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Abstract. This paper presents an H∞ estimation approach to active control of 

acoustic noise inside an enclosure. It is shown how H∞ filter theory and 

algorithm can be effectively applied to active noise control to provide important 

robustness property.  Real-time implementation of the algorithm is performed on 

Digital Signal Processor. Experimental comparison to conventional FxLMS 

algorithm for active noise control is presented for both single channel and 

multichannel cases. While providing some new results, this paper also serves as 

a brief review on  H∞ filter theory and on active noise control. 

Keywords: 3D enclosure; active noise control; centralized; decentralized; digital 
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1 Introduction 

Acoustic noise can basically be described as unwanted sounds whose 

emergence can not be avoided. There are numerous sources of acoustic noise 

that we encounter everyday such as typical heavy daily traffic, airplanes passing 

above, fans, and air conditioners. Acoustic noise problems become more 

evident as more and more noisy equipment such as engines, transformers, and 

compressors are used in industry.  

Traditional methods of attenuating acoustic noise involve the use of damping 

materials or sound absorbers. Such materials are placed around the noise source, 

or inside a room where noise is to be reduced. Other methods of noise reduction 

include using sound mufflers to protect the ears and moving the noise source to 

a remote location. The methods aforementioned are known as passive methods. 

Utilization of damping materials or sound absorbers are only effective for noise 

of high frequency. The reason for this is that the thickness of the material is 

proportional to the reciprocal of the frequency of noise. Thus for acoustic noise 

of low frequency one would need thicker materials, meaning adding more bulk 

(if we were to place dampers inside a vehicle such as a car, tractor or airplane) 

and providing more space for the materials. It is not a very economical choice 

either, as damping materials are quite expensive.  
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An alternative method to acoustic noise attenuation which has attracted a lot of 

attention recently is the active method of noise attenuation. Active noise control 

(which we shall abbreviate as ANC from this point on), as it is popularly 

known, is based on the principle of destructive interference between acoustic 

wave from a noise source and another acoustic wave from a different source (a 

secondary source, usually called the anti-sound). The control system  generates 

a secondary signal which is 180o out of phase with the noise signal  and the 

superposition of the two signals will result in a minimum residual signal (the 

residual noise). The idea is illustrated in Figure 1. 

Basically acoustic ANC is implemented using microphone(s) or any other type 

of sensor to convey some characteristic information on the acoustic noise source 

(called the reference) and detect the noise  
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Figure 1   Principle of Active Noise Control. 

 

signal (called the error signal) that is to be attenuated at a certain location(s) in 

space. To generate the secondary signals, or the anti-sound, actuators in the 

form of loudspeakers are generally employed. The idea has been around for a 

while and some analog ANC systems have been implemented. The problem 

with the analog system is that it was rather limited due to human intervention 

necessary in adjusting some necessary parameters [1,9]. In the early days of the 

development of adaptive signal processing, the impediment in applying the 

technique to active noise control was the sheer bulk of computation needed to 

achieve a system working in real time. Computing power demands in such an 

application were beyond the capability of microprocessors available at the time. 

Thanks to the recent advancement of digital signal processor (DSP), real-time 

implementation of ANC presently becomes feasible. 
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This paper presents investigation of adaptive H∞ filter algorithm and its 

application to active control of acoustic noise inside a 3-D enclosure. Real-time 

implementation of the algorithm is performed on DSP. Experimental 

comparison to conventional FxLMS algorithm is presented for both single 

channel and multichannel cases. Specifically, contribution of this paper over 

existing literatures on active noise control [1,2,4,6,7,9,11,13-18] is twofold : 1) 

to investigate H∞  filter performance in rejecting noise inside 3-D enclosure and 

its robustness property through real-time DSP based ANC experiment, 2) to 

extend its structure to multichannel case in both centralized and decentralized 

fashion. As an aside, this paper also studies how H∞ filter is applied to ANC and 

should be modified by providing a state estimation interpretation of the 

feedforward ANC[3,5,8]. While providing some new results, this paper also 

serves as a brief review on  H∞ filter theory and on active noise control, 

although it is not aimed at providing exhaustive literature survey in these fields.  

The rest of this paper is outlined as follows. In Section 2, single channel and 

multi-channel ANC are briefly discussed. In Section 3, feedforward ANC is 

presented. In Section 4, adaptive H∞ filter for ANC is discussed. Experimental 

set-up and results are presented in Section 5. Finally, conclusion is drawn in 

Section 6. 
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Figure 2   Single channel ANC inside a narrow duct. 

2 Single Channel and Multi Channel ANC 

Based on the number of error sensors and secondary actuators used in the 

system there are two types of ANC systems. If there is only one error sensor 

and a single secondary actuator then the system is called a single channel ANC. 
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It is typically used in situations where the acoustic wave can be assumed to be a 

plane wave traveling in one direction or if the waveform is not very complex 

such as in a narrow duct or pipe [1,6,9]. In such physical systems one actuator 

and one error sensor is sufficient to attenuate the noise encompassing a region 

encircling the sensor. Such a single channel ANC is illustrated in Figure 2 for 

active control of noise inside a duct.  

