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Abstract 
One of the great triumphs in the history of numerical methods was the discovery of the 

Conjugate Gradient (CG) algorithm. It could solve a symmetric positive-definite system of linear 
equations of dimension N in exactly N steps. As many practical problems at that time belonged 
to this category, CG algorithm became rapidly popular. It remains popular even today due to its 
immense computational power. But despite its amazing computational ability, mathematics of 
this algorithm is not easy to learn. Lengthy derivations, redundant notations, and over-emphasis 
on formal presentation make it much difficult for a beginner to master this algorithm. This paper 
aims to serve as a starting point for such readers. It provides a curt, easy-to-follow but 
minimalist derivation of the algorithm by keeping the sufficient steps only, maintaining a uniform 
notation, and focusing entirely on the ease of reader. 
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1. Introduction 

Importance of the Conjugate Gradient (CG) algorithm can hardly be overemphasized. It 
is everywhere: in optimization theory [1, 2], in adaptive filtering [3, 4], in machine learning [5, 6], 
in image processing [7, 8] and in many others [9-11]. Though it is popular, the algorithm is not 
easy to learn. The chief difficulty lies with its derivation. Reasons for this difficulty are as 
numerous as the reasons for its popularity. Too many approaches, too much variety in notation 
and over emphasis on form and presentation are just to name a few. Books do not try to resolve 
these issues. Research papers avoid resolving these issues.  

There must be an excellent cause for them to do so but they all essentially miss one 
point: to convey this fascinating algorithm to the aspiring student in a quick, easy and 
understandable way. Tutorials have made an attempt in this regard. Though they are scarce as 
well, two of them are truly remarkable. First one tries to systematically address the above 
mentioned problems but ends up in a long 64 page document in an attempt to explain 
“everything” [12]. As a result, derivation is almost impossible to follow. Second one gives a quick 
explanation to the general philosophy of the algorithm but leaves the derivation entirely to the 
reader [13].   

This paper does not aim to do any of these. It neither attempts to explain the philosophy 
of algorithm nor “everything” of the algorithm. It will present a quick, easy, and understandable 
proof of the most difficult part of the algorithm: its mathematical derivation. By following this 
derivation, readers will acquire at least four benefits. Firstly, they will understand the derivation 
with minimum background knowledge. Only linear algebra will be required. Secondly, they will 
grasp it in minimum amount of time. Derivation presented is as short as possible. Thirdly, they 
will learn it with minimum effort. Onus of making things understandable is on author. Finally, 
once the derivation is finished, they will be able to implement it in a programming language of 
their choice. The results will be presented in an easy to program manner. 
 
2. System Model 

Consider following system of linear equations. 

 𝐴𝑥 = 𝑏 (1) 
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𝐴 is a symmetric 𝑛 × 𝑛 matrix such that 𝐴𝑇 = 𝐴. 𝑥 and 𝑏 are 𝑛 × 1 vectors. We attempt to solve 
this system iteratively. 

 𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑑𝑖 (2) 

𝑥𝑖 is the estimate computed in the 𝑖-th iteration. 𝑑𝑖 is the correction term required in the 𝑖-th 
iteration. 𝛼 is the step-size.  

 
3. Computation of Residues 

Subtracting the actual solution 𝑥 from both sides of Eq. (1), 

 𝑥𝑖+1 − 𝑥 = 𝑥𝑖 − 𝑥 + 𝛼𝑑𝑖  

This results in, 

 𝑒𝑖+1 = 𝑒𝑖 + 𝛼𝑑𝑖 (3) 

𝑒𝑖 is the error in the 𝑖-th iteration. At the startup, we make a guess for 𝑥𝑖. Since our guess for 𝑥𝑖 
is purely arbitrary, there will be a residue 𝑟𝑖.  

 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 = 𝐴𝑥 − 𝐴𝑥𝑖 = 𝐴(𝑥 − 𝑥𝑖) = −𝐴𝑒𝑖  

Or, 

 𝑟𝑖 = −𝐴𝑒𝑖 (4) 

Multiplying both sides of Eq. (3) with 𝐴, 

 𝐴𝑒𝑖+1 = 𝐴𝑒𝑖 + 𝛼𝐴𝑑𝑖 (5) 

Replacing the result of Eq. (4) in Eq. (5), 

 −𝑟𝑖+1 = −𝑟𝑖 + 𝛼𝐴𝑑𝑖 (6) 

Or, 

 𝑟𝑖+1 = 𝑟𝑖 − 𝛼𝐴𝑑𝑖 (7) 

 
3. First Major Assumption 

Now we multiply both sides of Eq. (7) with 𝑟𝑖𝑇.  

