
Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 38

http://journal.ilmukomputer.org

Absolute Correlation Weighted Naïve Bayes for Software Defect
Prediction

Rizky Tri Asmono, Romi Satria Wahono and Abdul Syukur

Faculty of Computer Science, Dian Nuswantoro University, Semarang, Indonesia
rtriasmono@gmail.com, romi@romisatriawahono.net, abdul_s@dosen.dinus.ac.id

Abstract: The maintenance phase of the software project can be

very expensive for the developer team and harmful to the users

because some flawed software modules. It can be avoided by

detecting defects as early as possible. Software defect

prediction will provide an opportunity for the developer team

to test modules or files that have a high probability defect.

Naïve Bayes has been used to predict software defects.

However, Naive Bayes assumes all attributes are equally

important and are not related each other while, in fact, this

assumption is not true in many cases. Absolute value of

correlation coefficient has been proposed as weighting method

to overcome Naïve Bayes assumptions. In this study, Absolute

Correlation Weighted Naïve Bayes have been proposed. The

results Wilcoxon signed-rank test on experiment results show

that the proposed method improves the performance of Naïve

Bayes for classifying defect-prone on software defect

prediction.

Keywords: Software Defect Prediction, Naïve Bayes, Absolute

Correlation Weighted Naïve Bayes, Correlation Coefficient,

Absolute Correlation

1 INTRODUCTION

Software is computer programs and related documentation.

Software products can be expanded for a specific customer or

may be developed for the common marketplace in accordance

with the functions and needs. Develop a flawless software is

difficult and often times there are some errors or bugs unknown

or unexpected defects, although the software-development

methodology has been applied with cautious(Okutan & Yıldız,
2012). The maintenance phase of the software project will be

very expensive for the developer team and harmful to the users

because some flawed software modules. Surely, it can be

avoided by detecting defects as early as possible. Defect

prediction will provide an opportunity for the developer team

to test modules or files that have a high probability defect. The

completion of defect prediction problems currently focusing on

1) estimate the number of defects in the existing software

systems, 2) discovering defect associations and 3)

classification on the defect-prone of software, specially defect

and non-defect label(Song, Jia, Shepperd, Ying, & Liu, 2011).

The things that detrimental to users and developer team can be

avoided as early as possible with a software defect prediction.

For classifying defect-prone, Hall conducted an

investigation on software defect prediction(T. Hall, Beecham,

Bowes, Gray, & Counsell, 2012). Hall compared Decision

Tree, Logistic Regression, Naïve Bayes, Neural Network, C4.5

etc. The results of the investigation showed the two best

methods that can be used to predict software defects are Naive

Bayes (NB) and Logistic Regression. Logistic Regression is a

statistical probabilistic classification method. The advantages

of logistic regression are computationally inexpensive, slight

to implement and mild to interpret knowledge representation.

The disadvantages of logistic regression are prone to under

fitting and may have a low accuracy(Harrington, 2012). Naïve

Bayes is a modest probabilistic classifier. It is very comfortable

because it does not require any complicated parameter

estimation. Therefore, Naive Bayes ready to be used for large

amounts of data. Moreover, Naive Bayes is also very facile to

explain so the users who do not have the technological

classification capability can understand the reason why the

classification was made(X. Wu & Kumar, 2009). However,

Naive Bayes assumes all attributes are equally important and

are not related each other while, in fact, this assumption is not

true in many cases(J. Wu & Cai, 2011), (Turhan & Bener,

2009), (Liangxiao Jiang, 2011). The assumption made by

Naive Bayes can be detrimental to its performance in real data

mining applications.

Naïve Bayes assumes that all the attributes are not

dependent on each other, in fact, the class depends on others

attribute. Naïve Bayes also assumes the relationship between

class and one attribute as strong as the relationship between

class and other attribute(Turhan & Bener, 2009). The case

mentioned previously clearly unrealistic. For example, data set

for evaluate risk of loan application, it seems not fair to assume

that between income, age and education levels are equally

important. The assumption made by Naïve Bayes harming the

performance of classification in reality(Webb, Boughton, &

Wang, 2005). This assumption can cause the unwanted error

increase.

Many methods have been developed to cover this attribute

independence assumption. Jiang(Liangxiao Jiang, Wang, Cai,

& Yan, 2007), (L. Jiang, Cai, & Wang, 2010) categorizes

solutions to these problems into five: 1) Attribute selection, 2)

Local Learning, 3) Attribute Weighting, 4) Instance Weighting

and 5) Structure Extension. Previous researchers have

proposed many useful methods to evaluate the important

attributes. Ratanamahatana use Decision Tree as feature

selection on Naïve Bayes(Ratanamahatana & Gunopulos,

2003). Zhang use Gain Ratio to determine attribute weight on

Naïve Bayes(Zhang, 2004). Wu use Differential Evolution

Algorithm to weighting attribute(J. Wu & Cai, 2011). Decision

Tree-based attribute weighting for Naïve Bayes proposed by

Hall(M. Hall, 2007). Averaged n-Dependence Estimators

(AnDE) was proposed by Webb(Webb, Boughton, Zheng,

Ting, & Salem, 2011). AnDE was developed from Averaged

One-Dependence estimators (Aode) which reduce the Naive

Bayes independence assumption(Webb et al., 2005). Zaidi

proposed Weighting attributes to Alleviate Naive Bayes

Independence Assumption (WANBIA) by set all weights to a

single value(Zaidi, Cerquides, Carman, & Webb, 2013). Taheri

proposed Attribute Weighted Naive Bayes (AWNB) which

define more than one weight for each attribute(Taheri,

Yearwood, Mammadov, & Seifollahi, 2013). AWNB limited

to binary classification.

Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 39

http://journal.ilmukomputer.org

Because of the attribute does not have the same role, some

of them more important than the others, one of the ways to

develop Naïve Bayes is set a different weight value of each

attributes. It is becoming the main idea of the new algorithm

called Weighting Naive Bayes, abbreviated WNB, weight

value depending on how significant these attributes in the

probability, more influential an attribute in probabilities, higher

the weight value. For weighting the attribute, this study using

correlation coefficients to measure relevancy between class

and attributes. Arauzo-Azora has been conducting an empirical

study of feature selection method(Arauzo-Azofra, Aznarte, &

Benítez, 2011). The study evaluated a broad overview of

feature selection methods. For weighting attributes by

calculating the relevance between attributes get the highest

average rank from all the ways for Naïve Bayes. Correlation

coefficient can be used to measure the relevance between

attributes(Golub, 1999), (Furey et al., 2000), (Pavlidis,

Weston, Cai, & Grundy, 2001). It used to measure the strength

of relationship between two attributes(Freund & Wilson,

2003). The value of the correlation coefficients is between +1

and -1. Value of +1 and -1 indicate positive and negative

relationship. Because it only requires the strength of the

relationship between the attributes then absolute value of the

correlation coefficients is used.

