) for every two distinct vertices
u, v ∈ V (G). A resolving set of G with minimum cardinality is called basis, and
its cardinality is called metric dimension of G, and denoted by β(G).

Trivially, if G is a graph of order n, then β(G) ≤ n, by taking all vertices of
G to be a resolving set. However, we may obtain a resolving set whose cardinality
is less than n. Chartrand et al [5] showed that β(G) = 1 if and only if G ∼= Pn.
Furthermore, they proved that Kn is the only graph G with β (G) = n− 1. They
also proved that β (G) = n − 2 if and only if G is Kr,s for r, s ≥ 1, Kr + Ks for
r ≥ 1, s ≥ 2, or Kr + (K1 ∪Ks) for r, s ≥ 1.

Since there is no polynomial time algorithm which can be used to determine
the metric dimension of any graph, many researchers consider this problem for
some particular classes of graphs. Some classes of graph whose metric dimension
have been known are cycles [6], trees [5, 8, 10], stars [5, 8, 10], wheels [2, 3, 15],
complete multipartite [5, 14], unicylic graphs [12], Cayley graphs [7], and regular
graphs [1].

Determining a relation, in terms of metric dimension, between the origin
graph and the resulting graph under a graph operation is also interesting to be
considered. Some results on joint product graph have been proved in [2, 4, 3, 15].
Caceres et. al. [3], Khuler et. al. [10], Melter [11], and Saputro et. al. [14]
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showed the metric dimension of some graphs which obtained from the cartesian
product between two or more graphs. Some graphs which constructed from the
corona product between two graphs, have been investigated in [9, 18]. The metric
dimension of the composition product graphs have been studied in [13].

In the previous result [13], we proved the general bounds of the metric
dimension of a composition product G[H] of a connected graphs G and H. We
also show that the bounds are tight. In this paper, we determine a general bound
of the metric dimension of a composition product of any connected graph G and a
star. We can show that the upper bound of a composition product of any graph G
and a star is less than the upper bound of G[H]. We also show that the bound is
sharp.

2. Main Results

The composition product of graph G and H, denoted by G [H], is the graph
with vertex set V (G)× V (H) = {(a, v) |a ∈ V (G) , v ∈ V (H)}, where (a, v) adja-
cent with (b, w) whenever ab ∈ E (G), or a = b and vw ∈ E (H). For any vertex
a ∈ V (G), we define H (a) = {(a, v) |v ∈ V (H)}, and for any vertex b ∈ V (H), we
define G (b) = {(v, b) |v ∈ V (G)}. For example, let G ∼= P3 with V (G) = {a, b, c},
and H ∼= S3 with V (H) = {w, x, y, z}. The illustration of G [H] can be seen in
Figure 1.
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Figure 1. The composition product of P3 and S3
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Saputro et. al. [13] have proved the general bounds of β (G [H]) for any
connected graphs G and H. They also show that the bounds are tight.

Theorem 2.1. [13] Let G and H be connected graphs with |V (G)| ≥ 1 and |V (H)| ≥
2. If |V (G)| = n, then n · β (H) ≤ β (G [H]) ≤ n · β (H +K1) + (n− 2).

Now, for m ≥ 3, we consider H ∼= Sm, a star with m + 1 vertices. We show
that we can reduce the general bounds in Theorem 2.1 above, for H is a star.

By definition of G [H], for a, b ∈ V (G) and a ̸= b, every two different vertices
x, y ∈ H (a) satisfy dG[H] (x, z) = dG[H] (y, z) whenever z ∈ H (b). Therefore,
there exist Sa ⊆ H (a) such that every two distinct vertices x, y ∈ H (a) satisfies
r (x|Sa) ̸= r (y|Sa).

Lemma 2.2. [13] Let G and H be connected graphs with |V (G)| ≥ 1 and |V (H)| ≥
2. For any vertex a ∈ V (G), let H (a) = {(a, v) |v ∈ V (H)} be the subset of
V (G[H]). Let W be a basis of G[H]. If Sa = W ∩H(a), then Sa ̸= ∅. Moreover,
if B is a basis of H, then |Sa| ≥ |B|.

Considering Lemma 2.2 and H ∼= Sm, then β(G[H]) is equal to the lower
bound of Theorem 2.1.

Next, we consider a joint graph H + K1 where H ∼= Sm. A joint graph of
G and H, denoted by G + H, is a graph with V (G + H) = V (G) ∪ V (H) and
E(G+H) = E(G)∪E(H)∪{xy|x ∈ V (G), y ∈ V (H)}. The following lemma show
the metric dimension of H +K1.

Lemma 2.3. For m ≥ 3, let H be a star Sm with m+1 vertices. Then β(H+K1) =
m.

Proof. Let V (H +K1) = {u, v} ∪ {si|1 ≤ i ≤ m} and E(G) = {uv} ∪ {usi, vsi|1 ≤
i ≤ m}.

Let W = {u} ∪ {si|1 ≤ i ≤ m− 1}. Since vs1 ∈ E(G) but sms1 /∈ E(G), we
obtain r(v|W ) ̸= r(sm|W ). Therefore, W is a resolving set of H +K1.