 𝑟𝑖𝑇𝑟𝑖+1 = 𝑟𝑖𝑇𝑟𝑖 − 𝛼𝑟𝑖𝑇𝐴𝑑𝑖 (8) 

We choose value for 𝛼 for which, 

 𝑟𝑖𝑇𝑟𝑖+1 = 0 (9) 

This is the first crucial decision we make for CG algorithm. So Eq. (8) becomes, 

 0 = 𝑟𝑖𝑇𝑟𝑖 − 𝛼𝑟𝑖𝑇𝐴𝑑𝑖 (10) 

Finally for 𝛼𝑖, 

 
𝛼𝑖 =

𝑟𝑖𝑇𝑟𝑖
𝑟𝑖𝑇𝐴𝑑𝑖

 
(11) 

Hence, Eqs. (2) and (7) become, 

 𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖𝑑𝑖 (12) 

And, 

 𝑟𝑖+1 = 𝑟𝑖 − 𝛼𝑖𝐴𝑑𝑖 (13) 

 
4. Second Major Assumption 

So far we have Eqs. (7) and (11) for the computation of 𝑟𝑖+1and the 𝑑𝑖 respectively. Now 
we want to derive the 𝑑𝑖+1 from 𝑟𝑖+1 and 𝑑𝑖. Let us define the following relationship between all 
three. 
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 𝑑𝑖+1 = 𝑟𝑖+1 + 𝛽𝑖+1𝑑𝑖 (14) 

Note that this relationship is quite similar to the pattern in Eq. (12). Now, we multiply both sides 
of Eq. (14) with 𝐴. 

 𝐴𝑑𝑖+1 = 𝐴𝑟𝑖+1 + 𝛽𝑖+1𝐴𝑑𝑖 (15) 

Further multiplying both sides of Eq. (15) with 𝑑𝑖
𝑇, 

 𝑑𝑖
𝑇𝐴𝑑𝑖+1 = 𝑑𝑖

𝑇𝐴𝑟𝑖+1 + 𝛽𝑖+1𝑑𝑖
𝑇𝐴𝑑𝑖 (16) 

We want to choose 𝛽𝑖+1 for which, 

 𝑑𝑖
𝑇𝐴𝑑𝑖+1 = 0 (17) 

This is the second crucial decision for the CG algorithm. So Eq. (16) becomes, 

0 = 𝑑𝑖
𝑇𝐴𝑟𝑖+1 + 𝛽𝑖+1𝑑𝑖

𝑇𝐴𝑑𝑖 

Finally for 𝛽𝑖+1, 

 
𝛽𝑖+1 = −

𝑑𝑖
𝑇𝐴𝑟𝑖+1
𝑑𝑖

𝑇𝐴𝑑𝑖
 

(18) 

 
5. Making the Algorithm Recursive 

It will be much more efficient if we can compute 𝛽𝑖+1 from 𝛼𝑖 because we already have 
𝛼𝑖 from Eq. (11). For this purpose, we will exploit 𝑑𝑖

𝑇𝐴𝑟𝑖+1 term in Eq. (18). This can be done by 
recalling Eq. (7) and multiplying it with 𝑟𝑖+1𝑇 on both sides. 

 𝑟𝑖+1𝑇𝑟𝑖+1 = 𝑟𝑖+1𝑇𝑟𝑖 − 𝛼𝑖𝑟𝑖+1𝑇𝐴𝑑𝑖 (19) 

Now we see 𝑑𝑖
𝑇𝐴𝑟𝑖+1 term on the right hand side of Eq. (19). Being a scalar term, 

 𝑑𝑖
𝑇𝐴𝑟𝑖+1 = 𝑟𝑖+1𝑇𝐴𝑑𝑖 (20) 

Substituting our assumption from Eq. (9) in Eq. (19), 

 𝑟𝑖+1𝑇𝑟𝑖+1 = 0 − 𝛼𝑖𝑟𝑖+1𝑇𝐴𝑑𝑖 (21) 

Or, 

 𝑟𝑖+1𝑇𝐴𝑑𝑖 = −
1
𝛼𝑖
𝑟𝑖+1𝑇𝑟𝑖+1 

(22) 

Using Eq. (20) and remembering that 𝐴 is symmetric, 

 𝑑𝑖
𝑇𝐴𝑟𝑖+1 = −

1
𝛼𝑖
𝑟𝑖+1𝑇𝑟𝑖+1 

(23) 

Substituting the result of Eq. (23) in (18), 

 
𝛽𝑖+1 = −

𝑑𝑖
𝑇𝐴𝑟𝑖+1
𝑑𝑖

𝑇𝐴𝑑𝑖
=

1
𝛼𝑖
𝑟𝑖+1𝑇𝑟𝑖+1
𝑑𝑖

𝑇𝐴𝑑𝑖
 

(24) 