In this study, Absolute Correlation Weighted Naïve Bayes

has been proposed. Absolute correlation is used as a weight

because it shows how strong relevance between attributes. The

purpose of this study is to improve the performance of Naïve

Bayes for classifying defect-prone on software defect

prediction.

2 RELATED WORK

While many studies, including individual study report the

performance comparison of modeling techniques, there is no

explicit consensus appear that conduct best when distinctive

studies that looked at in isolation(T. Hall et al., 2012). Mizuno

and Kikuno(Mizuno & Kikuno, 2007) reported, the techniques

they learned, Orthogonal Sparse Bigrams Markov models

(OSB) are most fit for the defect prediction. Bibi et al.(Bibi,

Tsoumakas, Stamelos, & Vlahvas, 2006) reported that

Regression via Classification (RVC) works fine. Khoshgoftaar

et al.(Khoshgoftaar, Yuan, Allen, Jones, & Hudepohl, 2002)

reported that the defect-prone modules predicted as uncertain,

can be effectively classified using Tree Disc (TD) technique.

Khoshgoftaar and Seliya(Khoshgoftaar & Seliya, 2004) also

reported that the Case-Based Reasoning (CBR) did not predict

well with C4.5 as well under performing. Arisholm et

al.(Arisholm, Briand, & Johannessen, 2010) reported that their

comprehensive performance comparison showed there is no

difference between predictive modeling techniques they

investigated.

A clearer picture appears to arise from the detailed analysis

conducted by Hall(T. Hall et al., 2012) on the performance of

the model. Hall(T. Hall et al., 2012) findings indicate that

actually performance can be associated with modeling

techniques that is used. Their comparative analysis showed that

studies using Support Vector Machine (SVM) technique

appear less well. It probably performed poorly because they

need the optimization of parameters where it is uncommon

done in the study of defect prediction for best

performance(Hsu, Chang, & Lin, 2003). C4.5 model

apparently poor performing if they use imbalanced data

(Arisholm, Briand, & Fuglerud, 2007; Arisholm et al., 2010).

The comparative analysis has been done by Hall also shows

that the model performs proportionately correctly are

comparatively easy technique that simple to use and rightly

understood. Logistic Regression and Naïve Bayes, specifically,

appears to be technique that is used in the model are performing

relatively well. The model appears to work correctly when the

proper techniques have been appropriate for the dataset.

Lin et al.(Lin & Yu, 2011) have a research problem that

Naïve Bayes assumption that assumes the value of attributes

are independent with other attributes. Lin et al.(Lin & Yu,

2011) proposed PSO-based Weighted Naïve Bayesian

Classifier to mitigate this assumption. Particle Swarm

Optimization algorithm applied on a weighted naive Bayes

classification, through the automatic search behavior of

particles, to avoid the mistakes of other methods. The value of

the search results by the swarm is used as a weight to each

attribute. The research results show that the correct rate-based

Weighted Naïve Bayesian Classifier higher than the Naïve

Bayes.

Taheri et al.(Taheri et al., 2013) have a research problem

that attributes independence assumption created by NB

classifier adverse classification performance when, in fact,

infringed. On research, Taheri et al.(Taheri et al., 2013)

proposed a new attribute weighted Naïve Bayes classifier,

called AWNB, which provide more than one weight for every

attribute. The results presented show that the accuracy of the

proposed method far better compared to Naïve Bayes in every

data set(Taheri et al., 2013). It also indicates greater accuracy

from AWNB, in general, compared with the results obtained

by INB and TAN.

The research issue of Wu et al.(J. Wu & Cai, 2011) is

independence assumption made by Naive Bayes that all

attributes not related to one another adverse classification

performance when it is infringed in reality. In order to weaken

the assumption of independent attributes, Wu et al.(J. Wu &

Cai, 2011) suggested Different Evolution as a weighting

method on Weighted Naïve Bayes. Wu et al.(J. Wu & Cai,

2011) comparing Different Evolution with some other

weighting methods and the performance of the Different

Evolution is better than other weighting methods.

Naïve Bayes is easy to build, because it has a very simple

structure(X. Wu & Kumar, 2009). Learning Naïve Bayes only

involves teaching the probability table, to be specific, the

conditional probability tables for each attribute, from training

examples. This means, the values of the probability p (ai|c)
must be determined from the training sample, for each value ai

of attribute Ai considering the value of the variable c on class

C.

In Naïve Bayes, it is assumed that the attributes are

independent one another provided class(J. Wu & Cai, 2011),

(Turhan & Bener, 2009), (L. Jiang et al., 2010). Each attribute

only has class variables as its parent(J. Wu & Cai, 2011),

(Liangxiao Jiang et al., 2007), P (E|c) is calculated by: 𝑝(𝐸|𝑐) = 𝑝(𝑎1, 𝑎2, … , 𝑎𝑛|𝑐) = ∏ 𝑝(𝑎𝑖|𝑐)𝑛
𝑖=1

Where p (ai|c) is referred the likelihood of Ai, and the instance

E = (a1, a2, …, an).
Due to each sample E the value of p (E) is constant. The

possibility of the establishment of a class label for an example

is: 𝑝(𝑐|𝐸) = 𝑝(𝑐) ∏ 𝑝(𝑎𝑖|𝑐)𝑛
𝑖=1

Example E are classified into the class C = c’ if and only if 𝑝(𝑐′|𝐸) = arg max𝑐 𝑝(𝑐|𝐸)

Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 40

http://journal.ilmukomputer.org

More exactly, the classification of which granted by Naïve

Bayes, denoted by Vnb (E), is defined as follows 𝑉𝑛𝑏(𝐸) = arg max𝑐 𝑝(𝑐) ∏ 𝑝(𝑎𝑖|𝑐)𝑛
𝑖=1

Because of the conditional independence assumption

uncommon properly, in reality, it is reasonable to extend the

Naïve Bayes to relax the assumption of conditional

independence. There are two primary ways to relax the

assumption (Zhang, 2004). First, Naïve Bayes structure is

extended to explicitly represent dependencies between

attributes, and generated model referred to augmented Naïve

Bayes (ANB)(Friedman, Geiger, & Goldszmidt, 1997).

Second, Attributes are weighted differently, and resultant

model is called Weighted Naïve Bayes (WNB). Weighted

Naïve Bayes is formally defined as follows. 𝑉𝑤𝑛𝑏(𝐸) = arg max𝑐 𝑝 (𝑐) ∏ 𝑝(𝑎𝑖|𝑐)𝑤𝑖𝑛
𝑖=1

Where Vwnb (E) shows the classification provided by Weighted

Naïve Bayes, and wi is weight of attribute Ai.

