
Journal of Telematics and Informatics (JTI)
Vol.4, No.1, March 2016, pp. 19~23
ISSN: 2303-3703 19

One-Minute Derivation of the Conjugate Gradient
Algorithm

Muhammad Ali Raza Anjum
Army Public College of Management and Sciences

 Rawalpindi, PAKISTAN
e-mail: ali.raza.anjum@apcoms.edu.pk

Abstract
One of the great triumphs in the history of numerical methods was the discovery of the

Conjugate Gradient (CG) algorithm. It could solve a symmetric positive-definite system of linear
equations of dimension N in exactly N steps. As many practical problems at that time belonged
to this category, CG algorithm became rapidly popular. It remains popular even today due to its
immense computational power. But despite its amazing computational ability, mathematics of
this algorithm is not easy to learn. Lengthy derivations, redundant notations, and over-emphasis
on formal presentation make it much difficult for a beginner to master this algorithm. This paper
aims to serve as a starting point for such readers. It provides a curt, easy-to-follow but
minimalist derivation of the algorithm by keeping the sufficient steps only, maintaining a uniform
notation, and focusing entirely on the ease of reader.

Keywords: Conjugate Gradient, Algorithm, Optimization

1. Introduction

Importance of the Conjugate Gradient (CG) algorithm can hardly be overemphasized. It
is everywhere: in optimization theory [1, 2], in adaptive filtering [3, 4], in machine learning [5, 6],
in image processing [7, 8] and in many others [9-11]. Though it is popular, the algorithm is not
easy to learn. The chief difficulty lies with its derivation. Reasons for this difficulty are as
numerous as the reasons for its popularity. Too many approaches, too much variety in notation
and over emphasis on form and presentation are just to name a few. Books do not try to resolve
these issues. Research papers avoid resolving these issues.

There must be an excellent cause for them to do so but they all essentially miss one
point: to convey this fascinating algorithm to the aspiring student in a quick, easy and
understandable way. Tutorials have made an attempt in this regard. Though they are scarce as
well, two of them are truly remarkable. First one tries to systematically address the above
mentioned problems but ends up in a long 64 page document in an attempt to explain
“everything” [12]. As a result, derivation is almost impossible to follow. Second one gives a quick
explanation to the general philosophy of the algorithm but leaves the derivation entirely to the
reader [13].

This paper does not aim to do any of these. It neither attempts to explain the philosophy
of algorithm nor “everything” of the algorithm. It will present a quick, easy, and understandable
proof of the most difficult part of the algorithm: its mathematical derivation. By following this
derivation, readers will acquire at least four benefits. Firstly, they will understand the derivation
with minimum background knowledge. Only linear algebra will be required. Secondly, they will
grasp it in minimum amount of time. Derivation presented is as short as possible. Thirdly, they
will learn it with minimum effort. Onus of making things understandable is on author. Finally,
once the derivation is finished, they will be able to implement it in a programming language of
their choice. The results will be presented in an easy to program manner.

2. System Model

Consider following system of linear equations.

 𝐴𝑥 = 𝑏 (1)

 ISSN: 2303-3703

 JTI Vol. 4, No. 1, March 2016 : 19 – 23

20

𝐴 is a symmetric 𝑛 × 𝑛 matrix such that 𝐴𝑇 = 𝐴. 𝑥 and 𝑏 are 𝑛 × 1 vectors. We attempt to solve
this system iteratively.

 𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑑𝑖 (2)

𝑥𝑖 is the estimate computed in the 𝑖-th iteration. 𝑑𝑖 is the correction term required in the 𝑖-th
iteration. 𝛼 is the step-size.

3. Computation of Residues

Subtracting the actual solution 𝑥 from both sides of Eq. (1),

 𝑥𝑖+1 − 𝑥 = 𝑥𝑖 − 𝑥 + 𝛼𝑑𝑖

This results in,

 𝑒𝑖+1 = 𝑒𝑖 + 𝛼𝑑𝑖 (3)

𝑒𝑖 is the error in the 𝑖-th iteration. At the startup, we make a guess for 𝑥𝑖. Since our guess for 𝑥𝑖
is purely arbitrary, there will be a residue 𝑟𝑖.

