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Abstract. This paper presents an application of linear predictive coding (LPC)
excitation wavelet models for low bit- rate, high-quality speech compression.
The compression scheme exploits the model properties, especially magnitude
dependent sensitivity, scale dependent sensitivity, and limited frame length. We
use the wavelet model in an open-loop dither based codebook scheme. With this
approach, the compression yields a signal-to-noise ratio of at least 11 dB at rates
of 5 kbit/s and.
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1 Introduction

Speech signal compression is a necessity in speech communication either
because of an operational requirement based on a design constraint, or because
of the desire to utilize existing resources efficiently [1]. In a pulse code
modulation (PCM) form, real-time telephone-quality speech requires a rate of
64 kbit/s, which is too high for high frequency (HF) radio or practical network
channels. At this rate, speech as short as one minute would also occupy large
storage space (480 kbytes).

Techniques based on a simple speech production model have successfully
reduced the bit rates to below 8 kbits/s, which can be accommodated by the
narrow-band channels. In this model, speech is the result of applying an
excitation to a vocal tract. This model becomes practical through techniques
such as linear predictive coding (LPC). Here, the vocal tract becomes an
adaptive filter H(z) called LPC filter. In this case, the excitation is called LPC
excitation. Thus, by efficiently representing both LPC filter and excitation, one
can have speech compression. For example, U.S. Federal Standard (FS) 1016
code-excited linear predictive (CELP) and FS-1015 LPC-10e coders efficiently
compress the filter parameters and excitation down to 4.8 and 2.4 kbit/s,
respectively [2].
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LPC excitation models play a critical role to obtain high speech quality at low
bit- rates. At the present time, advanced techniques such as line-spectrum pair
(LSP) can successfully code the filter parameters at as low as 0.75 - 1 kbit/s,
with average spectral distortion less than 1 dB [3-4]. However, that is not the
case for the LPC excitation. As it is, it would require a 64 kbit/s rate. There are
different techniques to code the excitation based on different models, with a
trade off between the resulting quality and the bit rate. One very efficient
model used in the LPC-10e consists of a pitch impulse generator, a random
impulse generator, a gain controller, and a voiced/unvoiced (V/UV) switch,
resulting in a machine-quality speech. The CELP uses a stochastic codebook
and an adaptive codebook, resulting in good speech-quality [S]. Another model
uses scalar quantization or centre-clipping in conjunction with a pitch filter, as
in adaptive differential PCM (ADPCM). This technique results in high speech
quality at bit rates of 16 to 32 kbit/s.

The linear combination of wavelets is an attractive model of LPC excitation for
speech compression [6-7]. Such a wavelet model of LPC excitation has been
shown to have asymmetrical and nonuniform properties that are attractive for
speech compression, namely magnitude dependent sensitivity, scale dependent
sensitivity, and limited frame length. This paper proposes new speech
compression schemes using that model. The schemes exploit those coefficients’
asymmetrical properties. Our specific contributions are (1) an ideal scheme
through the use of close-loop codebook searching and perceptually weighted
measure, as well as (2) a practical scheme through whitening the effect of the
quantization noise. Our experiment shows that even in a simple straight-forward
implementation, the model indicates promising capability by having SNR 11.03
and 15.33 dB at 5 and 5.5 kbit/s, respectively.

2 The Wavelet Model of LPC Excitation

In this section, we review the wavelet model of LPC excitation as well as its
properties.

2.1 LPC excitation

We can use a segment of speech signal s[n] to obtain LPC excitation #[n]. Let an
LPC filter H(z) be [8].
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In the z-domain, the speech segment § (z), LPC excitation T(z) , and the LPC
filter H(z) are related by

S(z)=H()T(2) 2)

A similar relationship can be defined in vector notations. Let the segment of
speech be s, which is a vector whose elements are s[0], s[1], ..., s[N-1]. A
linear prediction procedure [8] can obtain g; in Eq. (1) from such s. Let &; be
the impulse responses of H(z). We can the represent H(z) in an NxN lower-
triangular matrix H [9]:

h, O 0
H = 1 0 3)
hN—] thz o ho

We can now represent the LPC excitation with a vector t, whose elements are
t[0], #[1], ..., t{N—1], in which s = H t.

However H(z) is an all-pole filter, containing memory. Hence one s[n] is
affected by all #[m], with m < n. Thus, there is an additive contribution of all
t[m] from the previous segments to the current s, denoted as a vector u. Taking
this into consideration, Eq. (2) becomes

t=H'(s—u) 4)

In paractive, this t should be modelled and compressed without any
consideration of u, since a speech production filter in Eq. (2) automatically
generates u.