   

When the noise to be controlled is in a relatively large volume of space such as 

in an enclosure or large dimension duct, the acoustic noise field is relatively 

more complex and we will be dealing with a standing wave rather than a simple 

planar wave [9]. The noise to be attenuated can be spread out in several 

different distant locations. Therefore to achieve widespread attenuation, a noise 

control system must be set up with multiple error sensors and multiple  

actuators, and perhaps multiple reference sensors too. Such a system is called 

the multi-channel ANC system and is commonly applied in 3-D enclosure. An 

example where multi-channel ANC could be implemented is in the cabin of a 

car or a commercial airplane. Figure 3 depicts the idea of a multi-channel ANC 

system.  
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Figure 3   Multichannel ANC. 

In real-life systems, characteristics of the acoustic noise source(s) and 

environment  varies in time. The frequency, amplitude, phase and speed of 

sound is not really constant but is slowly changing (or statistically non-

stationary). Thus the control system has to be adaptive and be able to track the 
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changes and tune its control signal accordingly. This is necessary so that the 

ANC system’s stability and performance will be robust to such variations. In the 

multi-channel case this results in some compute-intensive algorithms [9,13] 

demanding powerful and fast digital signal processors for real-time 

implementation to be feasible. 

Another fundamental problem to be considered in multi-channel ANC systems 

is determining what attenuation strategy we seek to carry out, i.e. the nature of 

the noise cancellation: global or local. Global attenuation is defined as reduction 

of the overall mean acoustic energy throughout the whole room or enclosure. 

Local attenuation refers to attenuation of noise in certain regions of the room or 

enclosure, usually surrounding the error microphones. Obviously, global 

attenuation is much more difficult to achieve and when the frequency content of 

the noise source is not low enough, a large number of microphones and 

secondary speakers will be needed [1,9] thus requiring more computing and is 

less practical to implement. On the other hand, local attenuation is more 

tractable. For example, in a car we may only require that noise be attenuated in 

the regions around a passengers head rather than throughout the whole cabin. 

Theoretically, the radius of the region surrounding the error microphone where 

the level of attenuation is still appreciable is approximately one-tenth the 

wavelength of the acoustic noise source. If the speed of sound is 340 m/s and 

the acoustic noise frequency is 100 Hz then this radius is about 34 cm but if the 

noise frequency is 1000 Hz then this radius drops to 3.4 cm. This is the reason 

why ANC will only be effective for attenuating low frequency noise. A 

disadvantage of the local attenuation strategy is that there is the possibility that 

the noise level of regions not surrounding the microphone may actually 

increase. 

3 Adaptive Filters 

As we have discussed in the first section, ANC systems must be adaptive as to 

be robust to variances in the statistical properties of the acoustic noise source(s) 

and environment. Some robust ANC systems have been implemented using 

analog controllers with fixed parameters [1,9] but the design is for a relatively 

stationary environment. Traditional approaches in adaptive ANC involving the 

use of linear adaptive filters as controllers (to produce the control signals) is 

motivated by the fact that propagation of sound wave is very linear at all but the 

highest of pressure levels (up to around 140 dB). Utilization of adaptive linear 

filters has been very successful and satisfying levels of acoustic noise 

cancellation have been obtained [1,2,4,6, 9]. In this section we will briefly 

discuss adaptive linear filters in the context of ANC but we will not get into a 

detailed mathematical analysis as this can be found in literatures such as 

[1,2,9,11,12]. 
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One of the most popular algorithm in linear adaptive filtering is Widrow-Hoff’s 

LMS algorithm [12]. This algorithm is very popular due to its sheer simplicity 

and ease of implementation. The adaptive linear filter in this case takes the form 

of a Finite Impulse Response (FIR) filter with adaptable weights. The diagram 

of the whole single input-single output (SISO) adaptive filter and all signals 

involved is depicted in Figure 4. The objective of the LMS algorithm is to 

minimize the Mean Square Error (MSE), E[e(n)2] = E[(d(n)-y(n))2]. 

Minimizing this quantity means that after the weights have stopped adapting (or 

more precisely have converged) the filter output y(n) at time n will be close to 

the desired response d(n). 

The weights are adapted using a gradient descent algorithm, the weight vectors  

descending   in   the  direction of -∇
w

E[e(n)2]. The gradient  is approximated  

by - e(n)∇
w

2 because the quantity E[e(n)2] and ∇
w

E[e(n)2] can only be 

determined if we had an ensemble of identical filters and signals, which we do 

not have in practical cases. Thus in the LMS algorihm weight vector is adapted 

according to the recursive equation [9,12]: 

w(n+1) = w(n) + 2µe(n)x(n) 

where the value µ is the adaptation rate which has a range of value 0<µ<1.  

