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Abstract: The maintenance phase of the software project can be 

very expensive for the developer team and harmful to the users 

because some flawed software modules. It can be avoided by 

detecting defects as early as possible. Software defect 

prediction will provide an opportunity for the developer team 

to test modules or files that have a high probability defect. 

Naïve Bayes has been used to predict software defects. 

However, Naive Bayes assumes all attributes are equally 

important and are not related each other while, in fact, this 

assumption is not true in many cases. Absolute value of 

correlation coefficient has been proposed as weighting method 

to overcome Naïve Bayes assumptions. In this study, Absolute 

Correlation Weighted Naïve Bayes have been proposed. The 

results Wilcoxon signed-rank test on experiment results show 

that the proposed method improves the performance of Naïve 

Bayes for classifying defect-prone on software defect 

prediction. 
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1 INTRODUCTION 

Software is computer programs and related documentation. 

Software products can be expanded for a specific customer or 

may be developed for the common marketplace in accordance 

with the functions and needs. Develop a flawless software is 

difficult and often times there are some errors or bugs unknown 

or unexpected defects, although the software-development 

methodology has been applied with cautious(Okutan & Yıldız, 
2012). The maintenance phase of the software project will be 

very expensive for the developer team and harmful to the users 

because some flawed software modules. Surely, it can be 

avoided by detecting defects as early as possible. Defect 

prediction will provide an opportunity for the developer team 

to test modules or files that have a high probability defect. The 

completion of defect prediction problems currently focusing on 

1) estimate the number of defects in the existing software 

systems, 2) discovering defect associations and 3) 

classification on the defect-prone of software, specially defect 

and non-defect label(Song, Jia, Shepperd, Ying, & Liu, 2011). 

The things that detrimental to users and developer team can be 

avoided as early as possible with a software defect prediction. 

For classifying defect-prone, Hall conducted an 

investigation on software defect prediction(T. Hall, Beecham, 

Bowes, Gray, & Counsell, 2012). Hall compared Decision 

Tree, Logistic Regression, Naïve Bayes, Neural Network, C4.5 

etc. The results of the investigation showed the two best 

methods that can be used to predict software defects are Naive 

Bayes (NB) and Logistic Regression. Logistic Regression is a 

statistical probabilistic classification method. The advantages 

of logistic regression are computationally inexpensive, slight 

to implement and mild to interpret knowledge representation. 

The disadvantages of logistic regression are prone to under 

fitting and may have a low accuracy(Harrington, 2012). Naïve 

Bayes is a modest probabilistic classifier. It is very comfortable 

because it does not require any complicated parameter 

estimation. Therefore, Naive Bayes ready to be used for large 

amounts of data. Moreover, Naive Bayes is also very facile to 

explain so the users who do not have the technological 

classification capability can understand the reason why the 

classification was made(X. Wu & Kumar, 2009). However, 

Naive Bayes assumes all attributes are equally important and 

are not related each other while, in fact, this assumption is not 

true in many cases(J. Wu & Cai, 2011), (Turhan & Bener, 

2009), (Liangxiao Jiang, 2011). The assumption made by 

Naive Bayes can be detrimental to its performance in real data 

mining applications.  

Naïve Bayes assumes that all the attributes are not 

dependent on each other, in fact, the class depends on others 

attribute. Naïve Bayes also assumes the relationship between 

class and one attribute as strong as the relationship between 

class and other attribute(Turhan & Bener, 2009). The case 

mentioned previously clearly unrealistic. For example, data set 

for evaluate risk of loan application, it seems not fair to assume 

that between income, age and education levels are equally 

important. The assumption made by Naïve Bayes harming the 

performance of classification in reality(Webb, Boughton, & 

Wang, 2005). This assumption can cause the unwanted error 

increase. 

Many methods have been developed to cover this attribute 

independence assumption. Jiang(Liangxiao Jiang, Wang, Cai, 

& Yan, 2007), (L. Jiang, Cai, & Wang, 2010) categorizes 

solutions to these problems into five: 1) Attribute selection, 2) 

Local Learning, 3) Attribute Weighting, 4) Instance Weighting 

and 5) Structure Extension. Previous researchers have 

proposed many useful methods to evaluate the important 

attributes. Ratanamahatana use Decision Tree as feature 

selection on Naïve Bayes(Ratanamahatana & Gunopulos, 

2003). Zhang use Gain Ratio to determine attribute weight on 

Naïve Bayes(Zhang, 2004). Wu use Differential Evolution 

Algorithm to weighting attribute(J. Wu & Cai, 2011). Decision 

Tree-based attribute weighting for Naïve Bayes proposed by 

Hall(M. Hall, 2007). Averaged n-Dependence Estimators 

(AnDE) was proposed by Webb(Webb, Boughton, Zheng, 

Ting, & Salem, 2011). AnDE was developed from Averaged 

One-Dependence estimators (Aode) which reduce the Naive 

Bayes independence assumption(Webb et al., 2005). Zaidi 

proposed Weighting attributes to Alleviate Naive Bayes 

Independence Assumption (WANBIA) by set all weights to a 

single value(Zaidi, Cerquides, Carman, & Webb, 2013). Taheri 

proposed Attribute Weighted Naive Bayes (AWNB) which 

define more than one weight for each attribute(Taheri, 

Yearwood, Mammadov, & Seifollahi, 2013). AWNB limited 

to binary classification.  
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Because of the attribute does not have the same role, some 