 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 = 𝐴𝑥 − 𝐴𝑥𝑖 = 𝐴(𝑥 − 𝑥𝑖) = −𝐴𝑒𝑖

Or,

 𝑟𝑖 = −𝐴𝑒𝑖 (4)

Multiplying both sides of Eq. (3) with 𝐴,

 𝐴𝑒𝑖+1 = 𝐴𝑒𝑖 + 𝛼𝐴𝑑𝑖 (5)

Replacing the result of Eq. (4) in Eq. (5),

 −𝑟𝑖+1 = −𝑟𝑖 + 𝛼𝐴𝑑𝑖 (6)

Or,

 𝑟𝑖+1 = 𝑟𝑖 − 𝛼𝐴𝑑𝑖 (7)

3. First Major Assumption

Now we multiply both sides of Eq. (7) with 𝑟𝑖𝑇.

 𝑟𝑖𝑇𝑟𝑖+1 = 𝑟𝑖𝑇𝑟𝑖 − 𝛼𝑟𝑖𝑇𝐴𝑑𝑖 (8)

We choose value for 𝛼 for which,

 𝑟𝑖𝑇𝑟𝑖+1 = 0 (9)

This is the first crucial decision we make for CG algorithm. So Eq. (8) becomes,

 0 = 𝑟𝑖𝑇𝑟𝑖 − 𝛼𝑟𝑖𝑇𝐴𝑑𝑖 (10)

Finally for 𝛼𝑖,

𝛼𝑖 =

𝑟𝑖𝑇𝑟𝑖
𝑟𝑖𝑇𝐴𝑑𝑖

(11)

Hence, Eqs. (2) and (7) become,

 𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖𝑑𝑖 (12)

And,

 𝑟𝑖+1 = 𝑟𝑖 − 𝛼𝑖𝐴𝑑𝑖 (13)

4. Second Major Assumption

So far we have Eqs. (7) and (11) for the computation of 𝑟𝑖+1and the 𝑑𝑖 respectively. Now
we want to derive the 𝑑𝑖+1 from 𝑟𝑖+1 and 𝑑𝑖. Let us define the following relationship between all
three.

JTI ISSN: 2303-3703

Title of manuscript is short and clear, implies research results (First Author)

21

 𝑑𝑖+1 = 𝑟𝑖+1 + 𝛽𝑖+1𝑑𝑖 (14)

Note that this relationship is quite similar to the pattern in Eq. (12). Now, we multiply both sides
of Eq. (14) with 𝐴.

 𝐴𝑑𝑖+1 = 𝐴𝑟𝑖+1 + 𝛽𝑖+1𝐴𝑑𝑖 (15)

Further multiplying both sides of Eq. (15) with 𝑑𝑖
𝑇,

 𝑑𝑖
𝑇𝐴𝑑𝑖+1 = 𝑑𝑖

𝑇𝐴𝑟𝑖+1 + 𝛽𝑖+1𝑑𝑖
𝑇𝐴𝑑𝑖 (16)

We want to choose 𝛽𝑖+1 for which,

 𝑑𝑖
𝑇𝐴𝑑𝑖+1 = 0 (17)

This is the second crucial decision for the CG algorithm. So Eq. (16) becomes,

0 = 𝑑𝑖
𝑇𝐴𝑟𝑖+1 + 𝛽𝑖+1𝑑𝑖

𝑇𝐴𝑑𝑖

Finally for 𝛽𝑖+1,

𝛽𝑖+1 = −

𝑑𝑖
𝑇𝐴𝑟𝑖+1
𝑑𝑖

𝑇𝐴𝑑𝑖

(18)

5. Making the Algorithm Recursive

It will be much more efficient if we can compute 𝛽𝑖+1 from 𝛼𝑖 because we already have
𝛼𝑖 from Eq. (11). For this purpose, we will exploit 𝑑𝑖

𝑇𝐴𝑟𝑖+1 term in Eq. (18). This can be done by
recalling Eq. (7) and multiplying it with 𝑟𝑖+1𝑇 on both sides.