 

 

 

 

 

 

  

 

 

 

 

 

 

Filter 

output 
+- Error 

signal 

e(n) 

Signal 

Input 

x(n) 

Desired 

Response 
d(n) 

ΣAdaptive FIR 

filter W(z) y(n) 

 
Figure 4   Structure of adaptive FIR filter and all signals involved. 

The value of  µ is very critical in the performance of the algorithm in terms of 

speed of convergence and steady state error and there are several criteria for 

finding a good value for µ [9]. To obtain better performance many variants of 

the LMS have been derived such as the Normalized LMS algoritm (NLMS), 

correlation LMS and others, see [9] for more details. Considering secondary 
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path effect, application of this algorithm to active noise control leads to FxLMS 

filter  where the reference signal is filtered before applying it to LMS algorithm 

to produce antinoise signal.  

4 H∞   Filter Theory 

In this section, H∞  filter problems and their solutions are presented. Comparison 

to the classical Kalman filter will also be addressed. See [3,8,23] for more 

details. Dual control problems were addressed, for instance, in seminal work of 

[24], see also [19-22] for mixed H2/H∞ control problems. Much of the material 

of this section is summarized from [3]. 

 

Formulation of the H∞-Filtering Problem 

Suppose that a time-variant state-space model is given by 

1 0
,

, 0

i i i i i

i i i i

x F x G u x

y H x v i

+ = +
 = + ≥

                                     (1) 

where Fi ∈ Cnxn, Gi ∈ Cnxm and Hi ∈ Cpxn are known matrices, x0, {ui}, and {νi} 

are unknown quantities, and yi is the measured output. In the state estimation 

problem, νi can be viewed as a measurement noise and ui as a process noise or 

driving disturbance. No assumption is made on the nature of the disturbances 

(e.g., normally distributed, uncorrelated, etc). Suppose that we would like to 

estimate some arbitrary linear combination of the states, say 

   zi = Lixi 

where Li ∈ Cqxn is given, using the observations {yj}. 

Now, denote z ii  = Ff (y0,y1,…,yi) as the estimate of zi given observations {yj} 

from time 0 to, and including, time i, and denote iz  = Fp (y0,y1,…,yi-1) as the 

estimate of zi  given observation {yj} from time 0 to time i–1. The following two 

estimation errors can then be defined : the filtered error 

  
,f i i i i

e z L= −
i

x                    (2) 

and the predicted error 

  
,

.
p i i

e z L x= −
i

            (3) 
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             {uj} i

0j=                                              { }
0

ˆ i

j jj j j
Z L x

=
−  

             {uj} i
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Figure 5   Transfer matrix from disturbances to filtered and predicted estimation 

errors. 

Let Ti(Ff) and Ti(Fp) denote the transfer operators that map the unknown 

disturbances {  (x1/ 2

0

−Π 0- 0
x ),{uj}

i

0j= ) (where 
0

x  denotes an initial guess for x0, 

and is a given positive definite matrix) to the filtered and predicted errors 

{e

0
Π

0f,j }
i

j=  and {ep,j}
i respectively, as shown in Figure 5. Next, define the H

0
,=j ∞  

norm of a transfer operator T as  

2 , 0
2

sup
u h u

Tu
T

u∞
∈ ≠

=  

where 
2

u is the h2-norm of the causal sequence {uk} , i.e., 
2 *

2 0
.

k kk
u u

∞

=
=∑ u  

From the above equation, the H∞ norm has the interpretation of being the 

maximum energy gain from the input u to the output y.  

The Optimal H∞ State Estimation Problem can now be formally stated as 

follows : Find H∞-optimal estimation strategies 
0 1 1

( , ,..., )
fi i

z F y y y= and 

that respectively minimize 
0 1 1

( , ,..., )
i p i

z F y y y −= ( )
i f

T F
∞

and ( )
i p

T F
∞

and 

compute  

2

,f o
γ = inf

fF
 

2

(
i f

T F
∞

 

 = in  
0 , 2 , 2

f sup
f x u h v hF ∈ ∈

*

,0 ,

* 1 * *

0 0 0 0 0 0
( ) ( )

i

f jj f j

i i

o j jj j

e e

j j
x x x x u u v

=

−

= =
− Π − + +

∑
∑ ∑ v

                     (4) 

and 
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2
2

,
inf ( )

p

p o i p
F

T Fγ
∞

=  

 = in
0 , 2 , 2

f sup
p x u h v hF ∈ ∈

*

,0 ,

1* 1 * *

0 0 0 0 0 0
( ) ( )

i

f jj f j

i i

o j jj j

e e

j j
x x x x u u v

=

−−

= =
− Π − + +

∑
∑ ∑ v

                    (5) 

where  is a positive definite matrix that represents a priori knowledge as to 

how close initial state x

0
Π

0 is to the initial guess 
.o

x  

A closer look at equation (5) reveals that the infimum is taken over all strictly 

causal estimators Fp, whereas in (4) the estimators Ff  are only causal since they 

have additional access to yi. Indeed, the solution to the H∞ problem depends on 

the structure of the information available to the estimator. It is clear from the 

above problem formulation that H∞ optimal estimators guarantee the smallest 

estimation error energy over all possible disturbances of fixed energy. 

