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Abstract  - This paper presents Reliability Based Design Optimization (RBDO) model to deal with uncertainties involved in concrete mix 

design process. The optimization problem is formulated in such a way that probabilistic concrete mix input parameters showing random 

characteristics are determined by minimizing the cost of concrete subjected to concrete compressive strength constraint for a given target 

reliability.  Linear and quadratic models based on Ordinary Least Square Regression (OLSR), Traditional Ridge Regression (TRR) and 

Generalized Ridge Regression (GRR) techniques have been explored to select the best model to explicitly represent compressive strength of 

concrete. The RBDO model is solved by Sequential Optimization and Reliability Assessment (SORA) method using fully quadratic GRR model. 

Optimization results for a wide range of target compressive strength and reliability levels of 0.90, 0.95 and 0.99 have been reported. Also, 

safety factor based Deterministic Design Optimization (DDO) designs for each case are obtained. It has been observed that deterministic 

optimal designs are cost effective but proposed RBDO model gives improved design performance.  
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I. INTRODUCTION 

Sustainable development while conserving the 
environment with an objective of welfare and safety of the 
people has been a subject of increasing concern during last 
few decades. At the same time, optimal allocation of available 
natural and financial resources is considered very important. 
Therefore methods of risk and reliability analysis developed 
during the last few decades are becoming more and more 
important as decision support tools in civil engineering 
applications (Sorenson, 2004).  

Concrete is the most widely used man made construction 
material. Every year billion tons of cement is converted into 
concrete world-wide. Concrete is a mixture of cement, water, 
fine aggregate, coarse aggregate and admixtures. A good 
amount of work has been done by researchers to optimally 
allocate the ingredients proportions for concrete mixes while 
satisfying specific requirements related to compressive 
strength, slump, tensile strength etc. Yeh (1999, 2003, 2007, 
and 2009) determined optimal concrete mix compositions 
with lowest cost and required performance using nonlinear 
programming technique. Karihaloo and Kornbak (2001) 
optimized tensile strength and ductility, simultaneously, for a 
given compressive strength in the design of fiber reinforced 
concrete mixes. Lim et al. (2004) used genetic algorithm to 
find appropriate concrete mix proportions for high 

performance concrete under specified requirements. Optimal 
concrete mix proportions for maximum compressive strength 
of concrete using Taguchi method and genetic algorithm were 
determined by Őzbay et al. (2006). Jayaram et al. (2009) 
proposed elitist genetic algorithm models for the optimization 
of high volume fly ash concrete. Lee et al. (2009) used 
convex hull approach to define effective region constrained 
by the domain defined by limited data base and then, genetic 
algorithm was used to find optimal concrete mix parameters 
in the effective region. Baykasoğlu et al. (2009) solved a 
multi-objective optimization model for high strength concrete 
parameters using genetic algorithm with prediction models 
based on regression analysis and Gene Expression 
Programming (GEP). 

The formulation of a structural optimization problem 
that ignores the scattering of various design parameters is 
termed as Deterministic Design Optimization (DDO). A 
numerically feasible optimum design, according to the 
deterministic formulation, once applied in a real physical 
system, may lose its feasibility due to the unavoidable 
dispersion on the values of structural parameters (material 
properties, dimensions, loads, etc.). Performance of the 
applied design may be far worse than expected. As such, in 
real world applications, if uncertainties are not taken into 
account, the significance of the optimum solutions would be 
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limited (Lagaros et al., 2008). In DDO, the uncertainties are 
usually accounted for by the introduction of safety factors as 
described by the design codes of practice IS 456 (2000). As a 
matter of fact, these safety factors are calibrated for average 
design situations and cannot ensure consistent reliability 
levels for specific design conditions. In this sense, the 
Reliability Based Design Optimization (RBDO) becomes a 
very powerful tool for robust and cost-effective designs. 
Contrary to traditional DDO, RBDO process modulates the 
safety margins within the optimization process taking into 
account uncertainty effect for each variable. In this sense, the 
safety factors are optimally defined within the system, 
compared to deterministic design where the safety factors are 
set before undergoing the optimization process. Thus, 
optimizing concrete mix proportions based on reliability is of 
great practical importance in comparison to deterministic 
optimization (Chateauneuf, 2008). 

Despite the evident advantages of RBDO over 
deterministic design procedures, its application to engineering 
problems can be quite challenging due to high numerical cost 
involved in its solution (Valdebenito & Schuëller, 2010). 
Considering these issues, several tools are developed by 
researchers to solve RBDO problems efficiently problems 
(Thanedar & Kodiyalam, 1992; Enevoldsen & Sorensen, 1993; 
Wang & Grandhi, 1995; Luo & Grandhi, 1995; Chen et al., 
1997; Royset et al., 2001; Aggarwal, 2004; Du & Chen, 2004; 
Zou & Mahadevan, 2006). SORA method developed by Du 
and Chen (2004) is an efficient decoupling approach to solve 
RBDO problem. It employs a single loop strategy with a 
serial of cycles of deterministic optimization and reliability 
assessment. In the present work, SORA method is used to 
achieve reliable optimal concrete mixture proportions. 

