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A Dynamical Analysis on a Tumour Virotherapy Model with Standard Incident Rate 
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ABSTRACT

This paper discusses a dynamical analysis on a model that governs the growth of tumour cell under a therapy by
using oncolytic viruses, on the standard incident rate. The model is a modification of the similar one by replacing
the bilinear incident rate with the standard one. The conducted dynamical analysis consists of the determination
of equilibrium points and their existence conditions, followed by local as well as global stability analysis of the
equilibrium points. The analytical result shows that there are two equilibrium points, namely uninfected and the
endemic point, which needs a condition to exist. Stability analysis shows that there is a dimensionless basic repro -
duction number that marks the existence as well as the stability of equilibrium points. When basic reproduction
number is less than one, there is only the uninfected equilibrium, which is global asymptotically stable. On the
other hands, both of equilibrium points exist when the basic reproduction number is more than one, but the unin-
fected point is not stable anymore, while the endemic one is local asymptotically stable under a condition. Some
numerical simulations are performed to illustrate the analytical result. Numerically, it can also be demonstrated
that there is a set of parameters which indicates that tumour can be fully removed.  
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The tumour is a disease in the form of abnormal
lumps or swellings. Most of the tumour is caused by
neoplasm, a condition caused by the rapid division of
cells that have undergone some form of mutation. One
of the tumour treatments is applying therapy by using
the oncolytic virus. The virus can infect the tumour cell
genetically  and  replicates  itself  without  damage  the
normal cell [1].

In  2003,  Wodarz  proposed  a  model  of  tumour
growth under oncolytic virus therapy in the form of
three-dimensional differential equation [2]. The three
dependent variables in the model respectively represent
the population density of uninfected tumour cells, in-
fected tumour cells, and independent virus in the hu-
man body. Dingli et al. modified the model proposed
by Wodarz by adding the assumption that the death
rate of uninfected tumour cells is contained in the lo-
gistic growth rate [3]. Furthermore, the natural death
rate and the other death rate of tumour cells caused by

virus infection are considered as a unity called infected
tumour cells death rate. In 2008, Dingli et al. modified
their  previous  model  by  adding  two  assumptions,
namely the process of fusion between tumour cells and
the oncolytic  virus  is  resulting infected  tumour cells
and each virus is assumed to be dead after infecting tu-
mour  cells  [4].  Moreover,  Tian  modified  the  model
proposed by Dingli, et al., by adding a parameter that
shows the burst size of virus [1, 4].

It has to be noted that all of above models applied
bilinear incident rate as the rate of oncolytic virus in-
fection. Nevertheless, the research carried out by Min
et al. (2008) about the general model for virus infection
concludes  that  bilinear  infection  rate  is  not  realistic
since the incident rate is indicated as the source of the
burst size of the virus, which can exceed the available
cells.  Consequently, Min et al.  suggested using stan-
dard incident rate instead of the bilinear one [5].

Hence, in this paper, we investigated the dynamics
of the modified model of Tian by changing the bilinear
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infection incident rate into standard infection incident
rate. Dynamical analysis is employed by investigating
the existence condition and the stability of equilibrium
points.  The results from some numerical  simulations
are presented to illustrate the analysis result [1].

This work is performed by conducting several steps,
namely modification of the mathematical model, deter-
mination of equilibrium points and their existence con-
ditions, observation on the local as well as global stabil-
ity  of  the  equilibrium points,  and numerical  simula-
tions supporting the analytical result.  

Mathematical model 
We refer to a model of oncolytic virus infection on

tumour investigated in Tian [1]. 

    

           (1)

The χ, y, and ν represent the number of uninfected tu-
mour cells, the number of infected tumour cells by the
oncolytic virus, and the number of the free oncolytic
virus in the human body, respectively. The uninfected
tumour cells grow logistically under growth rate r and
carrying capacity K. The tumour cells are infected by
oncolytic virus under bilinear incident rate βχy so that
the  uninfected  tumour  cells  become  infected  cells.
Hence, the uninfected tumour cells are reduced, while
the number of infected tumour cells is increased.  The
number of virus is also decreased since Tian assumed
that the virus dies after infecting tumour cells. The nat-
ural death rate of infected tumour cells is governed by
parameter δ, while the number of virus increased pro-
portionally with the death rate of infected tumour cell
under burst parameter b. Here, γ represents the natu-
ral death rate of the virus.

Determination of the equilibrium points
Consider an autonomous dynamical system, 

        
 (2)

the equilibrium point of (2), denoted by E= (χ*, y*, ν*),
is the solution of equation (2) satisfying               
[6]. When the system (2) represents the growth of pop-
ulations, χ*, y*, and ν* need to be non-negatives. This
condition  will  determine  the  existence  condition  for
the equilibrium point.