of them more important than the others, one of the ways to 

develop Naïve Bayes is set a different weight value of each 

attributes. It is becoming the main idea of the new algorithm 

called Weighting Naive Bayes, abbreviated WNB, weight 

value depending on how significant these attributes in the 

probability, more influential an attribute in probabilities, higher 

the weight value. For weighting the attribute, this study using 

correlation coefficients to measure relevancy between class 

and attributes. Arauzo-Azora has been conducting an empirical 

study of feature selection method(Arauzo-Azofra, Aznarte, & 

Benítez, 2011). The study evaluated a broad overview of 

feature selection methods. For weighting attributes by 

calculating the relevance between attributes get the highest 

average rank from all the ways for Naïve Bayes. Correlation 

coefficient can be used to measure the relevance between 

attributes(Golub, 1999), (Furey et al., 2000), (Pavlidis, 

Weston, Cai, & Grundy, 2001). It used to measure the strength 

of relationship between two attributes(Freund & Wilson, 

2003). The value of the correlation coefficients is between +1 

and -1. Value of +1 and -1 indicate positive and negative 

relationship. Because it only requires the strength of the 

relationship between the attributes then absolute value of the 

correlation coefficients is used. 

In this study, Absolute Correlation Weighted Naïve Bayes 

has been proposed. Absolute correlation is used as a weight 

because it shows how strong relevance between attributes. The 

purpose of this study is to improve the performance of Naïve 

Bayes for classifying defect-prone on software defect 

prediction. 

 

2 RELATED WORK 

While many studies, including individual study report the 

performance comparison of modeling techniques, there is no 

explicit consensus appear that conduct best when distinctive 

studies that looked at in isolation(T. Hall et al., 2012). Mizuno 

and Kikuno(Mizuno & Kikuno, 2007) reported, the techniques 

they learned, Orthogonal Sparse Bigrams Markov models 

(OSB) are most fit for the defect prediction. Bibi et al.(Bibi, 

Tsoumakas, Stamelos, & Vlahvas, 2006) reported that 

Regression via Classification (RVC) works fine. Khoshgoftaar 

et al.(Khoshgoftaar, Yuan, Allen, Jones, & Hudepohl, 2002) 

reported that the defect-prone modules predicted as uncertain, 

can be effectively classified using Tree Disc (TD) technique. 

Khoshgoftaar and Seliya(Khoshgoftaar & Seliya, 2004) also 

reported that the Case-Based Reasoning (CBR) did not predict 

well with C4.5 as well under performing. Arisholm et 

al.(Arisholm, Briand, & Johannessen, 2010) reported that their 

comprehensive performance comparison showed there is no 

difference between predictive modeling techniques they 

investigated.  

A clearer picture appears to arise from the detailed analysis 

conducted by Hall(T. Hall et al., 2012) on the performance of 

the model. Hall(T. Hall et al., 2012) findings indicate that 

actually performance can be associated with modeling 

techniques that is used. Their comparative analysis showed that 

studies using Support Vector Machine (SVM) technique 

appear less well. It probably performed poorly because they 

need the optimization of parameters where it is uncommon 

done in the study of defect prediction for best 

performance(Hsu, Chang, & Lin, 2003). C4.5 model 

apparently poor performing if they use imbalanced data 

(Arisholm, Briand, & Fuglerud, 2007; Arisholm et al., 2010). 

The comparative analysis has been done by Hall also shows 

that the model performs proportionately correctly are 

comparatively easy technique that simple to use and rightly 

understood. Logistic Regression and Naïve Bayes, specifically, 

appears to be technique that is used in the model are performing 

relatively well. The model appears to work correctly when the 

proper techniques have been appropriate for the dataset. 

Lin et al.(Lin & Yu, 2011) have a research problem that 

Naïve Bayes assumption that assumes the value of attributes 

are independent with other attributes. Lin et al.(Lin & Yu, 

2011) proposed PSO-based Weighted Naïve Bayesian 

Classifier to mitigate this assumption. Particle Swarm 

Optimization algorithm applied on a weighted naive Bayes 

classification, through the automatic search behavior of 

particles, to avoid the mistakes of other methods. The value of 

the search results by the swarm is used as a weight to each 

attribute. The research results show that the correct rate-based 

Weighted Naïve Bayesian Classifier higher than the Naïve 

Bayes.  

