
J. Indones. Math. Soc. (MIHMI)
Vol. 13, No. 2 (2007), pp. 191–196.

APPLICATION OF HALANAY INEQUALITY

TO THE ESTABLISHMENT OF THE

EXPONENTIAL STABILITY OF

DELAYED COMPARTMENTAL SYSTEM

Sariyasa

Abstract. The dynamical convergence of a compartmental system with transport delays

is studied. An easily verifiable delay independent sufficient condition for the system to

be globally exponentially stable is obtained. Halanay differential inequality is employed

to establish the global exponential stability.

1. INTRODUCTION

Compartmental systems are widely used as mathematical models to describe
exchange of material among compartments in biology, medicine, and ecology. A
compartment is characterized by the type and amount of material it contains and
it is a hypothetical container or pool. Mathematical models are formulated in the
form of differential equations with the assumption that the material flows among
compartment instantly. This is not true in general since it takes time to transport
material from one compartment to another. This situation is easily visualized as
one where compartments are connected by (imaginary) pipes so that the material
requires time to flow through the pipes. Such systems are called compartmental
models with pipes [3].

In several physiological systems involving the transport of tracers of blood,
for instance, there is usually a finite time needed for the material to flow from one
compartment to another (e.g. from right ventricle to left ventricle). Thus it is
worthwhile and necessary to incorporate this transport time (time delay) in the
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mathematical models of the compartment systems. These models serve as a more
realistic models for the compartmental systems

In this paper we investigate the exponential stability of equilibrium of an
compartmental model with time delays. The result on exponential stability is of
great significance. In addition to the fact that global exponential stability of a
system implies global stability of the system with a bigger rate of convergence to
equilibrium. Thus, a global exponentially stable system has better performance.
We employ Halanay inequality to derive delay independent sufficient conditions.
The absence of delay in the condition will greatly increase the convergence time.

2. EXPONENTIAL STABILITY OF DELAYED COMPARTMENTAL

SYSTEM

We consider a continuous-time compartmental system consisting of m com-
partments with “transport delays” described by the system of delay differential
equations of the form

dxi(t)

dt
= −aiixi(t) +

m
∑

j=1

j 6=i

aijxj(t − τij) + ui, i = 1, 2, 3, . . . , m, t > 0. (1)

This system is an adaptation of one found in [2]. In the subsequent discussion
the set {1, 2, 3, . . . ,m} will be denoted by I. In (1), τij ≥ 0, i, j ∈ I, i 6= j are
transport delays; xi(t) denotes the amount of material in the ith compartment at t;
the nonhomogeneous term ui ≥ 0 denotes a constant rate of input of the material
into the system; aijxj(t) can be interpreted as the rate at which material reaches
the ith compartment from the jth compartment. The system (1) is supplemented
with the initial condition of the form

xi(s) = ϕi(s), s ∈ [−τ, 0], i ∈ I

in which τ = maxi,j∈I {τij}.

We denote the equilibrium of (1) by a vector x⋆ = (x⋆
1, x⋆

2, . . . , x⋆
m)T where

aiix
⋆
i =

m
∑

j=1

j 6=i

aijx
⋆
j + ui, i ∈ I (2)

We first establish the existence and uniqueness of the equilibrium x⋆ of (1).

Theorem 2.1. Suppose the constant parameters of (1) satisfy the following:

aij ≥ 0, i, j ∈ I, i 6= j (3)

aii −

m
∑

j=1

j 6=i

aji > 0, i ∈ I. (4)
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Then the system (1) has a unique equilibrium point.

Proof. Consider the following linear system of equations in the unknowns x⋆
j , j ∈ I:

aiix
⋆
i −

m
∑

j=1

j 6=i

aijx
⋆
j = ui, i ∈ I. (5)

It follows from (3) and (4) that aii > 0 and that matrix B = (bij), with bii = aii > 0,
i ∈ I and bij = −aij ≤ 0, i, j ∈ I, i 6= j, is column diagonally dominant. The
matrix B is an M−matrix such that B is nonsingular and the elements of B−1 are
nonnegative. Hence the system (5) has a solution

x⋆ = B−1u ≥ 0,

that is an equilibrium of (1).

We proceed to show the uniqueness of the equilibrium x⋆. Suppose x⋆ =
(x⋆

1, x⋆
2, . . . , x⋆

m)T and y⋆ = (y⋆
1 , y⋆

2 , . . . , y⋆
m)T are two equilibria. We then have

the following

aii(x
⋆
i − y⋆

i ) =

m
∑

j=1

j 6=i

aij(x
⋆
j − y⋆

j ), i ∈ I

which leads to

aii|x
⋆
i − y⋆

i | ≤

m
∑

j=1

j 6=i

aij |x
⋆
j − y⋆

j |, i ∈ I

and hence
m

∑

i=1

{

aii −

m
∑

j=1

j 6=i

aji

}

|x⋆
i − y⋆

i | ≤ 0. (6)

By applying the condition (4) on (6) we conclude that x⋆
i = y⋆

i for all i ∈ I. The
uniqueness of the equilibrium x⋆ of (1) follows. We have shown the existence and
uniqueness of the equilibrium x⋆ of (1). The proof is complete.