In optimization process, simplified mathematical models 
are needed that could provide efficient representation of 
various concrete mix parameters. Cost of concrete is a linear 
function of its constituents but compressive strength of 
concrete might be a nonlinear function of its constituents as it 
is known only through its discrete outcomes. So, form and 
degree of the model for compressive strength is not known. 
The success of prediction model depends both on proper 
forms of the model and on the proper values of the parameters 
of the model. The parameters are usually estimated from the 
experimental data. The purpose of the parameter estimation in 
these cases is to not just to fit experimental data, but to find 
parameters as close to the true ones as possible. Scientists and 
engineers traditionally rely on different variants of the method 
of ordinary least square regression for estimating model 
parameters. This method leads to unbiased estimators. The 
unbiased property is meaningful only if the fitted model is the 
true model, and most often this may not be guaranteed and as 
such unbiased property should not be over emphasized (Ngo 
et al., 2004). Also, Hoerl and Kennard (1970) argued that in 
multiple linear regression, parameter estimates based on 
minimum residual sum of squares have a high probability of 
being far away from true parameter values, if prediction 
variables are not orthogonal. They proposed Ridge 
Regression (RR) technique that belongs to the class of biased 
estimators. This method leads to smaller values of Mean 
Square Error (��� ) function (which is the measure of 
goodness of estimators) for estimating parameters of linear 
models using non-orthogonal predictor variables. 

In the present work, linear, pure quadratic (without 
interaction terms) and full quadratic models for compressive 

strength of concrete are developed using Ordinary Least 
Square Regression (OLSR), Traditional Ridge Regression 
(TRR) and Generalized Ridge Regression (GRR) techniques. 
The performance of developed models is compared on the 
basis of prediction accuracy. The full quadratic GRR model 
that has best prediction power is used in RBDO model. The 
RBDO model formulated based on the selected models for 
cost and compressive strength of concrete is then solved using 
SORA method. RBDO results are obtained for a wide range 
of target compressive strength with target reliability levels of 
0.90, 0.95 and 0.99. Also, safety factor based DDO designs 
for each case are obtained to compare the performance of 
proposed RBDO model. 

II. EXPERIMENTAL DATASET 

The Compressive strength data explored in this study was 
generated in controlled laboratory conditions by Kumar (2002). 
The concrete mixes were proportioned using four basic 
ingredients, namely, water, cement, coarse aggregate and fine 
aggregate. The proportions of materials for concrete mixes 
were determined by DoE method of mix design (Gambhir, 
1995). Ordinary Portland cement of 43 grade having specific 
gravity of 3.14 was used. The 7 and 28 days compressive 
strength of cement was 35.6 ��� and 45.5 ���, respectively. 
The fine aggregate was river bed sand with a fineness modulus 
of 2.09 and specific gravity of 2.54. Three types of coarse 
aggregate viz., CA-I, CA-II and CA-III, were used in different 
proportions in order to increase the density of resulting mix. 
Table 1 contains the salient properties of these aggregates. The 
coarse aggregates were divided into three zones, namely, A, B 
and C, based on the percentage of different types of aggregates 
used. Table 2 summarizes details of these zones. Also, the 
water content variation for each zone of aggregate is shown in 
Table 2. A set of 49 concrete mixes was prepared by varying 
water-cement ratio, cement contents and aggregates fractions 
(Kumar, 2002). Water-cement content ratio was kept between 
0.42 and 0.55. Out of these 49 mixes, 18, 17 and 14 mixes 
were prepared using zone A, zone B and zone C of coarse 
aggregates, respectively. For each mix, 15 cubes of 150 mm 
size were cast and were tested at 28 days of curing period. 
Thus, a sufficiently large data bank was generated and the 
same has been used in the present work for analyzing 
compressive strength of concrete. Also, unit cost of each 
material is determined by taking into account the price rates in 
India. Based on the prices, cost of 1 �� of concrete is 
calculated for each mixture and is measured in Indian rupee 
(Rs.). 
 