3 PROPOSED METHOD

The correlation coefficient measures the power of linear

relationship between two quantitative variables, typically a

ratio or interval(Freund & Wilson, 2003). The correlation

coefficient has the properties, which are 1) its value is among

+1 and -1 inclusively, 2) the values +1 and -1 indicate a positive

relationship and negative exact, respectively, among the

variables, 3) a correlation of zero shows there is no linear

relationship exists between two variables and 4) the correlation

coefficient is symmetric to x and y. Thus the size of the power

of the linear relationship irrespective of whether 𝑥 or 𝑦 is the

independent variable.

The correlation coefficient can be defined as follows 𝑟 = ∑(𝑥 − 𝑥̅) (𝑦 − 𝑦̅)∑ (𝑥 − 𝑥̅)2 ∑ (𝑦 − 𝑦̅)2

Where 𝑟 symbolize correlation coefficient, 𝑥̅ symbolize mean

value of 𝑥 and 𝑦̅ symbolize mean value of 𝑦.

Various correlation coefficients are used as a weighting

method(Guyon, Weston, Barnhill, & Vapnik, 2002). The

coefficient used in Golub(Golub, 1999) is defined as 𝑤𝑖 = (𝜇𝑖(+) − 𝜇𝑖(−)) (𝜎𝑖(+) + 𝜎𝑖(−))

Where 𝜇𝑖 and 𝜎𝑖 are the mean and standard deviation of the

values of attribute 𝑖 for all of class (+) or class(−), 𝑖 =1, 2, … , 𝑛, 𝑤𝑖 large positive value shows a strong correlation

with class (+) while the large negative value of 𝑤𝑖 show a

strong correlation with class (−). Other people(Furey et al.,

2000) have used the absolute value of 𝑤𝑖 as a weighting

method. Recently, Pavlidis(Pavlidis et al., 2001) has been

using the associated coefficients which defined below 𝑤𝑖 = (𝜇𝑖(+) − 𝜇𝑖(−))2 (𝜎𝑖(+)2 + 𝜎𝑖(−)2)

Zhang(Zhang, 2004) extended the Naïve Bayes to relax the

assumption of conditional independence. Zhang(Zhang, 2004)

performed Weighted Naïve Bayes. Correlation coefficient is

used as a weight because it shows how strong relevance

between attributes. Based on the coefficient that used in

Golub(Golub, 1999), the proposed method uses the absolute

correlation coefficient because it only requires the strength of

the relationship between the attributes. This idea is similar with

Furey et al.(Furey et al., 2000) that can be defined as follows.

𝑤𝑖 = | (𝜇𝑖𝑗 − 𝜇𝑖𝑗̅) (𝜎𝑖𝑗 + 𝜎𝑖𝑗̅)|
Where wi is a weight of attribute i, 𝜇𝑖𝑗 is mean values of

attribute i for class j, 𝜇𝑖𝑗̅ is mean values of attribute i for class

non j, 𝜎𝑖𝑗 is standard deviation of the values of attribute i for

class j and 𝜎𝑖𝑗̅ is standard deviation of the values of attribute i

for class non j.
The proposed method in study is Absolute Correlation

Weighted Naïve Bayes (AC-WNB) that can be described in

Figure 1. There are three different processes in AC-WNB

model figured with shaded block, which are calculate the

weight, calculate the weighted likelihood and calculate prior.

Calculate the weight is a process that calculates weight for each

attribute in the training process. The weight is calculated the

absolute value of correlation coefficient by using the mean and

standard deviation of each attribute. Calculate the weighted

likelihood is a process that calculates the likelihood for each

attribute to classify the testing dataset. These likelihood

squares by weight that generated on calculating the weight

process. Calculate the prior used weighted likelihood. The

weighted likelihood of class was divided by sum of all

weighted likelihood.

As shown on Figure 1, dataset is divided into data training

and data testing using 10-fold cross validation method. Data

training is used to training process. In training process, means,

standard deviations and weight of each attributes will be

calculated. Weight will be calculated using mean and standard

deviation. The absolute value of the difference between mean

of class and the other classes that have been divided with the

summation of standard deviations is used as weight value.

The detail of training process of AC-WNB as follows:

1. Calculate the mean value of attribute in each class

The mean value obtained by summing all instances
value on a specific attribute then divide by the number
of instances. The mean value can be formulated as
follows 𝜇 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛𝑛

2. Calculate the standard deviation of attribute in each
class

The standard deviation is the square root value of the
variance. The variance is obtained by subtract each
value with mean value and square the result then
divided by the number of instances. There are two
types of standard deviation that are the sample and
population. The population divide the square results
with the number of instances (N) and the sample divide
the square results with the number of instances minus
one (N-1). Absolute Correlation based Weighted Naïve
Bayes use the sample to calculate standard deviation.
The standard deviation can be formulated as follows 𝜎 = 1𝑁 − 1 ∑(𝑥𝑖 − 𝜇)2𝑁

𝑖=1

3. Calculate the weight of attribute

The weight can be obtained by calculation using mean

and standard deviation that formulated as follows 𝑤𝑖 = | (𝜇𝑖𝑗 − 𝜇𝑖𝑗̅) (𝜎𝑖𝑗 + 𝜎𝑖𝑗̅)|

Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 41

http://journal.ilmukomputer.org

4. Repeat steps 1-3 for all attribute

Figure 1 Flow Chart of AC-WNB Method

The model that has been generated in training process will

be tested using data testing. AC-WNB has to calculate

likelihood, prior, weighted likelihood and weighted prior to

classifying the class. Likelihood is commonly known as

conditional probabilities that is calculated using normal

distribution of each attribute. This normal distribution of each

attribute would be squared by weight that has been generated

at training process. The product (π) of weighted normal
distribution of all attributes is used to weighted likelihood

value of class. The prior is also known as class probabilities.

The value of prior of class calculated by divided weighted

likelihood of class with sum of all weighted likelihood class.

Then, weighted likelihood value would be multiplied with prior

to classify. The detail of testing process of AC-WNB as

follows:

1. Calculate weighted likelihood

For numeric attribute, likelihood calculates by using
normal distribution. In this study, all attributes were
numeric. The normal distribution was formulated as
follows 𝑝(𝑎|𝑐) = 1𝜎√2𝜋 𝑒−(𝑥−𝜇)22𝜎2

Then, weighted likelihood can be calculated with
formula as follows 𝐿 = ∏ 𝑝(𝑎𝑖|𝑐)𝑤𝑖𝑛

𝑖=1

2. Calculate prior
The prior of class calculated by divided weighted

likelihood of class with sum of all weighted likelihood

class. The prior can be formulated as follows 𝑝(𝑐) = ∏ 𝑝(𝑎𝑖|𝑐)𝑛𝑖=1 𝑤𝑖∏ 𝑝(𝑎𝑖|𝑐)𝑤𝑖𝑛𝑖=1 + ∏ 𝑝(𝑎𝑖|𝑐)̅𝑛𝑖=1 𝑤𝑖
3. Calculate probabilities of class

In order to calculate probability of class, weighted
likelihood value will be multiplied prior. The
probabilities of class can be formulated as follows 𝑝(𝑐|𝐸) = 𝑝(𝑐) ∏ 𝑝(𝑎𝑖|𝑐)𝑛

𝑖=1

4. Repeat steps1-3 for all class

5. The predicted class was determined by the highest
probability.

4 DATA GATHERING

NASA dataset that was used in this study was obtained

from the MDP (Metric Data Program) Repository (“NASA-

SoftwareDefectDataSets,” n.d.), which can also be obtained

from the PROMISE Repository. NASA datasets have been

widely used for research in the field of software engineering(T.