Therefore, they provide robust behavior with respect to disturbance variation. 

Unfortunately, only in some particular cases, a closed form solution to the 

optimal H∞ estimation problem is available. It is, therefore, common in practice 

to consider a relatively simpler subobtimal solution. 

Sub-Optimal H∞ Problem is formally be stated as follows : Given scalars γf > 0 

and γp>0, find H∞ suboptimal estimation strategies 
0 1

( , ,..., )
f ii i

z F y y y= (known 

as an a posteriori filter) and 
0 1 1

( , ,..., )
i p i

z F y y y −= (known as a priori filter) that 

respectively achieve ( )
fi f

T F γ
∞
<  and ( )

i p
T F .

p
γ

∞
<  Stated equivalently, 

find estimation strategies that respectively satisfy 

  
0 2

sup

, ,
2

x u h v h∈ ∈

*

, ,0 2

1 * *

0 0 0 0 0 0 0
( )* ( )

i

f j f jj

fi i

j j j jj j

e e

x x x x u u v v
γ=

−

= =

<
− Π − + +

∑
∑ ∑

            (6) 

and  

  
0 2

sup

, ,
2

x u h v h∈ ∈

*

, ,0 2

1 1* 1 * *

0 0 0 0 0
( ) ( )

i

p j p jj

pi i

o o j j jj j

e e

x x x x u u v v
j

γ=
− −−

= =

<
− Π − + +

∑
∑ ∑

       (7) 

 Obviously, it requires checking whether 
,f f o

γ γ≥  and 
, .p p o

γ γ≥  

Solutions to Optimal H∞ State Estimation Problem can be obtained to desired 

accuracy by iterating on the 
f

γ  and 
p

γ of Sub-Optimal H∞ Problem. Due to its 

simplicity, we shall be only dealing with suboptimal problem.  
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Note that the problems defined above are finite-horizon problems. So-called 

infinite-horizon problems can be considered if we define T (Ff) and T (Fp) as the 

transfer operators that map {{ } { } }0 0
00

, ,
j j

jj
x x u v

∞ ∞

==
− to { },

0
f j

j
e

∞

=
 and 

{ },
0,

p j
j

e
∞

=
respectively. Then by guaranteeing ( )

i f
T F

f
γ

∞
< and ( )

i p
T F

p
γ

∞
<  

for all i  we can solve the infinite horizon problems, ( )
f f

T F γ
∞
≤ and 

,
( )

p p
yT F

∞
≤ respectively. Direct solutions, however, are also possible. 

 

Solution of the suboptimal H∞ Filtering Problem 

The existing solutions (see, e.g., [8], [23]) to the suboptimal H∞ filtering 

problem can now be presented. As we shall see, they are intriguingly similar in 

several ways to the conventional Kalman filter. It was this similarity in structure 

that led authors of [3] to extend Kalman filters in Krein space. 

 

Theorem 1 (An H∞ A Posteriori Filter)[3, 8, 23]: For a given γ>0, if the [Fj   Gj] 

have full rank, then an estimator that achieves ║Ti (Ff)║∞<γ exists if, and only if 

               (8) 1 * 2 * 0, 0,...,
j j j j j

P H H L L jγ− −+ − > = i

*

where P0=II0 and Pj satisfies the Riccati recursion 

 * *

j j j j
P i F F F G G+ = +

j j

* * 1

,
[ ]

j

j j j j e j j j

j

H
F P H L R P F

L

−  
−  

 
                 (9) 

with 

 * *

, 2

0
[

0

j

e j j j j

j

HI
].R P H L

LIγ
  

= +   −   
                                       (10) 

If this is the case, then one possible level -γ H∞ filter is given by 

   ˆ
j j j j j

z L x=  

where ˆ
j j

x  is recursively computed as 

, 1 1
ˆ ˆ1 1 ( 1

j j j s j j j j
x j F x K y H F x+ ++ + = + + − ˆ )

j j
 

 ˆ 1 1x − − =  initial guess                                                      (11) 

and 

 *

, 1 1 1 1 1 1
(

s j j j j j j
K P H I H P H * 1) .−

+ + + + + += +                                     (12) 
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Theorem 2 (An H∞ A Priori Filter) [3,8,23]: For a given γ > 0, if the [Ff  Gj] 

have full rank, then an estimator that achieves ║Ti (Fp)║∞ < γ exists if, and only 

if 

 1 1 2 * 0, 0,...,
j j j j

p P L L jγ− − −= − > = i

j

ˆ
j

           (13) 

where Pj is the same as in Theorem 1. If this is the case, then one possible level 