Table 1.Properties of coarse aggregates 

Type of 
 aggregate 

Unit mass  
(compact) (
� ��⁄ ) 

Specific  
gravity 

Percentage  
absorption 

(%) 

CA-I 1.58 2.68 1.80 

CA-II 1.48 2.68 1.18 

CA-III 2.15 2.60 1.20 
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Table 2. Zones of aggregates 

Zone 

Percentage  
passing 20 ��  

sieve and 
retained on 

10 �� sieve 
(CA-I) 

Percentage 
passing 

10 �� sieve 
and retained 
on 4.75 �� 
sieve (CA-II) 

Percentage 
passing 

4.75 �� sieve 
and retained on 
2.36 �� sieve 

(CA-III) 

Water content 
requirement 

(
� ��⁄ ) 

A 67 33 - 180 – 210 

B 50 50 - 190 – 220 

C - 50 50 200 – 230 

 
 

III GENERALIZED RIDGE REGRESSION 
In matrix notation, the multiple linear regression model can 
be expressed as: 
                                  = �� + �                                                  (1) 
 
where   is a � × 1  vector for response variable, �  is a � × (� + 1) matrix. First column of � consists of ones and 
remaining �  columns are for explanatory variables or 
predictors, � is a (� + 1) × 1 vector for unknown regression 
coefficients and �  is a � × 1  vector of experimental errors 
with mean 0 and variance ��. OLSR estimators of regression 
coefficients are given as: 
                              �� = (�′�)���′                                           (2)  

 
A unique solution of Eq. (2) may exist even when the 

predictor variables are non orthogonal, i.e., the matrix �′� is 
ill conditioned. However, in such nearly singular cases, the 
solution is very unstable. Also, OLSR estimates have large 
variances in such cases (Rawling et al., 1998). This greatly 
affects the prediction accuracy of OLSR model. Prediction 
accuracy is an important aspect of model development when 
the model is to be used for further analysis. Ridge regression 
technique proposed by Hoerl and Kennard (1970) is a biased 
regression technique that shrinks regression coefficients and 
hence reduces the variance of the regression coefficients. This 
technique produces stable regression coefficients and 
improves the prediction accuracy of the model.  
Ridge regression estimates are given as: 
               ���� = (�′� + 
�)�� �′                                          (3) 

where 
 ≥ 0 is called the ridge parameter and � is the identity 
matrix of order (� + 1) × (� + 1) . Regression estimates 
given by Eq. (3) are termed as TRR estimates. Hoerl and 
Kennard (1970) also proposed an improvement on TRR in the 
form of GRR. GRR estimates of the regression coefficients 
are given as:                              ��#�� = (�′� + $)�� �′                           (4) 

 
where $  is a (� + 1) × (� + 1)  diagonal matrix. Diagonal 
entries of $ are called ridge parameters. GRR gives the user 

some flexibility regarding the shrinkage of each regression 
coefficient, as it may be desirable to treat the coefficients 
differently (Ryan, 1996). 

If all the ridge parameters are taken to be equal to 
, 
then ridge estimates obtained using Eq. (4) are same as TRR 
estimates. For $ = & , the ridge regression coefficients are 
identical to OLSR coefficients.  

It is worth mentioning here that ridge regression is a 
linear regression technique and exact form of relationship 
between compressive strength of concrete and its ingredients 
is still not known.  In the present work, first and second order 
approximation models for compressive strength of concrete 
have been developed. Cross validation criterion employed by 
Yan (2008) has been used to find optimal ridge parameters for 
TRR and GRR models that minimizes the mean square 
prediction error (���) of validation set given in Eq. (5). 

                          ��� = ('( − '*()′('( − '*() �+⁄                       (5) 

where '( denotes vector of dependent variable for validation 
set, '*( denotes predicted values of '( and �+ denotes number 
of observations in validation set. 
 

IV PREDICTION MODELS FOR COMPRESSIVE 
STRENGTH OF CONCRETE 

 
Factors influencing compressive strength of concrete for 
determining predictor variables 
 
Concrete mixes used in this study are composed of water (-), 
cement (.), fine aggregate (/�) and coarse aggregate (.�), all 
measured in 
�/�� and 28 days compressive strength (1228) 
is measured in ���. Basic descriptive of these parameters is 
given in Table 3. Two statistical analyses have been 
conducted to decide the predictor variables for compressive 
strength of concrete using correlation approach. In first 
analysis, 1228  has been considered with absolute content 
values of -, /�, .�, . and in second analysis, this strength is 
considered with ratio of water and cement contents (-/.), 
ratio of fine aggregate and cement contents (/�/.), ratio of 
coarse aggregate and cement contents (.�/. ) and cement 
content (.). The results of these analyses are given in Tables 4 
(a) and (b). These results suggest that potential predictors for 1228 are -/., /�/. , .�/. and .  as the numerical values of 
coefficient of correlations of these variables with 1228  is 
more than 0.500. 