Observing the stability of the equilibrium point
When the system (2) is a nonlinear system, it is not

easy to obtain its  exact solution. One way to under-
stand the behaviour of the solutions of system (2) is by
investigating the local as well as the global stability of
equilibrium points. Local stability analysis can be per-
formed  by linearizing  system (2)  around its  equilib-
rium point, resulting to an approximating linear sys-
tem

(3)
where                                 and J is Jacobian matrix
at E= (χ*, y*, ν*), namely

(4)

The stability of  E= (χ*,  y*,  ν*) is determined by the
sign of the real parts of the eigen values of matrix J. E=
(χ*, y*, ν*) is local asymptotically stable when all of the
real parts of the eigen values of matrix J are negatives
[7].

One way to perform global stability analysis on E=
(χ*,  y*,  ν*) is by defining a scalar Lyapunov function
for system (2). Let  Ω  ⊆ R3 is a neighbourhood of  E=
(χ*,  y*,  ν*).  L (χ,  y,  ν) is called as a weakly Lyapunov
function for E= (χ*, y*, ν*) when it satisfies

(5)

Furthermore,  when  the  condition (b) is  replaced  by
                   in Ω then L is called strong Lyapunov
function.  The  equilibrium point  E  is  globally  stable
when there is a weakly Lyapunov function for E. Oth-
erwise; the equilibrium point E is global asymptotically
stable when there is a strong Lyapunov function for E
[8].
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Numerical simulations
Some numerical simulations are conducted by using

the  Fourth  Order  -  Runge  Kutta  Method  apllied  in
Matlab  software.  To  illustrate  the  analytical  result,
some scenarios of simulations are presented by choos-
ing some sets of parameters values. 

Mathematical model 
In this paper, we modify the model of Tian [1] by

changing the bilinear incident rate into standard inci-
dent rate as suggested by Min et al. [5]. This modifica-
tion is based on the fact that the infection rate depends
on the availability of the cells number. The more realis-
tic modified model investigated in this paper is as fol-
lows.

(6)

Determination and existence of the equilibrium point
The equilibrium point of (6) is reached when the

system (6) in the steady state condition, namely when
the system does  not change in time anymore [6].  It
means that the differential is zero. Hence, we obtain
the point by solving the following system of equation

(7)

We  found  that  there  are  two  equilibrium  points,
namely E1= (K, 0, 0) and E2= (χ*, y*, ν*), where 

(8)

The complicated form of equilibrium point E2= (χ*, y*,
ν*) needs the investigation on its existence. The result
of  the investigation is  briefly  stated in the following
proposition. 

Proposition 1: The equilibrium point E2 exists when b
satisfies the following condition

(9)

The stability of the equilibrium point
The investigation of the local stability of equilibrium
points of a nonlinear system is performed by lineariz-
ing the system around the point. This process is result -
ing a Jacobian matrix of the system, which can be used
to determine the stability by considering the eigen val-
ues of the matrix. When all of the eigen values are neg-
ative then the equilibrium point is stable. Otherwise, it
is unstable.  The Jacobian matrix of the system (6) is

(10)

The Stability of E1= (K, 0, 0)
Jacobian matrix at E1= (K, 0, 0) is 

(11)

The stability of the equilibrium point E1 is determined
by the sign of the real part of the eigen values of J(E1).
If they are negative, then E1 is local asymptotically sta-
ble.  It  is  clear  that  one of  the eigenvalues  is  λ1= -r,
while  the  other  two   eigenvalues  belongs  to  matrix

. By investigating the sign of det(A) and
trace(A) [9], it is not difficult to show that the equilib-
rium point E1 is local asymptotically stable when       
About the existence of  E2 stated in Proposition 1, we
can conclude that  E2 does not exist when  E1 is local
asymptotically stable. 

In the epidemic model, there is a number so-called
Basic Reproduction Number, denoted by R0, which in-
dicates the occurrence of infection leads to an epidemic
situation [10]. This number represents how many tu-
mour  cells  are  infected  by one previous  infected tu-
mour cell. The value of R0 more than one indicates that
more than one tumour cells are infected by one old in-
fected cell. It means that the number of tumour cells
infected by the old cells  is  increasing. The condition
when equilibrium  E1 is  stable describes  the situation
when the virus fails to infect the tumour cells, since at
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E1 we have χ = 0, y = 0, and ν = 0. Since this condition
happens when              it can be concluded that the
basic reproduction number for our model is            
It is readily seen that this number is dimensionless. On
the other hand, when                 which represents the
existence of equilibrium point  E2, we can say that the
tumour cells are infected by the oncolytic virus such
that the tumour cells are reduced. So, in the medical
point of view, the condition when  R0  > 1 is  the ex-
pected situation. 