Hall et al., 2012). This dataset is devoted to research on the

topic of software defect and software failures. Therefore, most

studies use this dataset to do some research, ranging from doing

predictions, associations, and to the development of a model

for research.

NASA dataset currently available from many Repository

(MDP and PROMISE), therefore, the researchers used a dataset

derived from the MDP Repository who has been repaired by

Martin Shepherd(Shepperd, Song, Sun, & Mair, 2013), with

the following specifications(Gray, Bowes, Davey, Sun, &

Christianson, 2012) in Table 1. All attributes in NASA MDP

dataset are numeric. Dataset has been fixed by removing data

null or no value. Accordingly, this study used the dataset to do

some research in determining the proposed model in the

prediction of software defects.

Table 1 Dataset Specifications

Attribute NASA MDP Dataset

CM

1

JM

1

KC

1

KC

3

MC

1

MC

2

PC

1

PC3 PC

4

PC

5

LOC_BLANK √ √ √ √ √ √ √ √ √ √

BRANCH_COUNT √ √ √ √ √ √ √ √ √ √

CALL_PAIRS √ √ √ √ √ √ √ √

LOC_CODE_AND_COMMENT √ √ √ √ √ √ √ √ √ √

LOC_COMMENTS √ √ √ √ √ √ √ √ √ √

CONDITION_COUNT √ √ √ √ √ √ √ √

CYCLOMATIC_COMPLEXITY √ √ √ √ √ √ √ √ √ √

CYCLOMATIC_DENSITY √ √ √ √ √ √ √ √

DECISION_COUNT √ √ √ √ √ √ √ √

DECISION_DENSITY √ √ √ √ √ √

DESIGN_COMPLEXITY √ √ √ √ √ √ √ √ √ √

DESIGN_DENSITY √ √ √ √ √ √ √ √

EDGE_COUNT √ √ √ √ √ √ √ √

ESSENTIAL_COMPLEXITY √ √ √ √ √ √ √ √ √ √

ESSENTIAL_DENSITY √ √ √ √ √ √ √ √

LOC_EXECUTABLE √ √ √ √ √ √ √ √ √ √

PARAMETER_COUNT √ √ √ √ √ √ √ √

GLOBAL_DATA_COMPLEXITY √ √ √ √

GLOBAL_DATA_DENSITY √ √ √ √

HALSTEAD_CONTENT √ √ √ √ √ √ √ √ √ √

HALSTEAD_DIFFICULTY √ √ √ √ √ √ √ √ √ √

HALSTEAD_EFFORT √ √ √ √ √ √ √ √ √ √

HALSTEAD_ERROR_EST √ √ √ √ √ √ √ √ √ √

HALSTEAD_LENGTH √ √ √ √ √ √ √ √ √ √

HALSTEAD_LEVEL √ √ √ √ √ √ √ √ √ √

HALSTEAD_PROG_TIME √ √ √ √ √ √ √ √ √ √

HALSTEAD_VOLUME √ √ √ √ √ √ √ √ √ √

MAINTENANCE_SEVERITY √ √ √ √ √ √ √ √

MODIFIED_CONDITION_COUNT √ √ √ √ √ √ √ √

MULTIPLE_CONDITION_COUNT √ √ √ √ √ √ √ √

NODE_COUNT √ √ √ √ √ √ √ √

NORMALIZED_CYLOMATIC_COMPL

EXITY

√ √ √ √ √ √ √ √

NUM_OPERANDS √ √ √ √ √ √ √ √ √ √

NUM_OPERATORS √ √ √ √ √ √ √ √ √ √

NUM_UNIQUE_OPERANDS √ √ √ √ √ √ √ √ √ √

NUM_UNIQUE_OPERATORS √ √ √ √ √ √ √ √ √ √

NUMBER_OF_LINES √ √ √ √ √ √ √ √

PERCENT_COMMENTS √ √ √ √ √ √ √ √

LOC_TOTAL √ √ √ √ √ √ √ √ √ √

Number of Code Attributes 37 21 21 39 38 39 37 37 37 38

Programming Language C C C+

+

Jav

a

C

and

C++

C C C C C+

+

Number of Modules 327 778

2

118

3

194 198

8

125 705 107

7

128

7

171

1

Number of defect Modules 42 167

2

314 36 46 44 61 134 177 471

Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 42

http://journal.ilmukomputer.org

5 RESULT AND ANALYSIS

The proposed model was developed using Java using

NetBeans IDE 7.3.1. Datasets that used in this study are: CM1,

JM1, KC1, KC3, MC1, MC2, PC1, PC3, PC4 and PC5. The

weight values that calculated by AC-WNB shown in Table 2.

Table 2 Weight of attribute

One of the performance indicators to evaluate the

performance of the classifier in the experiment, area under the

curve (AUC) was applied. AUC used in this study to evaluated

the classifier on class imbalance data as recommended by

Lessmann et al. (Lessmann, Baesens, Mues, & Pietsch, 2008)

and Brown et al.(Brown & Mues, 2012). The results of all the

methods would be compared using Wilcoxon signed-rank test

to verify whether there is a significant difference between

methods.

Table 3 Performance of the NB and AC-WNB Model

Datase

t

NB AC-WNB AC-WACNB

Accurac

y

AUC Accurac

y

AUC Accurac

y

AUC

CM1 81.04 0.76

8

81.04 0.81

4

81.35 0.85

7

JM1 78.09 0.80

3

78.17 0.81

0

78.08 0.81

3

KC1 72.02 0.79

3

72.19 0.80

7

72.19 0.83

4

KC3 79.38 0.83

0

79.38 0.87

9

79.38 0.85

1

MC1 88.58 0.83

6

88.98 0.85

5

89.03 0.83

3

MC2 72.00 0.84

0

72.80 0.84

3

72.00 0.81

7

PC1 87.66 0.80

0

87.94 0.81

7

87.80 0.84

7

PC3 28.04 0.87

3

69.73 0.86

2

70.66 0.89

0

PC4 86.01 0.79

7

82.28 0.83

8

82.13 0.90

6

PC5 74.63 0.78

2

74.93 0.80

5

74.93 0.85

2

As shown in Table 3, Absolute Correlation based Weighted

Naïve Bayes have better average accuracy that is 78.74%,

followed by Naïve Bayes with 74.74%, while for AUC values,

the average of AUC values of Absolute Correlation Weighted

Naïve Bayes is higher than Naïve Bayes. The average of AUC

values of Absolute Correlation Weighted Naïve Bayes is 0.833,

and then Naïve Bayes is 0.812

The results of the comparison of the AUC can be described

in Figure 2. The AUC values of AC-WNB higher than NB. It

can be concluded that Absolute Correlation based Weighted

Attribute-class Naïve Bayes is much better than others method.