 
Linear, pure quadratic and full quadratic models for 

estimating compressive strength of concrete are developed in 
the present work. Interaction terms -/. ∗ ., /�/. ∗ . and .�/. ∗ . are not considered in the development of full models 
since these terms will represent absolute values of water, fine 
aggregate and coarse aggregate contents, respectively.  
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Table 3.Descriptive statistics

Variable 
Minimum 
(
� ��⁄ ) 

Maximum 
(
� ��⁄ ) 

Mean 
(
� ��⁄ ) 

Standard 
deviation 
(
� ��⁄ ) 

Specific 
gravity 

- 180.00 230.00 202.44 12.69 1.00 

/� 416.93 642.18 535.64 57.29 2.54 

.� 798.48 1252.05 1064.85 133.42 2.65 

. 350.00 475.00 424.49 37.32 3.12 

1228 31.66 54.49 45.80 5.42 - 

 
 

Table 4(a). Correlation matrix for analysis 1 
 

Parameter - 
(
� ��⁄ ) 

/� 
(
� ��⁄ ) 

.� 
(
� ��⁄ ) 

. 
(
� ��⁄ ) 

1228 (���) 

w (
� ��⁄ ) 1.000 0.805 -0.305 0.541 0.000 

/�(
� ��⁄ )  1.000 0.102 0.026 -0.462 

.�(
� ��⁄ )   1.000 -0.375 -0.214 

c(
� ��⁄ )    1.000 0.821 

 
 

Table 4(b). Correlation matrix for analysis 2 
 

Parameter -/. /�/. .�/. 
. 

(
� ��⁄ ) 
1228 (���) -/. 1.000 0.960 0.517 -0.734 -0.968 

/�/.  1.000 0.546 -0.637 -0.900 

.�/.   1.000 -0.776 -0.581 

c(
� ��⁄ )    1.000 0.821 

 
 

Sample data analysis 
To analyze multicollinearity among the sample data, Ryan 
(1996) suggested to examine the correlations between the 
pairs of predictor variables and the Variance Inflation Factor 
(789) of predictor variables. A pair wise correlation matrix of 
predictor variables might be insufficient to identify 
collinearity problem because linear dependencies may exist 
among combinations of predictors. Hence, it is necessary to 
examine 789s also. Following Ryan (1996), the 789:  of ;+< 
predictor variable =: (say) has been considered as: 
 

                               789: = ���>?@                                                 (6) 

 
where B:� is the squared multiple correlation coefficient that 
results from regression of =: against all other predictors. It is 
clear that if =:  has a strong linear relationship with other 
predictor variables, B:� is close to 1 and 789 value tends to be 
very high.  
 
In the absence of linear relationship among predictor 
variables, B:� is zero and 789 equals 1. As a rule of thumb, 
multicollinearity is said to exist if 789 value for a predictor 
variable is more than 10.  

 

The pair wise correlation between the selected predictor 
variables listed in Table 4(b) shows that all the pair wise 
correlations are numerically greater than 0.500. Three pairs of 
variables have very high degree of correlation. The pair -/. 
and /�/. has highest correlation (0.960). The other two pairs 
with high correlation are that of .�/. and . (-0.776) and that 
of w/c and c (-0.734). These results indicate that the given 
data set suffers from multicollinearity. Also, it can be noted 
from the Table 5 that 789 values for -/. and /�/. exceed 10 
and thus provide an evidence for presence of multicollinearity. 
Further, in quadratic models, strong multicollinearity is 
present because of form of the models. 

 
Table 5.  789 values 

Parameter 789 value 

-/. 33.444 

/�/. 25.863 

.�/. 4.532 

. 7.877 
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Development of prediction models for compressive strength 
of concrete 
The total sample set consists of 49 concrete mix composition 
observations. Total sample set is randomly divided into 
training set of 33 observations and validation set of 16 
observations. In order to illustrate the performance of 
developed models, ���C for validation set is defined as: 
                               ���C = ���D$EF(G                                   (7) 
 
where ���D$EF(G  is the value of mean square error 
evaluated from Eq. (5) at optimal value of $  which is 
obtained using Differential Evolution (DE) algorithm. 
However, for OLSR models, $ = &. In order to obtain the 
optimal ridge parameters for TRR and GRR models, DE 
algorithm was employed using parameters IC = 50, JK = 0.9, 9 = 0.85  and �NOP = 500. Here, IC symbolizes the number 
of individuals in a population, JKQ [0, 1]  is the crossover 
probability, 9 Q [0, 2]  denotes the mutation probability, 
maximum number of generations are denoted by �NOP . 

DEMAT, a MATLAB program developed by Price et al. 
(2005) is used to carry out DE algorithm. 

For linear, pure quadratic and full quadratic TRR 
models, the optimal ridge parameters obtained by DE are 
0.000690, 1 and 0.021556, respectively. For linear GRR 
model, five diagonal elements of optimal diagonal matrix $ 
are 0, 0.008037, 1, 0.737931 and 1, respectively. For pure 
quadratic GRR model, nine diagonal elements of optimal 
diagonal matrix $ are 0.000374, 0.007582, 1, 1, 1, 1, 1, 0 and 
0.921217, respectively. For full quadratic GRR model, twelve 
diagonal elements of optimal diagonal matrix $ are 0.999999, 
1, 0, 1, 1, 1, 1, 1, 0.997760, 1, 0.002325 and 0, respectively. 
The regression coefficients of the developed models are 
summarized in Table 6. 