Now, suppose that β(H +K1) ≤ m− 1. Let S be a basis of H +K1. Then
we have two cases of S as follows.

(1) u, v /∈ S
Since uz, vz ∈ E(G) for z ∈ V (G\{u, v}), we obtain r(u|S) = r(v|S), a

contradiction.
(2) sp, sq /∈ S for p, q ∈ {1, 2, ...,m} and p ̸= q

Since spa, sqa ∈ E(G) for a ∈ {u, v} and spb, sqb /∈ E(G) for b ∈
V (G\{u, v, sp, sq}), we obtain r(sp|S) = r(sq|S), a contradiction.

�

In the theorem below, we show the general upper bounds for β (G [H]) where
H is a star. We can see that the upper bound is less than the general upper bound
in Theorem 2.1.
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Theorem 2.4. For m ≥ 3, let G be a connected graph, and H ∼= Sm of m + 1
vertices. If |V (G)| = n, then β (G [H]) ≤ n · β (H +K1)− 1.

Proof. By Lemma 2.3, n ·β (H +K1)− 1 = nm− 1. Now, we will show that there
exists a resolving set of nm− 1 vertices.

Let V (H) = {u} ∪ {si|1 ≤ i ≤ m} and E (H) = {usi|1 ≤ i ≤ m}. Let P be
a longest shortest path between two vertices in G. Let b be an end point of P .
We define W = V (G[H])\(G(sm) ∪ {(b, u)}). We will show that W is a resolving
set.

Let x, y ∈ V (G) and x ̸= y. We consider two conditions.

(1) (x, sm) and (y, sm)
If xy ∈ E(G), then dG[H]((y, sm), (y, s1)) = dG[H]((x, sm), (y, s1)) + 1.

Otherwise, dG[H]((x, sm), (y, u)) = dG[H]((y, sm), (y, u)) + d− 1 where d =
dG(x, y) ≥ 2. Therefore r((x, sm)|W ) ̸= r((y, sm)|W ).

(2) (x, sm) and (b, u)
Let c ∈ V (P ) and bc ∈ E(G). Since (b, u)(b, si), (b, u)(c, si) ∈ E(G[H])

for 1 ≤ i ≤ m − 1, then r((b, u)|W ) ̸= r((x, sm)|W ) where x ∈ V (G).
Therefore, W is a resolving set of G [H].

�

By applying Theorems 2.1 and 2.4 above, we obtain the general bounds of
β (G [H]) with H ∼= Sm as stated below.

Theorem 2.5. For n ≥ 1, let G be a connected graph with n vertices. If H ∼= Sm

of m+1 vertices where m ≥ 3, then n ·β (H) ≤ β (G [H]) ≤ n ·β (H +K1)−1. �

In the next two theorems, we prove that the upper bound and the lower
bound in Theorem 2.5 above are the best possible.

Theorem 2.6. For m ≥ 3, let G be a connected graph, and H ∼= Sm of m + 1
vertices. If |V (G)| = n, then there exist G such that β (G [H]) = n · β (H).

Proof. For n ≥ 4, let G ∼= Pn with V (G) = {p1, p2, . . . , pn}. By Theorem 2.5, we
only need to show that β (G [H]) ≤ n · β (H). In [5, 8, 10], the metric dimension
of star of m+ 1 vertices is m− 1.

Let V (H) = {u} ∪ {si|1 ≤ i ≤ m} and E(H) = {usi|1 ≤ i ≤ m}. Let
W = V (G [H]) \(G (u) ∪ G (sm)). We will show that W is a resolving set. For
a1, a2 ∈ V (G) and b1, b2 ∈ V (H), we consider two possibilities of (a1, b1) and
(a2, b2) for b1, b2 ∈ {sm, u}.

(1) a1 = a2
Since (a1, u)(a1, s1) ∈ E(G[H]) but (a1, sm)(a1, s1) /∈ E(G[H]), then

r((a1, u)|W ) ̸= r((a1, sm)|W ).
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(2) a1 ̸= a2
For b1, b2 ∈ {sm, u}, we consider p = dG(a1, a2) in G. Since n ≥ 4 and

diam(G) = n− 1, we consider two cases.
(a) 1 ≤ p ≤ n− 2

Then there exists a3 ∈ V (G) such that a2a3 ∈ E(G[H]) and dG(a1, a3) =
p+1. Therefore, dG[H]((a1, b1), (a3, b1)) = dG[H]((a1, b1), (a2, b1))+1,
which implies r((a1, b1)|W ) ̸= r((a2, b1)|W ).

(b) p = n− 1
Then there exists a3 ∈ V (G) such that a2a3 ∈ E(G[H]) and dG(a1, a3) =
p − 1. Therefore, dG[H]((a1, b1), (a3, b1)) ̸= dG[H]((a1, b1), (a2, b1)),
which implies r((a1, b1)|W ) ̸= r((a2, b1)|W ).