However, this increase should be examined more deeply with

significance test.

Figure 2 Performance (AUC) of the Models

AUC values of Naïve Bayes and Absolute Correlation

based Weighted Naïve Bayes would be compared using

Wilcoxon signed-rank test. A significant different in

performance was considered when the results of Wilcoxon

signed-rank test showed that P-value<alpha (0.05). Wilcoxon

signed-rank test results on the statistical test of AUC of Naïve

Bayes and Absolute Correlation based Weighted Naïve Bayes

was shown in Table 4. The average of AUC values for AC-

WNB was higher than NB that is 0.833 with P-value 0.01. As

the computed P-value was lower than the significance level

alpha, the null hypothesis (H0) that is the two samples follow

the same distribution should be rejected and accept the

alternative hypothesis (Ha) that is the distributions of the two

samples are different. It means that NB and AC-WNB had

significant differences P-value<alpha (0.05). Therefore, it can

be concluded that AC-WNB makes an improvement when

compared with NB in prediction performance. Hence, it means

that the absolute value of correlation coefficient can improve

the performance of Naïve Bayes for classifying on software

defect prediction

Table 4 Wilcoxon Signed-Rank Test of AUC of NB and AC-

WNB
 NB AC-WNB

Observation 10 10

Mean 0.8122 0.833

Median 0.8015 0.8275

Standard Deviation 0.030085877 0.02484351

The Test Procedure

Hypothetical Mean

Difference

0

Nb. Of Zero Differences 0

Rank Sum 55

Rank Average 5.5

Test Statistic (S+) 52

Significance Level 0.05

Exact Procedure

Critical Value 8

Decision Rule Reject H0 if (S+) > 8

Final Decision The Null Hypothesis Cannot be

Rejected

 due to Insufficient Evidence in the

Sample

P-Value 0.01

Attribute NASA MDP Dataset

CM

1

JM

1

KC

1

KC

3

MC

1

MC

2

PC

1

PC

3

PC

4

PC

5

LOC_BLANK 0.18 0.21 0.25 0.34 0.37 0.37 0.38 0.49 0.24 0.15

BRANCH_COUNT 0.19 0.20 0.22 0.25 0.20 0.37 0.19 0.09 0.01 0.23

CALL_PAIRS 0.28 0.30 0.29 0.24 0.24 0.24 0.11 0.21

LOC_CODE_AND_COMMENT 0.04 0.12 0.05 0.38 0.42 0.17 0.32 0.29 0.48 0.28

LOC_COMMENTS 0.35 0.17 0.17 0.10 0.31 0.39 0.44 0.38 0.11 0.19

CONDITION_COUNT 0.19 0.20 0.17 0.38 0.18 0.08 0.22 0.21

CYCLOMATIC_COMPLEXITY 0.19 0.18 0.22 0.26 0.12 0.37 0.20 0.09 0.01 0.23

CYCLOMATIC_DENSITY 0.28 0.19 0.29 0.07 0.52 0.21 0.33 0.22

DECISION_COUNT 0.19 0.20 0.16 0.38 0.17 0.07 0.23 0.20

DECISION_DENSITY 0.03 0.00 0.16 0.01 0.13 0.48

DESIGN_COMPLEXITY 0.23 0.16 0.22 0.26 0.03 0.31 0.19 0.09 0.06 0.23

DESIGN_DENSITY 0.16 0.03 0.12 0.13 0.05 0.00 0.13 0.06

EDGE_COUNT 0.20 0.28 0.22 0.40 0.20 0.10 0.05 0.22

ESSENTIAL_COMPLEXITY 0.12 0.14 0.15 0.17 0.13 0.36 0.13 0.01 0.14 0.18

ESSENTIAL_DENSITY 0.00 0.05 0.00 0.34 0.01 0.03 0.11 0.11

LOC_EXECUTABLE 0.29 0.21 0.25 0.29 0.24 0.34 0.33 0.13 0.19 0.19

PARAMETER_COUNT 0.07 0.06 0.00 0.14 0.17 0.15 0.14 0.07

GLOBAL_DATA_COMPLEXITY 0.26 0.01 0.34 0.21

GLOBAL_DATA_DENSITY 0.11 0.23 0.06 0.09

HALSTEAD_CONTENT 0.31 0.22 0.24 0.31 0.23 0.11 0.47 0.20 0.11 0.03

HALSTEAD_DIFFICULTY 0.21 0.18 0.30 0.22 0.13 0.11 0.15 0.04 0.15 0.28

HALSTEAD_EFFORT 0.14 0.09 0.22 0.23 0.04 0.38 0.16 0.02 0.13 0.18

HALSTEAD_ERROR_EST 0.26 0.20 0.27 0.26 0.20 0.34 0.29 0.08 0.17 0.13

HALSTEAD_LENGTH 0.27 0.22 0.28 0.27 0.21 0.35 0.31 0.11 0.19 0.16

HALSTEAD_LEVEL 0.27 0.14 0.18 0.21 0.09 0.34 0.24 0.21 0.18 0.30

HALSTEAD_PROG_TIME 0.14 0.09 0.22 0.23 0.04 0.38 0.16 0.02 0.13 0.18

HALSTEAD_VOLUME 0.26 0.20 0.27 0.26 0.20 0.34 0.29 0.08 0.17 0.13

MAINTENANCE_SEVERITY 0.13 0.09 0.01 0.18 0.14 0.16 0.28 0.21

MODIFIED_CONDITION_COUNT 0.19 0.20 0.18 0.37 0.18 0.09 0.22 0.22

MULTIPLE_CONDITION_COUNT 0.19 0.20 0.17 0.38 0.18 0.09 0.22 0.20

NODE_COUNT 0.19 0.28 0.22 0.40 0.19 0.10 0.06 0.21

NORMALIZED_CYLOMATIC_COMPLEXI

TY

0.32 0.28 0.26 0.13 0.54 0.27 0.37 0.14

NUM_OPERANDS 0.26 0.22 0.28 0.26 0.20 0.35 0.31 0.11 0.18 0.17

NUM_OPERATORS 0.27 0.21 0.27 0.28 0.21 0.34 0.31 0.11 0.18 0.15

NUM_UNIQUE_OPERANDS 0.31 0.23 0.30 0.29 0.31 0.21 0.37 0.24 0.15 0.14

NUM_UNIQUE_OPERATORS 0.34 0.17 0.30 0.26 0.24 0.41 0.33 0.19 0.14 0.34

NUMBER_OF_LINES 0.30 0.30 0.33 0.37 0.43 0.29 0.23 0.20

PERCENT_COMMENTS 0.29 0.22 0.47 0.22 0.38 0.43 0.44 0.10

LOC_TOTAL 0.26 0.22 0.26 0.29 0.28 0.34 0.35 0.16 0.44 0.20

0.700

0.750

0.800

0.850

0.900

CM1 JM1 KC1 KC3 MC1 MC2 PC1 PC3 PC4 PC5

NB ACWNB

Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 43

http://journal.ilmukomputer.org

6 CONCLUSION

Naive Bayes proved effective in predicting software

defects. However, Naïve Bayes perform less well for predicting

software defects due to the assumption that all attributes are

equally important and are not related to each other while, in

fact, this assumption is not true in many cases. One of the ways

to develop Naïve Bayes is set a different weight value of each

attributes.