To demonstrate the performances of nine developed 
compressive strength models, the predicted compressive 
strength values for the validation set are plotted against the 
observed values for the validation set. The graphs obtained 
are shown in Fig. 1. The ���C  values of each of the nine 
developed models are listed in Table 7.  

 
 

Table 6.  Regression coefficients for developed models 

 

   Regression Coefficients  

 
Linear OLSR 

model 

Pure 

Quadratic 

OLSR 

model 

Full 

Quadratic 

OLSR 

model 

Linear TRR 

model 

Pure 

Quadratic 

TRR 

model 

Full 

Quadratic 

TRR 

model 

Linear 

GRR model 

Pure 

Quadratic 

GRR 

model 

Full 

Quadratic 

GRR model 

-/.  -189.13975 476.20913 561.35812 -103.55820 -0.76121 -5.36516 -80.14997 -52.69489 -0.110144 

/�/.  12.05470 -22.21296 -113.09515 -3.23475 -2.57674 -3.42644 -2.80901 -1.39377 -35.27014 

.�/.  -1.21449 13.08796 52.26107 0.67563 1.15347 11.46859 0.84905 0.59404 0.83211 

.  0.01453 -0.12024 -0.09109 0.04807 0.17823 0.19839 0.06636 0.40038 0.38787 

(-/.)�  - -650.43865 -677.48681 - -0.70444 -5.39211 - -0.38515 -0.11413 

(/�/.)�  - 10.18659 -66.87370 - -6.23284 -9.84671 - -3.53504 -0.39153 

(.�/.)�  - -2.78011 -2.62999 - 0.18649 -3.06588 - 0.20384 0.34431 

.�  - 0.00016 0.00014 - -0.00011 -0.00017 - -0.00039 -0.00041 

-/. ∗ /�/.  - - 356.09713 - - -9.12190 - - -0.20540 

-/. ∗ .�/.  - - -194.69196 - - -8.81293 - - -35.14388 

/�/. ∗ .�/.  - - 43.56722 - - 7.34365 - - 11.91443 

8�2UK.U�2  117.95049 -14.03388 -37.12946 77.31834 -0.12678 -0.27211 57.36012 -22.81334 -0.034569 
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Figure 1. Performances of nine compressive strength models 

Table 7. Mean square error for test sample data set 

Name of the model   ���C 
Linear OLSR model 1.78793 

Pure Quadratic OLSR model 3.05464 
Full Quadratic OLSR model 3.02470 

Linear TRR model 1.42587 
Pure Quadratic TRR model 1.52168 
Full Quadratic TRR model 1.80699 

Linear GRR model 1.02357 
Pure Quadratic GRR model 1.12640 
Full Quadratic GRR model 0.89794 

 
It can be seen from Fig. 1 that predicted values of GRR 

models distribute closer along the diagonal in comparison to 
OLSR and TRR models indicating that prediction power of 
these models is better than that of OLSR and TRR models. 
The above observation is also supported by the ���C values 
for each of the nine developed models given in Table 7.  It 
can be noted from the Table 7 that values of  ���C of GRR 
models are lesser than that for OLSR and TRR models and 
least value of ���C is for full quadratic GRR model. 

So, full quadratic GRR model for 28 days compressive 
strength of concrete is selected to be used in RBDO model for 
concrete mix parameters. 
 
Prediction models for cost of concrete  
In this study, no cost is associated with the water content and 
as such, cost of concrete is a linear function of fine aggregate 
content, coarse aggregate content and cement content. Firstly, 
it can be noted from Table 4 that pair wise correlations 
between predictor variables lie between 0.026 and 0.375 
numerically. Also, 789  values for predictor variables are 
1.016, 1.181 and 1.169. All the three 789 values are very near 
to one. The above observations suggest that multicollinearity 
does not affect the linear OLSR model for cost of concrete. 
So, linear OLSR model is developed for cost of concrete. 
Regression coefficients for linear OLSR model for cost of 
concrete are given in Table 8.  