In the following we show that the same conditions as in (3) and (4) guaran-
tee the global exponential stability of the equilibrium point x⋆. We use Halanay
inequality [4, p. 378]) to establish this result. Halanay inequality in comparison to
Lyapunov functional is rarely used in the study of stability despite its possible gen-
eralizations and applications [1, 2, 5]. The proof of the following theorem is based
on the results found in [6]. First we state a scalar version of Halanay inequality
([2]) as follows.

Halanay inequality. Let α, β and τ be positive numbers and let u(t) be a
nonnegative solution of

du(t)

dt
≤ −αu(t) + β

(

sup
s∈[t−τ,t]

u(s)

)

, t > 0.



194 Sariyasa

If α > β, then there exist constants σ > 0 and k > 0 such that u(t) ≤ ke−σ(t−t0)

for t > t0, t0 ∈ R.

Theorem 2.2. Suppose (3) and (4) hold. Then the system (1) is globally expo-
nentially stable in the sense that there exists a constant µ > 0 such that

|xi(t) − x⋆
i | ≤ e−µt max

i∈I

(

sup
s∈[−τ,0]

|xi(s) − x⋆
i |

)

, i ∈ I, t > 0, τ = max
i∈I

{τij}

where x⋆
i is the equilibrium point of (1)

Proof. We define Gi : [0,∞) 7−→ R, i ∈ I as follows:

Gi(µi) = aii − µi −

m
∑

j=1

j 6=i

ajie
µiτji , µi ∈ [0,∞), i ∈ I.

We note that Gi(0) > 0 owing to (4). By the continuity of Gi on [0,∞) and noting
that Gi(µi) is decreasing, there exists µ⋆

i ∈ (0,∞) such that Gi(µ
⋆
i ) = 0. Let

µ = mini∈I {µ⋆
i } and consequently we have

Gi(µ) = aii − µ −

m
∑

j=1

j 6=i

ajie
µτji ≥ 0, i ∈ I. (7)

From (1) and (2) we derive that

d

dt
(xi(t) − x⋆

i ) = −aii(xi(t) − x⋆
i ) +

m
∑

j=1

j 6=i

aij(xj(t − τij) − x⋆
j ), i ∈ I, t > 0. (8)

Now, evaluating upper right derivative of (8) yields

d+

dt
|xi(t) − x⋆

i | ≤ −aii|xi(t) − x⋆
i | +

m
∑

j=1

j 6=i

aij |xj(t − τij) − x⋆
j |, i ∈ I, t > 0. (9)

We define zi(t) as follows

zi(t) = eµt|xi(t) − x⋆
i |, t ≥ −τ, i ∈ I. (10)

Using (9) and (10) we derive that

d+zi(t)

dt
≤ −(aii − µ)zi(t) +

m
∑

j=1

j 6=i

aije
µτij zj(t − τij), i ∈ I, t > 0

≤ −(aii − µ)zi(t) +

m
∑

j=1

j 6=i

aije
µτij

(

sup
s∈[−τ,0]

zj(s)

)

(11)



Application of Halanay Inequality 195

where τ = maxi,j∈I {τij}. Let

M = max
i∈I

{

sup
s∈[−τ,0]

|xi(s) − x⋆
i |

}

> 0. (12)

It follows from (10) and (12) that zi(t) ≤ M for all i ∈ I, t ∈ [−τ, 0]. We claim
that

zi(t) ≤ M for all i ∈ I, t > 0. (13)

We now prove the claim in (13) as follows. Suppose that (13) is not valid; then
there exists an i = p ∈ I and a t1 > 0 such that

zi(t) ≤ M for i ∈ I, i 6= p, t ∈ [−τ, t1]

zp(t) ≤ M for t ∈ [−τ, t1], zp(t1) = M,
d+zp(t1)

dt
> 0.

}

(14)

But we have from (11) and (14),

0 <
d+zp(t1)

dt
≤ −(app − µ)zp(t1) +

m
∑

j=1

j 6=p

apje
µτpj

(

sup
s∈[t1−τ,t1]

zj(s)

)

≤ −

(

app − µ −

m
∑

j=1

j 6=p

apje
µτpj

)

M ≤ 0, by (7)

which is not possible. Hence (13) holds. We then use (10) in (13) to obtain

|xi(t) − x⋆
i | ≤ e−µt max

i∈I

{

sup
s∈[−τ,0]

|xi(s) − x⋆
i |

}

for all i ∈ I, t > 0.

Since µ > 0, the exponential convergence of all solutions of (1) towards x⋆ follows.
This completes the proof.

3. CONCLUDING REMARKS

We have studied the dynamical convergence of a compartmental system with
delays. A sufficient condition for the global exponential stability of the delayed
compartmental system is derived. This condition is formulated in terms of the
parameters of the system; such a condition is easy to verify. We have demonstrated
the use of Halanay inequality in establishing the global exponential stability of the
system.
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