Compared to Tian (2011) model,  the basic repro-
duction number R0  of our model is dimensionless and
does not depend on the maximum limit of tumour cells
number K anymore [1]. This is the important result
comes from the modification of bilinear into standard
incident rate infection, which is the proportion of the
tumour cell number.

Furthermore, the global stability analysis of equilib-
rium E1= (K, 0, 0) is also performed by defining Lya-
punov function

   (12)

It can be verified that the Lyapunov function (12) satis-
fies the following conditions when R0 < 1. 

(13)

Hence,  it  can be concluded that  E1  is  asymptotically
global stable when R0 > 1.

The Stability of E2= (χ*, y*, ν*)
The Jacobian matrix at E2= (χ*, y*, ν*) is

(14)

where

(15)

The characteristic polynomial for J(E2) is

                               λ3 + A1 λ
2 + A2  λ + A3= 0                 (16)

where

A1 = –  A – E – I 
A2 = EA + IA + EI – HF – BD – CG 

A3= – EIA + AHF + BDI – BFG – CDH + CEG.  (17)

According to Routh-Hurwitz criteria in Murray (2002),
the characteristic polynomial (16)  has negative roots if
only if A1  > 0, A3 > 0 and A1A2 – A3 > 0 [11].  Hence,
the local stability of E2= (χ*, y*, ν*) is stated in the fol-
lowing proposition.
Proposition 2: If R0  > 1, equilibrium point E2= (χ*,  y*,
ν*) is local asymptotically stable when A1A2 – A3 > 0.

Numerical simulations
Three numerical simulations are executed by con-

structing a scheme in Matlab software to illustrate the
analytical result. The first simulation is aimed to show
the stability of equilibrium E1= (K, 0, 0) when R0  > 1,
while the second and the third simulations show the
conditions when E2= (χ*, y*, ν*) exist.  The second sim-
ulation shows the situation when E2= (χ*, y*, ν*) is sta-
ble, while the third simulation shows when both of E1
and E2 are unstable.

In order to show the global stability of equilibrium
point  E1, a simulation is made using a set of parame-
ters, namely r = 0.2, K = 2139,  β = 0.0127,  δ = 0.01,  γ =
0.125, and b = 10, to obtain R0 = 0.157 < 1. There is
only one equilibrium point E1,  since the existence con-
dition of E2 is not fulfilled, namely                = 10.84 > 10
= b. The numerical simulation uses six initial values,
namely N1 = (200, 1000, 800), N2 = (100,7000,800), N3
= (1000, 500, 50), N4 = (500, 0, 0), N5 = (1000, 0, 0),
and N6 = (1800, 0, 0).

The result of numerical simulation provided in Fig-
ure 1 shows that all the orbits that start from the six
initial conditions converge to the equilibrium point E1
= (2139, 0, 0). This result is in accordance with the an-
alytical  result  saying  that  E1 is  global  asymptotically
stable.

The curves of solutions that show the number of
uninfected tumour inside the human body every time
until t = 900 is presented in Figure 1b. The curves are
indicated  by  their  initial  values  of  the  total  tumour
cells, namely the sum of the first and second compo-
nent of N1, N2, N3, N4, N5, and N6  coordinates. For ex-
ample, the blue curve describes how the number of the
total tumour cells which start from the initial number
of the total tumour cell N1, namely 200 + 1000 = 1200,
increases to the equilibrium of the total tumour cell E1,
namely 2139. 
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It can be seen that along the interval time [0, 900]
the number of total tumour cells, including uninfected
and infected tumour cell, never exceeded the maximum
limit of tumour cell inside the human body, K = 2139.
It is in accordance with the motivation of the imple-
mentation of standard incident rate to the model. The
stability of equilibrium point E1 implies that the popu-
lation of  infected  tumour  cell  and free  virus  vanish.
The condition can be interpreted as a condition where
the virus cannot infect the tumour cell. Therefore, from
the medical point of view, the therapy using the on-
colytic virus failed.

The second simulation is executed to show a situa-
tion when the equilibrium point E2 is local asymptoti-
cally stable. In order to satisfy the existence and the
stability conditions of  E2, we pick a set of parameter
values, namely r = 0.2, K = 2139, β = 0.0127,  δ =  0.01,

 γ = 0.125 and b = 20. Hence, there are two equilibrium,
namely E1 = (2139, 0, 0) and E2 = (1056, 982, 1494). It
can be verified that  R0 = 10.16 > 1 and  A1A2  –  A3  =
0.00343 > 0.      