-γ H∞ filter is given by 

  z                (14) ˆ
j j

L x=

  
1 ,

ˆ ˆ ( )
j j j a j j j

x F x K y H x+ = + −  

  
0

x̂ =  initial guess                                                                (15) 

where 

 

 * *

,
( )

a j j j j j j j
K F P H I H P H 1−= +              (16) 

 

Comparisons with the Kalman Filter  

As is well known, the Kalman-filter algorithm for estimating the states in (1), 

assuming that the {ui} and {vi} are now uncorrelated unit variance white noise 

processes, is 

 * * 1

1
ˆ ˆ ( ) (

j j j j j j j j j j j j
ˆ )x F x F P H I H P H y H x−

+ = + + −  

 * *

1 1 1 1 11 1
ˆ ˆ ( )

j j j j j jj j j j
x F x P H I H P H 1−

+ + + + ++ + = + +
1 1

ˆ( )
j j j

y H x+ + +1
−  

where 

 * *

1j j j j j
P F P F G G+ = +

j

* 1 *

0
( ) ,

j j j j j j j
F P I H P H P F P−− + =∏0. 

As pointed out by several authors[3,8,23], the H∞ solutions are very similar to 

the conventional Kalman filter. The major differences are the following: 

•  As can be seen from Riccati recursion (9), the structure of the H∞ 

estimators depends on the linear combination of the states that we intend to 

estimate (i.e., the Li). In contrast, in case of the Kalman filter, the estimate 

of any linear combination of the state is given by that linear combination 

of the state estimate. Intuitively, this means that the H∞ filters are 

specifically tuned toward the linear combination Lixi. 

•  Additional conditions, (8) or (13), must be satisfied for the H∞ filter to 

exist; in the Kalman filter problem the Li would not appear, and the Pi 

would be positive definite so that (8) and (13) would be automatically 

satisfied. 
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•  Indefinite (covariance) matrices, e.g., 

        appears versus just I in the Kalman filter. 
2

I o

o Iγ

 − 




•  As γ → ∞, the Riccati recursion (9) reduces to the Kalman filter recursion 

(17). This indicates that the H∞ norm of the conventional kalman filter may 

be quite large, and that it may have poor robustness properties. Note also 

that  condition (13) is more stringent than condition (8), showing that the 

existence of an a priori filter of level γ implies the existence of an a 

posteriori filter of level γ, but not necessarily vice versa.) 

Although there are differences between H∞ solutions and Kalman filter, it has 

been shown in [3] that the filters of Theorems 1 and 2 can in fact be obtained as 

certain Kalman filters, not in an H2 (Hilbert) spaces, but in a certain indefinite 

vector space called a Krein space. The indefinite covariance and the appearance 

of Li in the Riccati equation was explained easily in this framework. The 

additional condition (8) arises from the fact that in Krein space, unlike as in the 

usual Hilbert space context, quadratic forms need not always have minima or 

maxima unless certain additional conditions are met [3].  

Parameterization of all H∞ A Posteriori Filters 

The filter of Theorem 1 is one among many possible filters with attenuation 

level γ. Explicit characterization of all possible estimators is given in the 

following theorem.  

Theorem 3 (All H∞ A Posteriori Estimators)[3]; All H∞ a posteriori  estimators 

that achieve a level γf (assuming they exist) are given by 

1

2 1 * 1 2ˆ [ ( )
j f j j j jj j j j

z L x I L P H H Lγ − −= + − + * ]
j

                                    

1

* 2 ˆ(( ) ( ),...,
j j j j j j j j

S I H P H y H x× + −
1

* 2
0 0 0 0 0 0

ˆ( ) (
j

I H P H y H x+ − ))                    (17) 

where ˆ
j j

x  satisfies the recursion 

, 1 1 11 1
ˆ ˆ ( )

j s j j j jj j j j j j
ˆx F x K y H F x+ + ++ + = + −

,
ˆ( )

c j jj j j j
K z L x− −            (18) 

with  Ks,j+1 the same as in theorem 1 

* 1

, 1 1 1
( )

c j j j j
K I P H H −

+ + += + 1 * 2 *( )
j j j j f j j

1 *

j
F P H H L L Lγ− −+ − −                        (19) 

and 
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0 0

1 1 0

0

0

( )

( , )
( ,..., )

( ,..., )

j

j j

S a

S a a
S a a

S a a

 
 
 =  
 
  

is any (possibly nonlinear) contractive causal mapping, i.e., 

2
2

0

0 0

( ,..., )
k k

j j

j j

S a a a
= =

<∑ j∑  for all k = 0,1,…,i. 

Note that when the contraction of Theorem 3 is chosen as S=0, then we have 

,
ˆ

jj j
z L x=

j j
and (18) reduces to the recursion of Theorem 1. Furthermore, the 

full parameterization of all H∞ filters with level γf is given by a nonlinear causal 

contractive mapping S, despite the fact that the filter obtained in Theorem 1 is 

linear . The filter of Theorem 1 is known as the central filter, and as we have 

seen, corresponds to S = 0. This central filter has a number of other interesting 

properties. It corresponds to the risk-sensitive optimal filter and can  be shown 

to be the maximum entropy filter. Moreover, in the game theoretic formulation 

of the H∞  problem, the central filter corresponds to the solution of the game.  