 𝑟𝑖+1𝑇𝑟𝑖+1 = 𝑟𝑖+1𝑇𝑟𝑖 − 𝛼𝑖𝑟𝑖+1𝑇𝐴𝑑𝑖 (19)

Now we see 𝑑𝑖
𝑇𝐴𝑟𝑖+1 term on the right hand side of Eq. (19). Being a scalar term,

 𝑑𝑖
𝑇𝐴𝑟𝑖+1 = 𝑟𝑖+1𝑇𝐴𝑑𝑖 (20)

Substituting our assumption from Eq. (9) in Eq. (19),

 𝑟𝑖+1𝑇𝑟𝑖+1 = 0 − 𝛼𝑖𝑟𝑖+1𝑇𝐴𝑑𝑖 (21)

Or,

 𝑟𝑖+1𝑇𝐴𝑑𝑖 = −
1
𝛼𝑖
𝑟𝑖+1𝑇𝑟𝑖+1

(22)

Using Eq. (20) and remembering that 𝐴 is symmetric,

 𝑑𝑖
𝑇𝐴𝑟𝑖+1 = −

1
𝛼𝑖
𝑟𝑖+1𝑇𝑟𝑖+1

(23)

Substituting the result of Eq. (23) in (18),

𝛽𝑖+1 = −

𝑑𝑖
𝑇𝐴𝑟𝑖+1
𝑑𝑖

𝑇𝐴𝑑𝑖
=

1
𝛼𝑖
𝑟𝑖+1𝑇𝑟𝑖+1
𝑑𝑖

𝑇𝐴𝑑𝑖

(24)

Finally, 𝛽𝑖+1 in terms of 𝛼𝑖,

𝛽𝑖+1 =

1
𝛼𝑖
𝑟𝑖+1𝑇𝑟𝑖+1
𝑑𝑖

𝑇𝐴𝑑𝑖

(25)

Now we have Eq. (25) to compute 𝛽𝑖+1 from 𝛼𝑖. Only other term required to compute Eq. (25) is
𝑑𝑖. But we already have 𝑟𝑖 and 𝑟𝑖+1from Eq. (13). If we can compute 𝛽𝑖+1 from 𝑟’s only, it will not
only make Eq. (25) more efficient but also recursive. For this purpose, only the dominator term
in Eq. (17) has to be expressed in terms of 𝑟’s for this purpose. So we recall (14) and substitute
𝑖 in place of 𝑖 + 1 in it.

 𝑑𝑖 = 𝑟𝑖 + 𝛽𝑖𝑑𝑖−1 (26)

 ISSN: 2303-3703

 JTI Vol. 4, No. 1, March 2016 : 19 – 23

22

Multiplying both sides of (26) first with 𝐴,

 𝐴𝑑𝑖 = 𝐴𝑟𝑖 + 𝛽𝑖𝐴𝑑𝑖−1 (27)

And then multiplying with 𝑑𝑖
𝑇,

 𝑑𝑖
𝑇𝐴𝑑𝑖 = 𝑑𝑖

𝑇𝐴𝑟𝑖 + 𝛽𝑖𝑑𝑖
𝑇𝐴𝑑𝑖−1 (28)

Employing the assumption of Eq. (17) and re-arranging,

 𝑑𝑖
𝑇𝐴𝑑𝑖 = 𝑑𝑖

𝑇𝐴𝑟𝑖 + 0 (29)

Or,

 𝑟𝑖𝑇𝐴𝑑𝑖 = 𝑑𝑖
𝑇𝐴𝑑𝑖 (30)

Substituting Eq. (30) in Eq. (11),

𝛼𝑖 =

𝑟𝑖𝑇𝑟𝑖
𝑟𝑖𝑇𝐴𝑑𝑖

=
𝑟𝑖𝑇𝑟𝑖
𝑑𝑖

𝑇𝐴𝑑𝑖

(31)

Or,

𝛼𝑖 =

𝑟𝑖𝑇𝑟𝑖
𝑑𝑖

𝑇𝐴𝑑𝑖

(32)

Re-arranging Eq. (32),

 𝛼𝑖𝑑𝑖
𝑇𝐴𝑑𝑖 = 𝑟𝑖𝑇𝑟𝑖 (33)

Eq. (33) fully expresses the denominator of Eq. (25) in terms of 𝑟’s. Substituting Eq. (33) in Eq.
(25),

𝛽𝑖+1 =

1
𝛼𝑖
𝑟𝑖+1𝑇𝑟𝑖+1
𝑑𝑖

𝑇𝐴𝑑𝑖
=
𝑟𝑖+1𝑇𝑟𝑖+1
𝑟𝑖𝑇𝑟𝑖

(34)

Finally,

𝛽𝑖+1 =

𝑟𝑖+1𝑇𝑟𝑖+1
𝑟𝑖𝑇𝑟𝑖

(35)

Eq. (35) expresses 𝛽𝑖+1 in terms of 𝑟’s only and this completes our derivation of CG algorithm.