Taheri et al.(Taheri et al., 2013) have a research problem 

that attributes independence assumption created by NB 

classifier adverse classification performance when, in fact, 

infringed. On research, Taheri et al.(Taheri et al., 2013) 

proposed a new attribute weighted Naïve Bayes classifier, 

called AWNB, which provide more than one weight for every 

attribute. The results presented show that the accuracy of the 

proposed method far better compared to Naïve Bayes in every 

data set(Taheri et al., 2013). It also indicates greater accuracy 

from AWNB, in general, compared with the results obtained 

by INB and TAN. 

The research issue of Wu et al.(J. Wu & Cai, 2011) is 

independence assumption made by Naive Bayes that all 

attributes not related to one another adverse classification 

performance when it is infringed in reality. In order to weaken 

the assumption of independent attributes, Wu et al.(J. Wu & 

Cai, 2011) suggested Different Evolution as a weighting 

method on Weighted Naïve Bayes. Wu et al.(J. Wu & Cai, 

2011) comparing Different Evolution with some other 

weighting methods and the performance of the Different 

Evolution is better than other weighting methods. 

Naïve Bayes is easy to build, because it has a very simple 

structure(X. Wu & Kumar, 2009). Learning Naïve Bayes only 

involves teaching the probability table, to be specific, the 

conditional probability tables for each attribute, from training 

examples. This means, the values of the probability p (ai|c) 
must be determined from the training sample, for each value ai 

of attribute Ai considering the value of the variable c on class 

C. 

In Naïve Bayes, it is assumed that the attributes are 

independent one another provided class(J. Wu & Cai, 2011), 

(Turhan & Bener, 2009), (L. Jiang et al., 2010). Each attribute 

only has class variables as its parent(J. Wu & Cai, 2011), 

(Liangxiao Jiang et al., 2007), P (E|c) is calculated by: 𝑝(𝐸|𝑐) = 𝑝(𝑎1, 𝑎2, … , 𝑎𝑛|𝑐) =  ∏ 𝑝(𝑎𝑖|𝑐)𝑛
𝑖=1  

Where p (ai|c) is referred the likelihood of Ai, and the instance 

E = (a1, a2, …, an). 
Due to each sample E the value of p (E) is constant. The 

possibility of the establishment of a class label for an example 

is: 𝑝(𝑐|𝐸) = 𝑝(𝑐) ∏ 𝑝(𝑎𝑖|𝑐)𝑛
𝑖=1  

Example E are classified into the class C = c’ if and only if 𝑝(𝑐′|𝐸) = arg max𝑐 𝑝(𝑐|𝐸) 
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More exactly, the classification of which granted by Naïve 

Bayes, denoted by Vnb (E), is defined as follows 𝑉𝑛𝑏(𝐸) = arg max𝑐 𝑝(𝑐) ∏ 𝑝(𝑎𝑖|𝑐)𝑛
𝑖=1  

Because of the conditional independence assumption 

uncommon properly, in reality, it is reasonable to extend the 

Naïve Bayes to relax the assumption of conditional 

independence. There are two primary ways to relax the 

assumption (Zhang, 2004). First, Naïve Bayes structure is 

extended to explicitly represent dependencies between 

attributes, and generated model referred to augmented Naïve 

Bayes (ANB)(Friedman, Geiger, & Goldszmidt, 1997). 

Second, Attributes are weighted differently, and resultant 

model is called Weighted Naïve Bayes (WNB). Weighted 

Naïve Bayes is formally defined as follows. 𝑉𝑤𝑛𝑏(𝐸) = arg max𝑐 𝑝 (𝑐) ∏ 𝑝(𝑎𝑖|𝑐)𝑤𝑖𝑛
𝑖=1  

Where Vwnb (E) shows the classification provided by Weighted 

Naïve Bayes, and wi is weight of attribute Ai. 

 

3 PROPOSED METHOD 

The correlation coefficient measures the power of linear 

relationship between two quantitative variables, typically a 

ratio or interval(Freund & Wilson, 2003). The correlation 

coefficient has the properties, which are 1) its value is among 

+1 and -1 inclusively, 2) the values +1 and -1 indicate a positive 

relationship and negative exact, respectively, among the 

variables, 3) a correlation of zero shows there is no linear 

relationship exists between two variables and 4) the correlation 

coefficient is symmetric to x and y. Thus the size of the power 

of the linear relationship irrespective of whether 𝑥 or 𝑦 is the 

independent variable. 

The correlation coefficient can be defined as follows 𝑟 =  ∑(𝑥 −  𝑥̅) (𝑦 −  𝑦̅)∑  (𝑥 − 𝑥̅)2 ∑  (𝑦 − 𝑦̅)2 

Where 𝑟 symbolize correlation coefficient, 𝑥̅ symbolize mean 

value of 𝑥 and 𝑦̅ symbolize mean value of 𝑦. 