All H∞ A Priori Filters 

Full parameterization of all H∞ apriori estimators is given in the following 

theorem. 

 

Theorem 4 (All H∞ A Priori Estimators)[3]: All H∞ a priori estimators that 

achieves a level γp (assuming they exist) are given by 

1

2 * 2ˆˆ ( )
j j j p j j

z L x I L PLγ= + −  
1

* 2
1 1 1 1 1 1

(( ) ( ),...
j j j j j j j

S I H P H y H x
−

− − − − − −+ − , 

 
1

* 2
0 0 0 0 0

( (I H PH y H x
−

× + − ))                                                         (20) 

where 

 * 2 * 1ˆ ( ) (
k k k k p k k k k

ˆ )x x P L I L L z Lxγ −= + − + −                                       (21) 

jx̂  satisfies the recursion 

 * *

1 1
ˆ ˆ [ ]

j j j jj j j j j
x F x F P L H+ −= +

11

,

1

ˆ

ˆ

j j j j

e j

j j j j

z L x
R

y H x

−−

−

− 
×  

−  
                      (22) 
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with , ,
j j

P P  and 
,e j

R given by Theorem 2 and S is any (possibly nonlinear) 

contractive causal mapping. 

5 H∞ Estimation Interpretation of Active Noise Control  

The objective of noise cancellation is to generate control signal  u(k), such that 

secondary output signal y(k) is, in some sense, sufficiently close to primary 

signal d(k) by using available measurement, as shown in Figure 6. 
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+

-

x(k) d(k)

y(k)
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Figure 6   Block diagram of feedforward ANC. 

The feedforward ANC can also be viewed as the problem of producing y(k) as 

an estimation of d(k), where, x(k) is reference signal (primary noise), y(k) is the 

secondary output, e(k) is noise residue which is utilized to adjust adaptive filter, 

vm(k) is the external disturbance which models measurement noise, uncertainties 

in initial conditions, and modeling error[5,10]. The reference signal is applied to 

adaptive FIR filter through reference microphone, while noise residue is the 

actual signal measured by error microphone. Output of FIR filter, u(k), is 

applied to secondary path through a speaker, which in turn generates antinoise 

signal. Note that, FIR filter cascaded with secondary path is an approximated 

model of unknown primary path. In Figure 7, the feedforward active noise 

cancellation is redrawn where primary path is replaced with approximated 

model. The approximated model is constructed from the knowledge of FIR 

filter and the secondary path. Note that as long as the modeling error is 

bounded, it can be viewed as disturbance signal component, vm(k).  

As shown in Figure 7,  e(k) = d(k) – y(k) + vm(k), where e(k) signal measured by 

error microphone. The measurement component in the estimation process 

presented in the subsequent discussion is given by 
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m(k) ≡ e(k) + y(k) = d(k) + vm(k)                       (23) 

Assume that [As(k), Bs(k), Cs(k), Ds(k)] is state space representation of the copy 

of secondary path. Denote W(k) = [w0(k), w1(k), ...,wN(k)]T and θ(k)T as dynamic 

state vector of FIR and of secondary path dynamic, respectively. Using ξk
T = 

[W(k)T θ(k)T], the augmented system is given by  

1

( 1 ) ( 1 )

*

0( 1 ) ( )

( ) ( )( 1 ) ( )

k kk F

N x N

s k s

IW k W k

B k h A kk k

ξξ

θ θ

+

+ ++     
=     +    

 

 

 

 (24) 

 

where hk = [x(k) x(k-1) . . . x(k-N)] covers the effect of reference signal  x(.).  

Measured output is modeled as  
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Figure 7   Model approximation of primary path. 
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( ) ( ) ( )
( )

kH

s k s

W k
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 =   
 

                      (25) 

with m(k) as defined in (23). Now, assume that linear combination of state be 

defined as the estimated variable    
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1 , 2 ,

( )
( ) [ ]

( )

kL

k k

w k
s k L L

kθ
 

=  
 

                          (26) 

where m(.) ∈  R px1 , s(.) ∈  R qx1, θ(.) ∈  R rx1 and W(.) ∈  R (N+1)x1. Furthermore, 

one can choose Lk = Hk. The estimation problem is shown in Figure 8, 

comprising two major parts : FIR Filter and Secondary Path Model. 