2.2 The Wavelet Model

The LPC excitation can be seen as a linear-combination of wavelets. Consider a
set of signals which are members of R", grouped into two subsets {(// ok [n]} and

{¢ 7.k [n]} Here, J is any integer between 1 and log,N. (In this work, we set J to

(log,N)—1). Index j is called scale, ranging from 1, 2, ..., to J, while kis O, 1, ...,
to (27N)-1. Signals in both subsets are called wavelet and scaling signals,
respectively. Then, there are real numbers c;, and d,,, called wavelet coefficients
and scaling coefficients [10] defined as

N-1 N-1

cik = ilnlyjiln] and d; o = > ilnlpy i [n] o)

n=0 n=0



4 Armein Z.R. Langi

With these coefficients, we can express t as a linear combination of wavelets as
follows.

J 27IN-1 27IN-1

tn]=>" Y ciwwielnl+ D dyidsln] (6)
=1 k=0 k=0

Egs. (5) and (6) also represent forward and inverse DWT of t, respectively.

2.3  Properties

Other work has shown that the wavelet coefficients have attractive properties:

1. The high-magnitude coefficients are more important than the low-
magnitude ones, thus we can coarsely quantize the low-magnitude
coefficients. Furthermore, there are more low-magnitude coefficients
than the high-magnitude ones, making the bit-rate even lower.

2. The coefficients in a certain scale are more important than the
coefficients in the other scales, thus we can coarsely quantize the
coefficients in the other scales. Furthermore, the number of important
coefficients is less than that of the other coefficients, making it
attractive for lossy compression.

3. What is the best length of frame (N) for t to use? The frame length
must be limited to reduce coding delay and system complexity. In
discrete Fourier transform (DFT), the answer to this important question
determines the uniform sampling resolution in frequency domain. The
longer the frame is, the finer the frequency resolution. However, this is
not the case in our model. The optimal N is among 32, 64, and 128
points.

3 Proposed Compression Schemes

The model can then be used to build compression schemes. The key is to
compress the excitation, which is a collection of wavelet coefficients.

3.1 Compressing the Excitation

Before we derive the descriptions for compression, we simplify the notation by
defining vectors v; as
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ink '2071’...,2_‘,1\/_1
v; [n] = ¢],l [n] . iJ ° (7)
Vinkont i=27'N1+27 N N -1
where
ii)= —int(Ing(%D; k(i)=i—2" /DN ®

Notice that the function int(*) returns the maximum integer value that does not
exceed the argument. Consequently, we can define ¢ which satisfies both Eq.

(4) and Eq. (6), by assigning ordered values of {c;;, d;;} as the elements of c,.

Clearly, the order must follow that of the scaling and wavelet functions in the v;
above. Thus, we have Eq. (6) to be

t[n]zjgcivi ] ©)

Here, the DWT becomes a mapping 3: (t - c) , and its inverse 37 1is Eq. (9).

To compress t, we usually must approximate the set of coefficients ¢; with ¢;
which uses fewer bits, shown in Figure 1. First the encoder converts the LPC
excitation into wavelet coefficients c¢;. It then quantizes ¢; into ¢; and

compress it. With this approach, we can have an efficient representation of the
excitation.

LPC Wavelet Compressed
Excitation Coefficients Excitation
WAVELET COEFFICIENT
- .| QUANTIZATION/ |+—»
TRANSFORM ENCODING

Figure 1 Wavelet encoder.

Figure 2 shows the use of this encoder in a speech compression. The encoder
performs LPC analysis on the original speech, resulting in LPC parameters. In
inverse LPC filter use the LPC parameters to generate LPC excitation. Wavelet
encoder in Figure 1 then produced compressed excitation. Both LPC parameters
and compressed excitation are transmitted to a speech decompression.
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LPC
> ANALYSIS
LPC
Parameters
Y
INVERSE WAVELET
LPC FILTER ENCODER [ ™
Original LPC Compressed
Speech Excitation Excitation

Figure 2 Conceptual speech compressor (analyzer).

In this approach, a speech decompressor would have a scheme as in Figure3. It
contains a wavelet decoder. A wavelet decoder first decodes the compressed
excitation into the wavelet coefficients. It then inverse transforms the
coefficients, resulting in LPC excitation. An LPC filter uses transmitted LPC
coefficients to produce reconstructed speech from LPC excitation.