Absolute Correlation Weighted Naïve Bayes has been

proposed. Absolute Correlation Weighted Naïve Bayes

provides weight to each attribute. The weight values are

depending on how relevant the attribute with class. The

correlation coefficient is used to measure the relevance

between class and attribute. Therefore, absolute value of

correlation coefficients was used as weight at Absolute

Correlation Weighted Naïve Bayes.

The results of experiments showed that the mean of AUC

value of Naïve Bayes for classifying software defect was

0.8122, while the average AUC value of Absolute Correlation

Weighted Naïve Bayes was 0.833. The results of Wilcoxon

signed-rank test showed that Absolute Correlation Weighted

Naïve Bayes had significant differences with Naïve Bayes P-

value 0.008 < alpha (0.05). Therefore, it can be concluded that

absolute correlation coefficient can improve the performance

of Naïve Bayes for classifying on software defect prediction.

7 FUTURE WORK

In this study, absolute coefficient correlation could improve

the performance of Naive Bayes for classifying on software

defect prediction. Absolute correlation was used as weight for

attribute by calculated the relevance between attribute. It used

to measure the strength of relationship between two

attributes(Freund & Wilson, 2003). Taheri et al.(Taheri et al.,

2013) proposed a new attribute weighted Naïve Bayes

classifier, called AWNB, which provide more than one weight

for every attribute. Therefore, investigation to improve the

performance of Naive Bayes for classifying on software defect

prediction by using absolute correlation to provide more than

one weight is one of main direction for future work.

REFERENCES

Arauzo-Azofra, A., Aznarte, J. L., & Benítez, J. M. (2011). Empirical

study of feature selection methods based on individual feature

evaluation for classification problems. Expert Systems with
Applications, 38(7), 8170–8177.

doi:10.1016/j.eswa.2010.12.160

Arisholm, E., Briand, L. C., & Fuglerud, M. (2007). Data Mining

Techniques for Building Fault-proneness Models in Telecom

Java Software. In The 18th IEEE International Symposium on
Software Reliability (ISSRE ’07) (pp. 215–224). IEEE.

doi:10.1109/ISSRE.2007.22

Arisholm, E., Briand, L. C., & Johannessen, E. B. (2010). A

systematic and comprehensive investigation of methods to

build and evaluate fault prediction models. Journal of Systems
and Software, 83(1), 2–17. doi:10.1016/j.jss.2009.06.055

Bibi, S., Tsoumakas, G., Stamelos, I., & Vlahvas, I. (2006). Software

Defect Prediction Using Regression via Classification. In IEEE
International Conference on Computer Systems and
Applications, 2006. (pp. 330–336). IEEE.

doi:10.1109/AICCSA.2006.205110

Brown, I., & Mues, C. (2012). An experimental comparison of

classification algorithms for imbalanced credit scoring data

sets. Expert Systems with Applications, 39(3), 3446–3453.

doi:10.1016/j.eswa.2011.09.033

Freund, R. J., & Wilson, W. J. (2003). Statistical Methods (2nd ed.).

Academic Press.

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian

network classifiers. Machine Learning, 29(2-3), 131–163.

Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer,

M., & Haussler, D. (2000). Support vector machine

classification and validation of cancer tissue samples using

microarray expression data. Bioinformatics, 16(10), 906–914.

doi:10.1093/bioinformatics/16.10.906

Golub, T. R. (1999). Molecular Classification of Cancer: Class

Discovery and Class Prediction by Gene Expression

Monitoring. Science, 286(5439), 531–537.

doi:10.1126/science.286.5439.531

Gray, D., Bowes, D., Davey, N., Sun, Y., & Christianson, B. (2012).

Reflections on the NASA MDP data sets. IET Software, 6(6),

549. doi:10.1049/iet-sen.2011.0132

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene

selection for cancer classification using support vector

machines. Machine Learning, 46(1-3), 389–422.

doi:10.1023/A:1012487302797

Hall, M. (2007). A decision tree-based attribute weighting filter for

naive Bayes. Knowledge-Based Systems, 20(2), 120–126.

doi:10.1016/j.knosys.2006.11.008

Hall, T., Beecham, S., Bowes, D., Gray, D., & Counsell, S. (2012). A

Systematic Literature Review on Fault Prediction Performance

in Software Engineering. IEEE Transactions on Software
Engineering, 38(6), 1276–1304. doi:10.1109/TSE.2011.103

Harrington, P. (2012). Machine Learning in Action. Connecticut:

Manning Publications Co. Greenwich, CT, USA.

Hsu, C., Chang, C., & Lin, C. (2003). A Practical Guide to Support

Vector Classification. Department of Computer Science and
Information Engineering, National Taiwai University.

Jiang, L. (2011). Random one-dependence estimators. Pattern
Recognition Letters, 32(3), 532–539.

doi:10.1016/j.patrec.2010.11.016

Jiang, L., Cai, Z., & Wang, D. (2010). Improving Naive Bayes for

Classification. International Journal of Computers and
Applications, 32(3). doi:10.2316/Journal.202.2010.3.202-2747

Jiang, L., Wang, D., Cai, Z., & Yan, X. (2007). Survey of improving

naive Bayes for classification. Advanced Data Mining and
Applications. doi:10.1007/978-3-540-73871-8_14

Khoshgoftaar, T. M., & Seliya, N. (2004). Comparative Assessment

of Software Quality Classification Techniques: An Empirical

Case Study. Empirical Software Engineering, 9(3), 229–257.

doi:10.1023/B:EMSE.0000027781.18360.9b

Khoshgoftaar, T. M., Yuan, X., Allen, E. B., Jones, W. D., &

Hudepohl, J. P. (2002). Uncertain Classification of Fault-Prone

Software Modules. Empirical Software Engineering, 7(4),

297–318. doi:10.1023/A:1020511004267

Lessmann, S., Baesens, B., Mues, C., & Pietsch, S. (2008).