Our objective in the active noise cancellation is to constrain worst-case of 

energy gain of estimated error s(k) under the presence of measurement 

disturbance and uncertainties in initial conditions. In other words, we seek sub-

optimal H∞ causal estimator ˆ( )s k k = F(m(0),...,m(k)) which satisfies  

 

*

20

* 1 *0
0 0 0
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Figure 8   Estimation problem. 

for a prespecified γ > 0. As shown previously, solution to the Finite Horizon γ-
Suboptimal Filter is given as follows : There exists a positive value  satisfying  

(27), if and only if, matrices R

γ
k and Re,k defined by  
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 * *

2,

0
[ ]

0

kR

p k

e k k k k

q k

I H
R P H L

I Lγ
   

= +   −   
              (28)                                          

have the same inertia for all 0 ≤ k ≤ M, where P0 = Π 0 and Pk > 0 satisfies 

recursive Riccati equation, 

 Pk+1 = FkPkFk
* -  Kp,kRe,kKp,k

*                                                                              (29) 

with Kp,k = (FkPk[Hk
* Lk

*]). In this case the H∞ central estimator is given by 

 

1 1,
ˆ ˆ ˆ ˆ( ( ) ), 0
k k k k k k

F K m k Hξ ξ ξ ξ+ = + − =
0

ˆ
k

        (30) 

* 1

,
ˆ ˆ ˆ( / ) ( ) ( ( ) )

k k k k He k k
S k k L L P H R m k Hξ ξ−= + −         (31) 

where K1,k = (FkPkHk
*)RHe,k

* and RHe,k = IP + HkPkHk
* . 

Based on this result, the adaptive filter algorithm which provides robustness 

guarantee proceeds as follows[5,10] : 

1. Set Ŵ(0) = Ŵ0, 0
ˆ(0) ˆθ θ=  as an estimator of initial values for state vector 

of primary path approximation. Assume that θ actual(0) = θ actual,0, and that 

θ copy(0) = θ copy,0. Denoting d(0) as primary path output, then for  0 ≤ k ≤ 

M (finite horizon): 

2. Calculate control signal u(k) = hk
*Ŵ(k), 

3. Using the control signal for secondary path, the dynamics of actual state 

vector and output is given by   

   θ actual(k+1) = As(k)θ actual(k) + Bs(k)u(k) 

              y(k) = Cs(k)θ actual(k) + Ds(k)u(k)                      (32)                                               

4. Propagate internal copy of secondary state vector and output through  

θ copy(k+1) = As(k)θcopy(k) + Bs(k)u(k) 

    y(k) =Cs(k)θ copy(k) + Ds(k)u(k) 

5. Calculate measurement vector, m(k), through direct measurement e(k), 

according to m(k) = e(k) + ycopy(k), 

6. Use the state updating in Equation (32) 

7. If  k ≤ M go to Step 2 

 

Diagram block of the adaptive H∞ filter algorithm is shown in Figure 9. 
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Figure 9   Adaptive H∞  filter in ANC. 
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Figure 10   Feedback configuration. 

Active noise cancellation using feedback configuration can be formulated by 

adopting the above algorithm, but now we employ adaptive predictor (see 
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Figure 10). Since reference microphone is not used, input signal to FIR filter is 

synthesized from  

 x’(k) = e(k) – y(k) 

6 Experiment Setup and Results 

Experiment setup of multichannel ANC inside an enclosure is shown in Figure 

11. In this setup,  two error sensors (microphones), two actuators (6“, 8 Ohm 

speakers), and one reference sensor  are used. The objective of the ANC is to 

obtain quiet zones around each error microphone within a wooden 3-D 

enclosure, which mimics cabin of a vehicle. To implement active noise control 

computation and data acquisition, TMS320C6701 Evaluation Module DSP 

Board is used. The board is based on floating point TMS320C6701 DSP 

processor.  The board is interfaced with computer host through PCI to enable 

real-time data exchange. Placement of actuators and sensors are shown in 

Figure 12.  

pre-

amp1

pre-

amp3

pre-

amp2

power

amp3
power

amp2

power

amp1

 TMS320C6701 EVM

board, connected to host

via PCI slot

Sound Blaster 16

sound card

Figure 11   ANC Experiment setup. 
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Figure 12   ANC Geometry (all distances are expressed in terms of λ). 

 

 

Figure 13   Experiment results of secondary path identification  with noise freq. 

of 170Hz and  5th order IIR filter, identification error with MSE=  2,8965e-5 

(top), power spectral density (bottom). 
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Primary noise is generated through Sound Blaster 16 and controlled form within 

Windows operating system. The output of sound blaster, as well as of DSP, are 

applied to power amplifiers which in turn drive the speakers. Pre-amplifiers are 

used to amplify the signal measured by the microphones.  Coding, debugging 

and real-time analysis are performed via Code Composer Studio. 

Figure 13 shows experiment results of identification process of secondary path 

for single channel ANC using adaptive robust filter algorithm. We obtain quite 

small error with IIR filter which shows that model is accurate enough to 

represent behavior of secondary path. Shown at the bottom of Figure 13 is 

frequency response of IIR model and of actual secondary path. Note that in the 

frequency domain the model obtained approximates the frequency behavior of 

the secondary path. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 14   Experiment results of single channel ANC, noise residue (top) and 

power spectral density (bottom).   
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Figure 14 shows experiment results of single channel ANC using secondary 

path model obtained in previous experiment. Observe that transient response is 

fairly fast (1.5 second), while signal residue is sufficiently small. From power 

spectral density plot, attenuation at noise frequency (170Hz) reaches 74 dB.  