Table 8. OLSR models for cost of concrete 

Parameter 
.V12 (B1. ) 

/� ((
� ��⁄ ) 0.629 

.� (
� ��⁄ ) 0.333 

. (
� ��⁄ ) 4.892 

8�2UK.U�2 236.461 

 
V. OPTIMIZATION MODEL FORMULATION 

Formulation of RBDO models for concrete mix parameters 

The RBDO model for concrete mix parameters is formulated 
with cost of concrete as objective function. This objective is 
minimized satisfying a ratio constraint, an absolute volume 
constraint, boundary constraints on input variables and a 
reliability constraint on 28 days compressive strength 
requirement. All the four input variables, namely, -, /�, .� 
and . have been considered as random variables that follow 
normal distribution with their respective means and standard 
deviations listed in Table 3. So, the design variables for the 
proposed multi-objective RBDO problem have been taken as 
the mean values of water content, fine aggregate content, 
coarse aggregate content and cement content denoted as WX, WYO, WZO  and  WZ, respectively. 
The RBDO problem formulated for concrete mix cost 
optimization is given below: 
 

[

                                           �;�;�;\U]^,]_`,]a`,]a    .V12 (/�, .�, .)       �bcdU.2 2V:                Prob(1228(-, /�, .�, .) ≥ /Z) ≥ B                                                            0.42 ≤ - .⁄ ≤  0.55
                        k- + /�GYO + .�GZO + .GZm ∗ 0.001 + 0.02 = 1.00 

                                                        -n ≤ - ≤ -o                                                         /�n ≤ /� ≤ /�o                                                         .�n ≤ .� ≤ .�o                                                           .n ≤ . ≤ .o pq
qq
qr
qq
qq
s

      (8) 

where, 

.V12  -  Cost of concrete 

1228  - 28 days compressive strength of concrete 

     /Z  -  Target 28 days compressive strength of concrete 

 Prob(. ) -  Probability of constraint satisfaction  

B    -  Target reliability level 

- .⁄      - Water-cement content ratio 
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tYO , tZO  and tZ – specific gravities of fine aggregate, coarse 
aggregate and cement content, respectively 
 -n, /�n, .�n,  and .n - Lower bounds for water, fine aggregate, 
coarse aggregate and cement content, respectively 

-o , /�o , .�o , and .o  - Upper bounds for water, fine 
aggregate, coarse aggregate and cement content, respectively 

 
     First constraint in (8) is the reliability constraint on 
compressive strength of concrete which ensures that 1228 is 
more than a specified value of compressive strength  /Z with 
reliability B . The second constraint is a deterministic 
constraint which shows that  - .⁄  ratio lies between 0.42 and 
0.55. Third constraint is a condition that ensures that total 
volume of components of concrete should be equal to 1 ��. 
In this constraint, 0.02 signifies the percentage of air content 
in concrete mix. Last four constraints are boundary 
constraints for design variables. The specific gravities, lower 
bounds and upper bounds for the design variables are given in 
Table 3.  

Using SORA method, RBDO problem formulated in Eq. 
(8) is replaced by deterministic optimization problem as given 
below: 
 

[

                                           �;�;�;\U]^,]_`,]a`,]a .V12 (/�, .�, .)
 �bcdU.2 2V:   1228DWX − 1X(u), WYO − 1YO(u), WZO − 1ZO(u), WZ − 1Z(u)G ≥ /Z 

  k- + /�GYO + .�GZO + .GZm ∗ 0.001 + 0.02 = 1.00 
   0.42 ≤ - .⁄ ≤  0.55  -n ≤ - ≤ -o     /�n ≤ /� ≤ /�o     .�n ≤ .� ≤ .�o  .n ≤ . ≤ .o pq

qq
qr
qq
qq
s

     (9) 

 
where 
  denotes the cycle number and 1X , 1YO , 1ZO , 1Z  are 
called shift factors defined as: 
 

      
vw
ww
wx1X(u)
1YO(u)
1ZO(u)
1Z(u)yz

zz
z{ =

|q
q}
qq
~                    &,                                       
 = 1

vw
ww
wx W�(u��) − -���(u��)
WYO(u��) − /����(u��)
WZO(u��) − .����(u��)
WZ(u��) − .���(u��) yz

zz
z{  ,                          
 ≥ 2               (10)[ 

 
Here, (-��� , /����, .���� , .���)  denotes the inverse 

Most Probable Point (MPP) of failure of compressive strength 
constraint corresponding to the given reliability level B  at 
deterministic optimal solution (WX , WYO, WZO, WZ) . The 
deterministic optimization problem in each cycle is updated 
on the basis of MPP information obtained from the previous 
cycle. The above procedure is repeated cycle by cycle until 
the .V12  function converges and the reliability requirement 
for compressive strength constraint is achieved. 

 
Formulation of Safety factor based DDO model 
In deterministic design procedures, safety margin is set before 
the optimization process. As per IS 10262 (2009), for a 
specified target compressive strength of /Z ���, the concrete 
mix should be proportioned for an average compressive 
strength not less than  (/Z + 1.651) ��� , so that, no more 

than 5% of the results will fall below /Z  ���. Here, s denotes 
the assumed standard deviation of the compressive strength 
data. So, in DDO problem based on safety factor approach, 
probabilistic constraint given in Eq. (8) is replaced by the 
deterministic constraint given below: 
                                     1228 ≥ /Z + 1.65s                           (11)   
 
Also, the design variables - , /� , .�  and .  are taken as 
deterministic design variables.  
 