Benchmarking Classification Models for Software Defect

Prediction: A Proposed Framework and Novel Findings. IEEE
Transactions on Software Engineering, 34(4), 485–496.

doi:10.1109/TSE.2008.35

Lin, J., & Yu, J. (2011). Weighted Naive Bayes classification

algorithm based on particle swarm optimization. In 2011 IEEE
3rd International Conference on Communication Software and
Networks (pp. 444–447). IEEE.

doi:10.1109/ICCSN.2011.6014307

Mizuno, O., & Kikuno, T. (2007). Training on errors experiment to

detect fault-prone software modules by spam filter. In

Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering -
ESEC-FSE ’07 (p. 405). New York, New York, USA: ACM

Press. doi:10.1145/1287624.1287683

NASA-SoftwareDefectDataSets. (n.d.). Retrieved from http://nasa-

softwaredefectdatasets.wikispaces.com/

Okutan, A., & Yıldız, O. T. (2012). Software defect prediction using
Bayesian networks. Empirical Software Engineering, 19(1),

154–181. doi:10.1007/s10664-012-9218-8

Pavlidis, P., Weston, J., Cai, J., & Grundy, W. N. (2001). Gene

functional classification from heterogeneous data. In

Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 44

http://journal.ilmukomputer.org

Proceedings of the fifth annual international conference on
Computational biology - RECOMB ’01 (pp. 249–255). New

York, New York, USA: ACM Press.

doi:10.1145/369133.369228

Ratanamahatana, C., & Gunopulos, D. (2003). Feature selection for

the naive bayesian classifier using decision trees. Applied
Artificial Intelligence, 475–487.

doi:10.1080/08839510390219327

Shepperd, M., Song, Q., Sun, Z., & Mair, C. (2013). Data Quality:

Some Comments on the NASA Software Defect Datasets.

IEEE Transactions on Software Engineering, 39(9), 1208–
1215. doi:10.1109/TSE.2013.11

Song, Q., Jia, Z., Shepperd, M., Ying, S., & Liu, J. (2011). A General

Software Defect-Proneness Prediction Framework. IEEE
Transactions on Software Engineering, 37(3), 356–370.

doi:10.1109/TSE.2010.90

Taheri, S., Yearwood, J., Mammadov, M., & Seifollahi, S. (2013).

Attribute weighted Naive Bayes classifier using a local

optimization. Neural Computing and Applications.

doi:10.1007/s00521-012-1329-z

Turhan, B., & Bener, A. (2009). Analysis of Naive Bayes’
assumptions on software fault data: An empirical study. Data
& Knowledge Engineering, 68(2), 278–290.

doi:10.1016/j.datak.2008.10.005

Webb, G. I., Boughton, J. R., & Wang, Z. (2005). Not So Naive Bayes:

Aggregating One-Dependence Estimators. Machine Learning,

58(1), 5–24. doi:10.1007/s10994-005-4258-6

Webb, G. I., Boughton, J. R., Zheng, F., Ting, K. M., & Salem, H.

(2011). Learning by extrapolation from marginal to full-

multivariate probability distributions: decreasingly naive

Bayesian classification. Machine Learning, 86(2), 233–272.

doi:10.1007/s10994-011-5263-6

Wu, J., & Cai, Z. (2011). Attribute weighting via differential evolution

algorithm for attribute weighted naive bayes (WNB). Journal
of Computational Information Systems, 7(12), 1672–1679.

Wu, X., & Kumar, V. (2009). The top ten algorithms in data mining.

International Statistical Review (Vol. 78, pp. 158–158). Taylor

& Francis Group.

Zaidi, N., Cerquides, J., Carman, M., & Webb, G. (2013). Alleviating

Naive Bayes Attribute Independence Assumption by Attribute

Weighting. Journal of Machine Learning Research, 14, 1947–
1988.

Zhang, H. (2004). Learning Weighted Naive Bayes with Accurate

Ranking. In Fourth IEEE International Conference on Data
Mining (ICDM’04) (pp. 567–570). IEEE.

doi:10.1109/ICDM.2004.10030

Arauzo-Azofra, A., Aznarte, J. L., & Benítez, J. M. (2011). Empirical

study of feature selection methods based on individual feature

evaluation for classification problems. Expert Systems with
Applications, 38(7), 8170–8177.

doi:10.1016/j.eswa.2010.12.160

Arisholm, E., Briand, L. C., & Fuglerud, M. (2007). Data Mining

Techniques for Building Fault-proneness Models in Telecom

Java Software. In The 18th IEEE International Symposium on
Software Reliability (ISSRE ’07) (pp. 215–224). IEEE.

doi:10.1109/ISSRE.2007.22

Arisholm, E., Briand, L. C., & Johannessen, E. B. (2010). A

systematic and comprehensive investigation of methods to

build and evaluate fault prediction models. Journal of Systems
and Software, 83(1), 2–17. doi:10.1016/j.jss.2009.06.055

Bibi, S., Tsoumakas, G., Stamelos, I., & Vlahvas, I. (2006). Software

Defect Prediction Using Regression via Classification. In IEEE
International Conference on Computer Systems and
Applications, 2006. (pp. 330–336). IEEE.

doi:10.1109/AICCSA.2006.205110

Brown, I., & Mues, C. (2012). An experimental comparison of

classification algorithms for imbalanced credit scoring data

sets. Expert Systems with Applications, 39(3), 3446–3453.

doi:10.1016/j.eswa.2011.09.033

Freund, R. J., & Wilson, W. J. (2003). Statistical Methods (2nd ed.).

Academic Press.

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian

network classifiers. Machine Learning, 29(2-3), 131–163.

Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer,

M., & Haussler, D. (2000). Support vector machine

classification and validation of cancer tissue samples using

microarray expression data. Bioinformatics, 16(10), 906–914.

doi:10.1093/bioinformatics/16.10.906

Golub, T. R. (1999). Molecular Classification of Cancer: Class

Discovery and Class Prediction by Gene Expression

Monitoring. Science, 286(5439), 531–537.

doi:10.1126/science.286.5439.531

Gray, D., Bowes, D., Davey, N., Sun, Y., & Christianson, B. (2012).

Reflections on the NASA MDP data sets. IET Software, 6(6),

549. doi:10.1049/iet-sen.2011.0132

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene

selection for cancer classification using support vector

machines. Machine Learning, 46(1-3), 389–422.

doi:10.1023/A:1012487302797

Hall, M. (2007). A decision tree-based attribute weighting filter for

naive Bayes. Knowledge-Based Systems, 20(2), 120–126.

doi:10.1016/j.knosys.2006.11.008

Hall, T., Beecham, S., Bowes, D., Gray, D., & Counsell, S. (2012). A

Systematic Literature Review on Fault Prediction Performance

in Software Engineering. IEEE Transactions on Software
Engineering, 38(6), 1276–1304. doi:10.1109/TSE.2011.103

Harrington, P. (2012). Machine Learning in Action. Connecticut:

Manning Publications Co. Greenwich, CT, USA.