6. The Algorithm Itself

Now we recap the results and list them in the form of an algorithm.
1. Make an initial guess 𝑥0.
2. Take 𝑑0 = 𝑟0 = 𝑏 − 𝐴𝑥0.
3. Compute 𝛼𝑖 using Eq. (32).

𝛼𝑖 =

𝑟𝑖𝑇𝑟𝑖
𝑑𝑖

𝑇𝐴𝑑𝑖

4. Update 𝑥 using Eq. (12).

 𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖𝑑𝑖

5. Update 𝑟 using Eq. (7).

 𝑟𝑖+1 = 𝑟𝑖 − 𝛼𝑖𝐴𝑑𝑖

6. Determine 𝛽 using Eq. (35).

𝛽𝑖+1 =

𝑟𝑖+1𝑇𝑟𝑖+1
𝑟𝑖𝑇𝑟𝑖

7. Update 𝑑 using Eq. (14).

 𝑑𝑖+1 = 𝑟𝑖+1 + 𝛽𝑖+1𝑑𝑖

JTI ISSN: 2303-3703

Title of manuscript is short and clear, implies research results (First Author)

23

7. Conclusion
An easy, step-by-step but minimalist derivation of the Conjugate Gradient algorithm is

provided in this paper. By following this derivation, the readers, regardless of their background,
will not only master this fascinating algorithm in no time but will also be able to program it for
their own purposes which will provide them a better understanding of their own problems on
which they are working.

References
[1] C. Li, L. Fang, and X. Cao, "Global Convergence of A Kind of Conjugate Gradient Method,"

TELKOMNIKA Indonesian Journal of Electrical Engineering, vol. 11, pp. 544-549, 2013.
[2] C. Li, "A Modified Conjugate Gradient Method for Unconstrained Optimization,"

TELKOMNIKA Indonesian Journal of Electrical Engineering, vol. 11, pp. 6373-6380, 2013.
[3] L. Wang and R. C. de Lamare, "Set-membership constrained conjugate gradient adaptive

algorithm for beamforming," Signal Processing, IET, vol. 6, pp. 789-797, 2012.
[4] Y. Liu, R. Ranganathan, M. T. Hunter, and W. B. Mikhael, "Complex adaptive LMS

algorithm employing the conjugate gradient principle for channel estimation and
equalization," Circuits, Systems, and Signal Processing, vol. 31, pp. 1067-1087, 2012.

[5] G. Harik, "Method for an optimizing predictive model using gradient descent and conjugate
residuals," ed: Google Patents, 2014.

[6] J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q. V. Le, and A. Y. Ng, "On optimization
methods for deep learning," in Proceedings of the 28th International Conference on
Machine Learning (ICML-11), 2011, pp. 265-272.

[7] W. Huang, Y. Wang, and D. W. Rosen, "Inverse Surfacelet Transform for Image
Reconstruction With Constrained-Conjugate Gradient Methods," Journal of Computing and
Information Science in Engineering, vol. 14, p. 021005, 2014.

[8] S. K. Jain, R. K. Ray, and A. Bhavsar, "A Comparative Study of Iterative Solvers for Image
De-noising," in Proceedings of the 3rd International Conference on Frontiers of Intelligent
Computing: Theory and Applications (FICTA) 2014, 2015, pp. 307-314.

[9] H. Wu, T. Guilin University of Electronic, G. Wang, T. Guilin University of Electronic, F.
Zhang, T. Guilin University of Electronic, et al., "Inversion of Surface Nuclear Magnetic
Resonance by Regularization with Simulated Atomic Transition Method," TELKOMNIKA
Indonesian Journal of Electrical Engineering, vol. 11, pp. 5055-5060, 2013.

[10] Z. Chen, H. Li, and M. Rangaswamy, "Conjugate gradient adaptive matched filter,"
Aerospace and Electronic Systems, IEEE Transactions on, vol. 51, pp. 178-191, 2015.

[11] S. Zhao, D. L. Jones, S. Khoo, and Z. Man, "Frequency-domain beamformers using
conjugate gradient techniques for speech enhancement," The Journal of the Acoustical
Society of America, vol. 136, pp. 1160-1175, 2014.

[12] J. R. Shewchuk, "An introduction to the conjugate gradient method without the agonizing
pain," ed: Carnegie-Mellon University. Department of Computer Science, 1994.

[13] G. Strang, Computational science and engineering vol. 1: Wellesley-Cambridge Press
Wellesley, 2007.