Compressed Wavelet LPC Reconstructed
Excitation Coefficients Excitation Speech
COEFFICIENT WX\EELSEET LPC
™| DECODING >
TRANSFORM FILTER
WAVELET DECODER
LPC Coefficients

Figure 3 Speech decompressor (synthesizer).

However, this approximation introduces error (distortion) that should be
minimized. Notice that in the wavelet decoder, the coefficient set results in

excitation 7 [n], which would produce §[n] instead of s[n] in Eq. (2). Since the

distortion occurs at the excitation, the LPC filter will enhanced the error
according to speech magnitudes. In other words, the distortion correlates with
the speech. This results in disturbing and unpleasant speech distortion.

To measure the distortion, we can use a Euclidean error measure with a
perceptual weighting filter W(z) as used in [5]. The W(z) enhances the Euclidean
measure to exploit the masking property in human perception. With the
weighting filter is represented by it impulse response matrix W, the error
measure becomes:
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2
N-1{ N-1

=201 2owi i Gslil-305]) (10)

i=0 | j=0

d(s,§)= ||W(s - 5)

We can reformulate the error measure in Eq. (13) in terms of ¢, as also derived
in [11].

d(5,8)=[W(s = 3)| = [wr (e = )] = wris ™ (c - ) (1)

If O be an NxN matrix whose i-th column is v;, we immediately have Eq. (9) to
be

t=Qc (12)
We can now simplify Eq. (10) by first defining 7Tc] as a mapping of ¢ as

Tle]=WHQ¢ (13)
and then rewrite Eq. (10) as

d(s,§)=||T[c—5]| (14)

Since TT] is linear, the upper-bound of the error is

d(s.5)<[le - s

(The norm definition of Eq (10) must be one that is compatible with Euclidean
norm of vectors). Clearly we must minimize ||c - 5” so that we minimize the
upper-bound. However, this rather simple minimization is not sufficient,
because T changes with s. There are cases where minimizing ||c - é|| does not
minimize Eq. (14), because ¢ — ¢ is not generally an eigenvector of 7. Thus,
we must focus on minimizing Eq. (14) instead of minimizing ||c - 5” alone.

Although we can use the scheme in Figure 6, the distortion correlates to speech.
In practice we can improve the quality using two options of quantizing c¢. First
option is a close-loop searching through a set of codebooks. Second option is an
open-loop scheme through noise whitening.

3.2  An Ideal Closed-Loop Scheme

Although the quantization is performed for ¢, this scheme ensures the
minimization of d(s,§) instead of d(c,é) through a closed loop approach. The
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scheme uses a set of codebooks to store a limited set of ¢ in the place of
coefficient decoding (see Figure 7). However, the analyzer becomes a scheme
in Figure 4. Here, the compressed excitation is search from the codebooks
through the close-loop trials. This closed-loop search uses minimum d(s,ﬁ) as

its criterion, ensuring its closeness.

However such quality comes with the expense of very high computing
requirements. Searching the codebook through close-loop trials involves inverse
transform, LPC filtering as well distance measures for each trial. As a result,
such an ideal solution is not practical.

Original
Speech LPC
ANALYSIS
Parameters
WAVELET Yy +
DECODER » LPC FILTER |——( )
A c LPC
xeltation Compressed y Compre:ssed
Excitation ERROR Excitation
MINIMIZATION |~ —

Figure 4 A closed-loop analyzer.

3.3 A Practical Open-Loop Scheme

Alternatively we should look at an open-loop approach but still maintains
uncorrelated distortion. The second scheme rearranges the analyzer in Figure 2
to obtain white noise effect (instead of correlated one) of the quantization noise
on the resulting speech. If the quantization noise has correlation with the
speech, the noise is more perceivable [5]. Although the quantization itself can
result in coefficient error that is uncorrelated with the coefficients, the speech
error still correlates with speech signal, because the filter H(z) shapes the error
spectrum.

To avoid it, we can rearrange the compressor as shown in Figure 5. Assume that
the wavelet encoder introduces e, an additive, uncorrelated error of coefficients
(¢ =c+e). One can easily show (see [8]) that with the redesigned analyzer, e
18 uncorrelated with s, and



Wavelet LPC Excitation Model for Speech Compression 9

S=s+e (16)
LPC
™1 ANALYSIS
> LPC
Y Parameters
s 1-H Y2
—
Original
Speech - WAVELET
- -
>\t)7 | DECODER
B Compressed
' WAVELET Excitation
ﬁ@}' ENCODER -

Figure 5 Speech compressor, with white-noise effect on the reconstructed
speech.