VI. RESULTS AND DISCUSSIONS 
RBDO models based on full quadratic GRR model are solved 
by SORA method. The influence of reliability level on 
optimization results is also investigated in the present study. 
The RBDO problem formulated in preceding section is solved 
for three target reliability levels of 0.90, 0.95 and 0.99. The 
optimal mix proportions obtained are presented in Table 9. 
For finding optimal proportions of concrete mix, the 
minimum target compressive strength is taken as 27 ��� and 
is increased in steps of 3 ���. The results are reported up to 
the maximum target compressive strength for which SORA 
optimizer converged for a given reliability.  

Safety factor based DDO model is solved using 
sequential quadratic programming method. As per IS 10262 
(2009), assumed standard deviations for different grades of 
concrete are listed in Table 10. It can be noted from Table 10 
that the value of s is 4.0 ��� for target compressive strength 
of 27 ��� and this is 5 ��� for target compressive strength ≥ 30 ���. As such, the safety margin is taken 6.60 ��� for 
target compressive strength of 27 ��� and 8.25 ��� in all 
the remaining cases. 

The results of safety factor based deterministic design 
optimization are summarized in Table 11. Reliability analysis 
using mean value approximation method is carried out at 
DDO optimal designs and computed reliabilities are also 
reported in Table 11. Fig. 2 shows the variation of optimal 
cost with target compressive strength for different reliability 
levels and for safety factor based DDO approach. 
 
Effect of reliability level on optimal cost 
Fig. 2 shows variation of optimal cost with target compressive 
strength and reliability level. It can be seen from this figure 
that difference between heights of the curves for reliability 
levels of 0.95 and 0.99 is higher than that of the curves for 
reliability levels of 0.90 and 0.95. It indicates that raising the 
reliability level from 0.95 to 0.99 is costlier than raising the 
reliability level from 0.90 to 0.95, for a given target 
compressive strength. The rise in optimal cost lies between 
2.3% to 4.0% when reliability level is increased from 0.90 to 
0.95. However, to raise the reliability level from 0.95 to 0.99, 
the rise in optimal cost lies between 4.28% to 5.52%.  
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Effect of reliability level on design variables 
Figures  3 and 4 show variation of design variables and water-
cement content ratio with target compressive strength and 
reliability level. It can be noted from Fig. 3(a) that water 
content -  shows some variations for higher compressive 

strengths for a given reliability. Figures 3(b) and 3(c) reveal 
that /�  and .�  contents exhibit wide fluctuations as target 
strength and reliability level varies. Also, it can be noted from

 
 

Figure 2. Variation of optimal cost with target compressive strength 
 

Table 9. Reliability based design optimization results 
Target 

Reliability B 

Target 1228 (���) 
.V12 (B1. ) 

Predicted 1228 (���) 
- �
� ��� � 

/� �
� ��� � 

.� �
� ��� � 

. �
� ��� � 
- .⁄  

0.90 27 2756.46 40.20 180.00 577.31 1208.50 358.63 0.502 
30 2805.50 42.60 180.00 548.87 1227.58 371.02 0.485 
33 2856.27 45.02 180.00 514.80 1251.91 384.12 0.469 
36 2947.31 45.98 180.00 617.76 1133.53 397.55 0.453 
39 2968.33 49.26 180.00 493.83 1252.05 409.71 0.439 
42 3030.93 51.31 180.00 484.71 1249.56 423.85 0.425 
45 3156.65 53.06 191.85 429.28 1248.03 456.78 0.420 

         
0.95 27 2827.77 43.39 180.00 553.92 1218.51 375.54 0.479 

30 2905.33 44.13 180.00 637.13 1122.11 387.25 0.465 
33 2964.37 46.08 180.00 631.09 1117.24 400.43 0.450 
36 3017.46 48.18 180.00 610.09 1128.23 413.24 0.436 
39 3037.03 51.52 180.00 482.00 1251.11 425.34 0.423 
42 3153.04 53.04 191.23 432.65 1247.10 455.67 0.420 
43 3202.52 52.99 195.44 463.03 1196.21 465.35 0.420 

         
0.99 27 2983.80 46.65 180.00 630.20 1114.54 404.70 0.444 

30 3035.78 48.33 180.00 620.17 1114.38 416.56 0.432 
33 3091.31 49.97 180.37 608.17 1115.55 429.44 0.420 

36 3166.28 52.92 192.18 451.49 1223.40 457.57 0.420 

38 3233.30 53.49 199.34 432.73 1209.56 474.63 0.420 

 
 