�

Theorem 2.7. For m ≥ 3, let G be a connected graph, and H ∼= Sm of m + 1
vertices. If |V (G)| = n, then there exist G such that β (G [H]) = n·β (H +K1)−1.

Proof. For n ≥ 3, let G ∼= Kn. By Theorem 2.5, we only need to show that
β (G [H]) ≥ n · β (H +K1)− 1.

Suppose that β (G [H]) ≤ n · β (H +K1)− 2 and W is a basis of G [H]. By
Lemma 2.3, β (G [H]) ≤ n · β (H +K1) − 2 = nm − 2. Note that, β(H) = m − 1
(see [5, 8, 10]). By Lemma 2.2, there exists two distinct vertices a, b ∈ V (G) such
that H (a) contributes m− 1 vertices to W and so does H (b).

Let V (H) = {u} ∪ {si|1 ≤ i ≤ m} and E(H) = {usi|1 ≤ i ≤ m}. If there
exists two distinct vertices (a, sj), (a, sk) /∈ W , then by definition of G[H], we have
r((a, sj)|W ) = r((a, sk)|W ), a contradiction. Otherwise, since (a, u) and (b, u) are
adjacent to every vertex in V (G[H])\{(a, u), (b, u)}, then r((a, u)|W ) = r((b, u)|W ),
a contradiction. �

We also show that there exist graphs G and H such that the metric dimension
of G[H] is not equal to both the lower and the upper bounds in Theorem 2.5.

Theorem 2.8. For m ≥ 3, there exist connected graphs G of order n ≥ 1 and
H ∼= Sm of order m+1 such that β(G[H]) = c where n·β(H) < c < n·β(H+K1)−1.

Proof. Let G ∼= P3 where V (G) = {p1, p2, p3} and E(G) = {p1p2, p2p3}, and
H ∼= Sm where V (H) = {u} ∪ {si|1 ≤ i ≤ m} and E(H) = {usi|1 ≤ i ≤ m}. We
will show that β (G [H]) = n · β (H) + 1. By Lemma 2.3 and the metric dimension
of star Sm [5, 10], we have

n · β(H) < n · β(H) + 1

= n(m− 1) + 1

= nm− (n− 1)

< nm− 1

= n · β(H +K1)− 1.
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Suppose that β (G [H]) ≤ n · β (H). By Theorem 2.5, we have β (G [H]) =
n · β (H). Let S be a basis of G[H]. By Lemma 2.2, for every a ∈ V (G),
H(a) contributes β(H) = m − 1 vertices to W . If there exists two distinct
vertices (a, sj), (a, sk) /∈ S, then by definition of G[H], we have r((a, sj)|S) =
r((a, sk)|S), a contradiction. Otherwise, we consider (p1, sj), (p3, sk) /∈ S where
j, k ∈ {1, 2, ...,m}. Since dG[H]((p1, sj), v) = 2 = dG[H]((p3, sk), v) for v ∈
S∩(H(p1)∪H(p3)), and dG[H]((p1, sj), y) = 1 = dG[H]((p3, sk), y) for y ∈ S∩H(p2),
we obtain r((p1, sj)|S) = r((p3, sk)|S), a contradiction.

Now, we define W = G(s1) ∪ G(s2) ∪ ... ∪ G(sm−1) ∪ {(p1, sm)}. We will
show that W is a resolving set.

For a1, a2 ∈ V (G) and b1, b2 ∈ V (H), we consider three possibilities of (a1, b1)
and (a2, b2) for b1, b2 ∈ {sm, u}.

(1) a1 = a2 where a1 ∈ {p2, p3}
Since (a1, u)(a1, s1) ∈ E(G[H]) but (a1, sm)(a1, s1) /∈ E(G[H]), then

r((a1, u)|W ) ̸= r((a1, sm)|W ).
(2) a1 ̸= a2

For b1, b2 ∈ {sm, u}, we consider p = d(a1, a2) in G. Since n ≥ 4 and
diam(G) = n− 1, we consider two cases.
(a) 1 ≤ p ≤ n− 2

Then there exists a3 ∈ V (G) such that a2a3 ∈ E(G[H]) and dG(a1, a3) =
p+1. Therefore, dG[H]((a1, b1), (a3, b1)) = dG[H]((a1, b1), (a2, b1))+1,
which implies r((a1, b1)|W ) ̸= r((a2, b1)|W ).

(b) p = n− 1
Then there exists a3 ∈ V (G) such that a2a3 ∈ E(G[H]) and dG(a1, a3) =
p − 1. Therefore, dG[H]((a1, b1), (a3, b1)) ̸= dG[H]((a1, b1), (a2, b1)),
which implies r((a1, b1)|W ) ̸= r((a2, b1)|W ).

�

An interesting question is whether all the values between the lower and the
upper bounds are achievable, as stated in the following problem.

Problem 2.9. Let H be a star Sm of order m + 1. For every integer c with
n · β(H) < c < n · β(H +K1)− 1, does there exist a graph G of order n such that
β(G[H]) = c?
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