Finally, 𝛽𝑖+1 in terms of 𝛼𝑖,  

 
𝛽𝑖+1 =

1
𝛼𝑖
𝑟𝑖+1𝑇𝑟𝑖+1
𝑑𝑖

𝑇𝐴𝑑𝑖
 

(25) 

Now we have Eq. (25) to compute 𝛽𝑖+1 from 𝛼𝑖. Only other term required to compute Eq. (25) is 
𝑑𝑖. But we already have 𝑟𝑖 and 𝑟𝑖+1from Eq. (13). If we can compute 𝛽𝑖+1 from 𝑟’s only, it will not 
only make Eq. (25) more efficient but also recursive. For this purpose, only the dominator term 
in Eq. (17) has to be expressed in terms of 𝑟’s for this purpose. So we recall (14) and substitute 
𝑖 in place of 𝑖 + 1 in it. 

 𝑑𝑖 = 𝑟𝑖 + 𝛽𝑖𝑑𝑖−1 (26) 
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Multiplying both sides of (26) first with 𝐴, 

 𝐴𝑑𝑖 = 𝐴𝑟𝑖 + 𝛽𝑖𝐴𝑑𝑖−1 (27) 

And then multiplying with 𝑑𝑖
𝑇, 

 𝑑𝑖
𝑇𝐴𝑑𝑖 = 𝑑𝑖

𝑇𝐴𝑟𝑖 + 𝛽𝑖𝑑𝑖
𝑇𝐴𝑑𝑖−1 (28) 

Employing the assumption of Eq. (17) and re-arranging, 

 𝑑𝑖
𝑇𝐴𝑑𝑖 = 𝑑𝑖

𝑇𝐴𝑟𝑖 + 0 (29) 

Or, 

 𝑟𝑖𝑇𝐴𝑑𝑖 = 𝑑𝑖
𝑇𝐴𝑑𝑖 (30) 

Substituting Eq. (30) in Eq. (11), 

 
𝛼𝑖 =

𝑟𝑖𝑇𝑟𝑖
𝑟𝑖𝑇𝐴𝑑𝑖

=
𝑟𝑖𝑇𝑟𝑖
𝑑𝑖

𝑇𝐴𝑑𝑖
 

(31) 

Or, 

 
𝛼𝑖 =

𝑟𝑖𝑇𝑟𝑖
𝑑𝑖

𝑇𝐴𝑑𝑖
 

(32) 

Re-arranging Eq. (32), 

 𝛼𝑖𝑑𝑖
𝑇𝐴𝑑𝑖 = 𝑟𝑖𝑇𝑟𝑖 (33) 

Eq. (33) fully expresses the denominator of Eq. (25) in terms of 𝑟’s. Substituting Eq. (33) in Eq. 
(25), 

 
𝛽𝑖+1 =

1
𝛼𝑖
𝑟𝑖+1𝑇𝑟𝑖+1
𝑑𝑖

𝑇𝐴𝑑𝑖
=
𝑟𝑖+1𝑇𝑟𝑖+1
𝑟𝑖𝑇𝑟𝑖

 
(34) 

Finally, 

 
𝛽𝑖+1 =

𝑟𝑖+1𝑇𝑟𝑖+1
𝑟𝑖𝑇𝑟𝑖

 
(35) 

Eq. (35) expresses 𝛽𝑖+1 in terms of 𝑟’s only and this completes our derivation of CG algorithm.  
 
6. The Algorithm Itself 

Now we recap the results and list them in the form of an algorithm. 
1. Make an initial guess 𝑥0.  
2. Take 𝑑0 = 𝑟0 = 𝑏 − 𝐴𝑥0. 
3. Compute 𝛼𝑖 using Eq. (32). 

 
𝛼𝑖 =

𝑟𝑖𝑇𝑟𝑖
𝑑𝑖

𝑇𝐴𝑑𝑖
 

 

4. Update 𝑥 using Eq. (12). 

 𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖𝑑𝑖  

5. Update 𝑟 using Eq. (7). 

 𝑟𝑖+1 = 𝑟𝑖 − 𝛼𝑖𝐴𝑑𝑖  

6. Determine 𝛽  using Eq. (35). 

 
𝛽𝑖+1 =

𝑟𝑖+1𝑇𝑟𝑖+1
𝑟𝑖𝑇𝑟𝑖

 
 

7. Update 𝑑 using Eq. (14). 

 𝑑𝑖+1 = 𝑟𝑖+1 + 𝛽𝑖+1𝑑𝑖  
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7. Conclusion 
An easy, step-by-step but minimalist derivation of the Conjugate Gradient algorithm is 

provided in this paper. By following this derivation, the readers, regardless of their background, 
will not only master this fascinating algorithm in no time but will also be able to program it for 
their own purposes which will provide them a better understanding of their own problems on 
which they are working.  
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