4 Experimental Results

There are many schemes that can be used to exploit the properties described
earlier. In principle, every scheme that uses LPC excitation can adopt the
model. Here, we simply use the scheme as in Figure 2 and Figure 3 for our
experiment, with slight modifications in the wavelet encoder/decoder. We
incorporated LSP coding for the LPC coefficients at a rate of 1 kbit/s.

The wavelet encoder consists of a normalizer, a wavelet transformer, and a
limited size codebook, as shown in Figure 6. The normalizer computes the gain
factor of the LPC excitation and extracts that from the LPC excitation, so that
the variance of the input of the wavelet transformer is one.

The transformer produces coefficients, and using a neural network, we can
obtain codewords from the codebooks that is the closest in Euclidean sense to
the set of coefficients. For each band, we use one codebook. Thus the
compressed speech contains the LSP parameters, gain factor, and indices to the
codebooks.
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VARIANCE
> ESTIMATION
Gain
y Code Book|
WAVELET CODEBOOK | Indices
pc ~| NORMALIZER |——»/ 12 ANSFORM [ ENCODING >
Excitation

Figure 6 Wavelet encoder.

To reconstruct the speech, we use the inverse process depicted in Figure 7. The
process passes the parameters to the codebooks, inverses transforms the
resulting codeword, scales the resulting excitation signal according to the gain
factor, and applies the resulting signal to an LPC filter.

Gain LPC Reconstructed
Code‘Book Excitation Speech
Indices |NVERSE

LPC
— | CODEBOOKS WAVELET  —»(5)— I
TRANSFORM FILTER

y

Figure 7 Speech decompressor.

We design a codebook for every scale using frequency-sensitive competitive
learning neural network [12]. Thus, for the frame length of 64, there should be
6 codebooks. However, based on the properties discussed above, we decided to
include scale 1, 2, 3, and 4 only, and omit scale 5 and the lowpass section.
Thus, we have designed four codebooks with two different sizes, 128 and 256,
and trained them using the coefficients obtained from training sentences.

By combining the codebooks, we can have different sets of codebooks with
different numbers of bits required between 28 to 32 bits per 64 samples. For
two sets with 28 and 32 bits per 64 samples, we need 3.5 and 4.0 kbit/s,
respectively. Assuming that the gain factor requires 4 bits per 64 samples, i.e.,
0.5 kbit/s, and LPC coefficients require 1 kbit/s, the two sets result in 5 and 5.5
kbit/s, respectively.

The performance test showed the promising capability of using wavelet to
model the LPC excitation. To measure the performance, we set daub4 as the
wavelet prototype [13] and male spoken speech signal containing 17 Harvard
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sentences [5] for training as well as test. We then perform speech compression
and decompression in two different sets of codebooks. The codebooks have a
size of 128 and 256, respectively. The neural network was able to distribute the
codewords among the training set. For the given codebook sizes, the SNR of
the coefficients were low, as depicted in Table 1. Those are SNR for wavelet
coefficients related to excitations.

Table 1 SNR of wavelet coefficients for each scale codebook.

Scale code book SNR for size 128 (dB) SNR for size 256 (dB)
1 4.37 8.92
2 6.25 10.77
3 8.97 14.92
4 144 21.8

However, when the excitations are applied to LPC filter, the speech SNR
improves significantly. Thank to the power of the model, the speech SNR
measurement with 128 and 256 sizes of codebooks results in 11.03 and 15.33
dB, respectively, which are quite high for their bit rates. Although these results
are preliminary due to the limited number of test sentences, they show the
promising potential of the wavelet model.

Table 2 SNR of the synthesized speech.

Code book size Bit rate (kbit/s) SNR (dB)
128 5 11.03

256 5.5 15.33

5 Conclusions

The linear combination of wavelets is an attractive model of LPC excitation for
speech compression. We have applied a wavelet model of LPC excitation for
speech compression. The scheme exploits coefficients’ asymmetrical properties:
magnitude dependent sensitivity, scale dependent sensitivity, and limited frame
length. We have described an ideal scheme through the use of close-loop
codebook searching and perceptually weighted measure, as well as a practical
scheme through whitening the effect of the quantization noise. Our experiment
shows that even in a simple straight-forward scheme, the model indicates
promising capability by having SNR 11.03 and 15.33 dB at 5 and 5.5 kbit/s,
respectively.
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