Hsu, C., Chang, C., & Lin, C. (2003). A Practical Guide to Support

Vector Classification. Department of Computer Science and
Information Engineering, National Taiwai University.

Jiang, L. (2011). Random one-dependence estimators. Pattern
Recognition Letters, 32(3), 532–539.

doi:10.1016/j.patrec.2010.11.016

Jiang, L., Cai, Z., & Wang, D. (2010). Improving Naive Bayes for

Classification. International Journal of Computers and
Applications, 32(3). doi:10.2316/Journal.202.2010.3.202-2747

Jiang, L., Wang, D., Cai, Z., & Yan, X. (2007). Survey of improving

naive Bayes for classification. Advanced Data Mining and
Applications. doi:10.1007/978-3-540-73871-8_14

Khoshgoftaar, T. M., & Seliya, N. (2004). Comparative Assessment

of Software Quality Classification Techniques: An Empirical

Case Study. Empirical Software Engineering, 9(3), 229–257.

doi:10.1023/B:EMSE.0000027781.18360.9b

Khoshgoftaar, T. M., Yuan, X., Allen, E. B., Jones, W. D., &

Hudepohl, J. P. (2002). Uncertain Classification of Fault-Prone

Software Modules. Empirical Software Engineering, 7(4),

297–318. doi:10.1023/A:1020511004267

Lessmann, S., Baesens, B., Mues, C., & Pietsch, S. (2008).

Benchmarking Classification Models for Software Defect

Prediction: A Proposed Framework and Novel Findings. IEEE
Transactions on Software Engineering, 34(4), 485–496.

doi:10.1109/TSE.2008.35

Lin, J., & Yu, J. (2011). Weighted Naive Bayes classification

algorithm based on particle swarm optimization. In 2011 IEEE
3rd International Conference on Communication Software and
Networks (pp. 444–447). IEEE.

doi:10.1109/ICCSN.2011.6014307

Mizuno, O., & Kikuno, T. (2007). Training on errors experiment to

detect fault-prone software modules by spam filter. In

Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering -
ESEC-FSE ’07 (p. 405). New York, New York, USA: ACM

Press. doi:10.1145/1287624.1287683

NASA-SoftwareDefectDataSets. (n.d.). Retrieved from http://nasa-

softwaredefectdatasets.wikispaces.com/

Okutan, A., & Yıldız, O. T. (2012). Software defect prediction using
Bayesian networks. Empirical Software Engineering, 19(1),

154–181. doi:10.1007/s10664-012-9218-8

Pavlidis, P., Weston, J., Cai, J., & Grundy, W. N. (2001). Gene

functional classification from heterogeneous data. In

Proceedings of the fifth annual international conference on
Computational biology - RECOMB ’01 (pp. 249–255). New

York, New York, USA: ACM Press.

doi:10.1145/369133.369228

Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 45

http://journal.ilmukomputer.org

Ratanamahatana, C., & Gunopulos, D. (2003). Feature selection for

the naive bayesian classifier using decision trees. Applied
Artificial Intelligence, 475–487.

doi:10.1080/08839510390219327

Shepperd, M., Song, Q., Sun, Z., & Mair, C. (2013). Data Quality:

Some Comments on the NASA Software Defect Datasets.

IEEE Transactions on Software Engineering, 39(9), 1208–
1215. doi:10.1109/TSE.2013.11

Song, Q., Jia, Z., Shepperd, M., Ying, S., & Liu, J. (2011). A General

Software Defect-Proneness Prediction Framework. IEEE
Transactions on Software Engineering, 37(3), 356–370.

doi:10.1109/TSE.2010.90

Taheri, S., Yearwood, J., Mammadov, M., & Seifollahi, S. (2013).

Attribute weighted Naive Bayes classifier using a local

optimization. Neural Computing and Applications.

doi:10.1007/s00521-012-1329-z

Turhan, B., & Bener, A. (2009). Analysis of Naive Bayes’
assumptions on software fault data: An empirical study. Data
& Knowledge Engineering, 68(2), 278–290.

doi:10.1016/j.datak.2008.10.005

Webb, G. I., Boughton, J. R., & Wang, Z. (2005). Not So Naive Bayes:

Aggregating One-Dependence Estimators. Machine Learning,

58(1), 5–24. doi:10.1007/s10994-005-4258-6

Webb, G. I., Boughton, J. R., Zheng, F., Ting, K. M., & Salem, H.

(2011). Learning by extrapolation from marginal to full-

multivariate probability distributions: decreasingly naive

Bayesian classification. Machine Learning, 86(2), 233–272.

doi:10.1007/s10994-011-5263-6

Wu, J., & Cai, Z. (2011). Attribute weighting via differential evolution

algorithm for attribute weighted naive bayes (WNB). Journal
of Computational Information Systems, 7(12), 1672–1679.

Wu, X., & Kumar, V. (2009). The top ten algorithms in data mining.

International Statistical Review (Vol. 78, pp. 158–158). Taylor

& Francis Group.

Zaidi, N., Cerquides, J., Carman, M., & Webb, G. (2013). Alleviating

Naive Bayes Attribute Independence Assumption by Attribute

Weighting. Journal of Machine Learning Research, 14, 1947–
1988.

Zhang, H. (2004). Learning Weighted Naive Bayes with Accurate

Ranking. In Fourth IEEE International Conference on Data
Mining (ICDM’04) (pp. 567–570). IEEE.

doi:10.1109/ICDM.2004.10030

BIOGRAPHY OF AUTHORS

Rizky Tri Asmono Received bachelor

degree and master degree in Computer

Science in 2012 and 2014 from Dian

Nuswantoro University, Indonesia. He is

an IT Executive at PT. Sree International

Indonesia in Indonesia. His current

research interests are Software

Engineering, Data Mining and Machine

Learning.

Romi Satria Wahono. Received B.Eng

and M.Eng degrees in Computer Science

respectively from Saitama University,

Japan, and Ph.D in Software Engineering

from Universiti Teknikal Malaysia Melaka.

He is a lecturer at the Faculty of Computer

Science, Dian Nuswantoro University,

Semarang, Indonesia. He is also a founder

and chief executive officer of PT

Brainmatics Cipta Informatika, a software development company in

Indonesia. His current research interests include software engineering

and machine learning. Professional member of the ACM, PMI and

IEEE Computer Society

Abdul Syukur. Received bachelor degree

in Mathematics from Universitas

Diponegoro Semarang, master degree in

management from from Universitas Atma

Jaya Yogyakarta, and doctoral degree in

economic from Universitas Merdeka

Malang. He is a lecturer and a dean at the

Faculty of Computer Science, Dian

Nuswantoro University, Semarang,

Indonesia. His current research interests include decision support

systems and information management systems.