The initial values used in this simulation are  N1 =
(200, 1000, 800), N2 = (100, 700, 600), N3 = (650, 500,
0), N4 = (1000, 500, 50), N5 = (500, 0, 0), N6 = (1000, 0,
0), and N7 = (1800, 0, 0).

The result of the simulation is presented in Figure
2a. It can be seen that four orbits start from Ni; i = 1,
2, 3, 4 tend to reach the equilibrium point E2 = (1056,
982, 1494). Nevertheless,  three orbit start from some
position at the x-axis, namely Ni; i = 5, 6, 7, go to equi-
librium point E1, instead of going to E2,  even though
the parameter values do not satisfy the stability condi-
tion of equilibrium E1. It looks like a contradiction, but
if we see more detail, it is easy to see that the eigen val-
ues of Jacobian matrix at equilibrium point  E1 are λ1=-
0.2, λ2 = 0.0075, and λ3 =-0.155, with the corresponding
eigenvectors  are  ξ1  =  (1,  0,  0),   ξ2 =  (-0.421,  0.403,
0.915),  and  ξ3=  (0.462,  -0.432,  1.499)   respectively.
Hence, the space spanned by ξ1 = (1, 0, 0), which is x-
axis, is a stable manifold. Therefore, every orbit  that
starts from any position at positive x-axis, namely (χ, 0,
0), 0 < χ < K,  will tend to E1. It supports the analytical
result, which says that  E2  is not global asymptotically
stable, but only local asymptotically stable. From the
medical point of view, we can propose a set of parame-
ter values which can be used to reduce the number of
tumour cell. But if Virotherapy is not applied then the
tumour cell will grow to the maximum capacity  of  tu-
mour cell in the human body.
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(a)

(b)
Figure 1. The phase portrait of system (6) shows that E1 is asymptotically stable (a). Number of total tumour cells every time, for 0

≤ t ≤ 900 (b)
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Similar with the first simulation, the total tumour
cell during the time execution also never exceeded the
maximum number of tumour cells inside the human
body, as presented in Figure 2b. 

The  third  simulation  is  conducted  to  investigate
what happen if both of equilibrium points,  E1  and  E2
are unstable. We adjust the parameter such that equi-
librium point E2  exist, but it is unstable. By taking r =
0.2, K = 2139,  β = 0.0127,  δ = 0.01,  γ = 0.0125 and b =
20 we have E1 = (2139, 0, 0)  and E2 = (9, 171, 261), but
A1A2  – A3  > 0. Therefore the stability condition of  E1

and E2 are not fulfilled. We deliver the result of numer-
ical simulation in Figure 3, which shows some orbits of
solution that start from the following initial values: N1
= (500, 1500, 400),  N2 = (1000, 1000, 100), N3 = (1000,
500, 50), N4 = (1500, 100, 100), N5 = (2000, 100, 1500).
It can be seen that all orbits neither move toward  E1
nor E2, but move toward (0, 0, 0). Medically speaking,
this interesting result indicates that we can adjust the
parameter values to reach virotherapy goal, namely the
total tumour cells, including uninfected as well as in-
fected tumour cells is destroyed.
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(a)

(b)
Figure 2. The phase portrait showing that E2 is local asymptotically stable (a). Number of total tumour cells every time, for 0 ≤ t

≤ 900 (b).

Figure 3. The portrait of phase showing equilibrium E1 and E2 unstable
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In this work, a dynamical analysis has been con-
ducted on a modified model of tumour virotherapy us-
ing the oncolytic virus, where the bilinear incident rate
is  replaced by standard incident  rate.  There  are  two
equilibrium points  of  the  model,  namely  uninfected
equilibrium and endemic equilibrium. The uninfected
equilibrium always  exists  while  the  endemic  equilib-
rium exists under an existence condition, indicated by
a  positive  dimensionless  basic  reproduction  number.
Moreover this number also determines the stability of
the equilibrium points. When the basic reproduction
number  is  less  than one,  the  uninfected  equilibrium
point is global asymptotically stable. Otherwise, the en-
demic equilibrium exists, but it still needs a condition
to be local asymptotically stable. The result of numeri-
cal  simulations  agrees  with  the  dynamical  analysis.
Moreover,  it  can be  shown by  numerical  simulation
that there is a set of parameter values that can simulate
a situation when the tumour cells become disappear.
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