Table 10. Assumed standard deviation 

Grade of concrete 
Assumed  

standard deviation 
(���) 

M10 
3.5 

M15 
  

M20 
4.0 

M25 
  

M30 

5.0 

M35 
M40 
M45 
M50 
M55 
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Table 11. Safety factor based approach optimization results 

Target 1228 (���) 
Safety  

margin (���) 
.V12 (B1. ) 

Predicted 1228 (���) 
- �
� ��� � 

/� �
� ��� � 

.� �
� ��� � 

. �
� ��� � 
- .⁄  Reliability  

27 6.60 2687.79 33.60 191.93 512.30 1251.90 350.00 0.548 0.730940 
30 8.25 2706.22 38.25 180.44 541.66 1251.68 350.00 0.516 0.801893 
33 8.25 2768.64 41.25 180.07 531.32 1251.47 364.11 0.495 0.823800 
36 8.25 2838.22 44.25 180.08 518.49 1251.27 380.00 0.474 0.846715 
39 8.25 2913.36 47.25 180.01 504.45 1251.63 397.14 0.453 0.872969 
42 8.25 2997.75 50.25 180.06 488.45 1251.81 416.44 0.432 0.903361 
45 8.25 3171.25 53.25 193.63 417.40 1252.05 461.02 0.420 0.951700 

 

graphs that /� and .� contents show opposite variations, i.e., 
as /�  content rises, .�  content falls and vice-versa, for a 
given reliability curve. Fig. 3(d) depicts that cement content c 
increases according to target strength and reliability level. Fig. 
4 shows that water-cement content ratio falls as target 
strength increases for a given reliability. The above two 
observations are as per already proven trends for concrete mix 
design. It further strengthens the idea that the formulated 

RBDO model behaves in accordance with the existing 
standards and hence is of great practical importance. 
 
Comparison of RBDO approach with safety factor based 
DDO approach 
It can be noted from Fig. 2  that optimal costs for safety factor 
based DDO designs are less than that for RBDO designs in 
each corresponding case and for each reliability level except 
for /Z = 45 ���. Safety factor based DDO curve lies above

 
 

 
 

Figure 3(a). Variation of water content with target compressive strength; Figure 3(b). Variation of Fine aggregate 
content with target compressive strength; Figure 3(c). Variation of Coarse aggregate content with target compressive 

strength; Figure 3(d). Variation of cement content with target compressive strength 
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the RBDO curve with B  = 0.90 for this value of target 
strength. This is justified as Table 11 reveals that reliability of 
safety factor based optimal design for this strength is 0.9517, 
that is greater than 0.90.  

In particular, for reliability of 0.95 for which safety 
factor based DDO designs are obtained, comparison shows 
that optimal costs achieved for RBDO designs are 5.18% to 
7.36% more than optimal costs for safety factor based designs.  

Also, Table 11 reveals that in safety factor based DDO 
results, optimal designs do not meet the reliability 
requirement of 0.95 in all cases except for /Z = 45 ��� , 

although reliability improves as target compressive strength 
increases.  

Thus using DDO approach, required reliability levels 
cannot be maintained. The disadvantage of safety factor based 
DDO approach is that recommended safety margins are not 
always suitable for the given system. But, as already 
mentioned, RBDO process modulates the safety margins 
within the optimization process taking into account 
uncertainty effect for each variable. Hence, the resulting 
designs obtained by RBDO approach are the best solution 
relative to the designs obtained by safety factor based DDO 
approach as the objective is to provide best compromise 
between cost and safety. 

 
 

 
 

Figure 4. Variation of water-cement content ratio with target compressive strength 
 
  

VII. CONCLUSIONS 
In this paper, optimal concrete mix proportions are 
determined that are less sensitive to uncertainties involved in 
concrete mix design process. The first part of the study 
focuses on development of prediction models for cost and 
compressive strength of concrete. OLSR, TRR and GRR 
techniques are used to develop compressive strength models. 
DE is used to find optimal ridge parameters. It has been seen 
that full quadratic GRR model performs best with respect to 
prediction accuracy of the model. Linear OLSR model is 
developed for cost of concrete. RBDO model to minimize the 
cost of concrete with a reliability constraint on compressive 
strength of concrete is formulated and solved in second part 
of the study. RBDO model is solved using SORA method. 
Also, optimal concrete mix proportions are found using safety 
factor based DDO approach. Following conclusions have 
been drawn from this study: 

i. Safety factor based DDO designs are cost effective 
but, these lead to low reliability levels. However, 
RBDO results respect the required reliability level. 

ii.  Cement content is the most significant parameter in 
reliability based concrete mix design process. 

iii.  The proposed RBDO model is applicable for 
concrete mix proportioning and can be used for 
finding the proportions of constituents for desired 
compressive strength and reliability. 
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