 

 

 
Figure 15   Comparison of FxLMS and Robust filter, FxLMS (top) and Robust 

filter (bottom). 

Comparison of FxLMS and Robust filter algorithm is shown in Figure 15 (note 

the difference in scale). This comparison shows that attenuation level obtained 

by robust filter algorithm is better than that of FxLMS, without significantly 

degrading transient response. In fact, in most of the cases the transient responses 

for Robust filter are better than those of FxLMS.     
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Robustness property of H∞ filter is examined in ANC experiment by shifting the 

position of error microphone 0.025λ from its original (nominal) position. The 

disturbance is applied for a period of time (5-10 seconds). The results are shown 

in Figure 16. Observe from this experiment that initially after microphone is 

shifted the amplitude of the noise residue increases but decreases afterwards.  

 
                                   (a)                                               (b) 

Figure 16   Effect of disturbance by shifting the error microphone, (a) before 

disturbance is applied, and (b) effect of disturbance 

Table 1 shows results of experiment with respect to the FIR filter order and to 

secondary path model order when the two types of uncertainty are applied. Note 

that robust filter achieves better noise attenuation level than that of FxLMS in 

case of tonal noise as well as superpositioned sinusoidal noise.    

Noise 

frequency 

(Hz) 

FIR order/ 

secondary 

model 

order 

Type of  

uncertainty  
Algorithm 

Attenuation at 

noise main 

frequency(dB) 

Transient 

(s) 

170 11/1 
Microphone  

shifting 
Robust 48 0,4 

Robust 67 3 

170 3/4 
Modeling/identification 

error FxLMS 42 4 

Robust 54 & 50 3 170 and 

210 11/4 
Modeling/identification 

error FxLMS 28 & 25 3 

Table 1   Results of single channel ANC with the  uncertainty applied. 
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Experiment result for multichannel ANC is shown in Figure 17. In this 

experiment we use 1x2x2 configuration, that is, it employs 1 reference 

microphone, 2 speakers, and 2 error microphones. First, correlation between 

channels is omitted, i.e., a decentralized configuration is employed.  In this 

experiment we obtain total (over all frequencies) noise attenuation level of 

18.9144 dB at error microphone no. 1 and of 19.6670 dB at error microphone 

no. 2, while transient response is 0.1 second, which again shows the 

effectiveness of the H∞ filter algorithm. The results are summarized in Table 2.  

Experiment is also performed by considering correlation between channels, i.e., 

a centralized configuration is employed. Positions of noise sources are varied. 

The results are summarized in Table 3. Note that when the noise sources  are 

spatially distributed, the total level of noise attenuation degrades substantially. 

However, at main frequency, only a slight degradation is observed. 

 

Controller 

Order 

Error Mic. 

Position 

Noise 

Type 

Total  

Reduction 

(dB) 

Reduction at 

main Freq. 

(dB) 

Transient 

Duration 

(seconds) 

11 Microphone 1 
Spatially 

centralized 
18.9144 50 0.1 

11 Microphone 2 
Spatially 

centralized 
19.6670 40 0.1 

Table 2   Multichannel experiment results (correlation between channel is 

omitted). 

Controller 

Order 

Error Mic. 

Position 

Noise Type Total  

Reduction 

(dB) 

Reduction 

at main 

Freq. (dB) 

Transient 

Duration 

(seconds) 

11 Microphone 1 

Spatially 

centralized 
18.4950 61 0.1 

11 Microphone 2 
Spatially 

centralized 
19.7680 47 0.1 

11 Microphone 1 
Spatially 

distributed 
8.0184 60 0.1 

11 Microphone 2 
Spatially 

distributed 
14.4855 39 4 

Table 3   Multichannel experiment results (correlation between channels is taken 

into account). 
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(a) 

 
(b) 

Figure 17   Experiment results of multichannel ANC with 1x2x2 configuration, 

a) Signal residue at one of the microphones and b) Power spectral density.   

6 Conclusion 

Active control using H∞ method was shown to have better capability in 

attenuating low frequency noise  within an 3-D enclosure as compared to 

conventional FxLMS algorithm. It was experimentally demonstrated that the 

system is robust with respect to modeling error due to inaccuracy in 

identification process, as well as to variations in microphone positions. 

Computational load of this algorithm is moderate, allowing real-time 
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implementation on DSP. Investigation on the distance of microphone shifting in 

which the ANC starts to fail and how it relates to the size of unstructured 

uncertainty predicted by the small gain theorem is left for future research. 

Extension of this work to nonlinear ANC using various nonlinear neural 

networks based filters can be found in [14-18]. 
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