Various correlation coefficients are used as a weighting 

method(Guyon, Weston, Barnhill, & Vapnik, 2002). The 

coefficient used in Golub(Golub, 1999) is defined as 𝑤𝑖 =   (𝜇𝑖(+) −  𝜇𝑖(−)) (𝜎𝑖(+) +  𝜎𝑖(−)) 

Where 𝜇𝑖 and 𝜎𝑖 are the mean and standard deviation of the 

values of attribute 𝑖 for all of class (+) or class(−), 𝑖 =1, 2, … , 𝑛, 𝑤𝑖  large positive value shows a strong correlation 

with class (+) while the large negative value of 𝑤𝑖  show a 

strong correlation with class (−). Other people(Furey et al., 

2000) have used the absolute value of 𝑤𝑖  as a weighting 

method. Recently, Pavlidis(Pavlidis et al., 2001) has been 

using the associated coefficients which defined below 𝑤𝑖 =   (𝜇𝑖(+) − 𝜇𝑖(−))2 (𝜎𝑖(+)2 +  𝜎𝑖(−)2) 

Zhang(Zhang, 2004) extended the Naïve Bayes to relax the 

assumption of conditional independence. Zhang(Zhang, 2004) 

performed Weighted Naïve Bayes. Correlation coefficient is 

used as a weight because it shows how strong relevance 

between attributes. Based on the coefficient that used in 

Golub(Golub, 1999), the proposed method uses the absolute 

correlation coefficient because it only requires the strength of 

the relationship between the attributes. This idea is similar with 

Furey et al.(Furey et al., 2000) that can be defined as follows. 

𝑤𝑖 =  | (𝜇𝑖𝑗 −  𝜇𝑖𝑗̅) (𝜎𝑖𝑗 +  𝜎𝑖𝑗̅)| 
Where wi is a weight of attribute i, 𝜇𝑖𝑗 is mean values of 

attribute i for class j, 𝜇𝑖𝑗̅ is mean values of attribute i for class 

non j, 𝜎𝑖𝑗 is standard deviation of the values of attribute i for 

class j and 𝜎𝑖𝑗̅ is standard deviation of the values of attribute i 

for class non j. 
The proposed method in study is Absolute Correlation 

Weighted Naïve Bayes (AC-WNB) that can be described in 

Figure 1. There are three different processes in AC-WNB 

model figured with shaded block, which are calculate the 

weight, calculate the weighted likelihood and calculate prior. 

Calculate the weight is a process that calculates weight for each 

attribute in the training process. The weight is calculated the 

absolute value of correlation coefficient by using the mean and 

standard deviation of each attribute. Calculate the weighted 

likelihood is a process that calculates the likelihood for each 

attribute to classify the testing dataset. These likelihood 

squares by weight that generated on calculating the weight 

process. Calculate the prior used weighted likelihood. The 

weighted likelihood of class was divided by sum of all 

weighted likelihood. 

As shown on Figure 1, dataset is divided into data training 

and data testing using 10-fold cross validation method. Data 

training is used to training process. In training process, means, 

standard deviations and weight of each attributes will be 

calculated. Weight will be calculated using mean and standard 

deviation. The absolute value of the difference between mean 

of class and the other classes that have been divided with the 

summation of standard deviations is used as weight value.  

The detail of training process of AC-WNB as follows: 

1. Calculate the mean value of attribute in each class 

The mean value obtained by summing all instances 
value on a specific attribute then divide by the number 
of instances. The mean value can be formulated as 
follows 𝜇 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛𝑛  

 

2. Calculate the standard deviation of attribute in each 
class 

The standard deviation is the square root value of the 
variance. The variance is obtained by subtract each 
value with mean value and square the result then 
divided by the number of instances. There are two 
types of standard deviation that are the sample and 
population. The population divide the square results 
with the number of instances (N) and the sample divide 
the square results with the number of instances minus 
one (N-1). Absolute Correlation based Weighted Naïve 
Bayes use the sample to calculate standard deviation. 
The standard deviation can be formulated as follows 𝜎 = 1𝑁 − 1 ∑(𝑥𝑖 − 𝜇)2𝑁

𝑖=1   
 

3. Calculate the weight of attribute 

The weight can be obtained by calculation using mean 

and standard deviation that formulated as follows 𝑤𝑖 =  | (𝜇𝑖𝑗 −  𝜇𝑖𝑗̅) (𝜎𝑖𝑗 +  𝜎𝑖𝑗̅)| 
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4. Repeat steps 1-3 for all attribute 

 

 
Figure 1 Flow Chart of AC-WNB Method 

 

The model that has been generated in training process will 

be tested using data testing. AC-WNB has to calculate 

likelihood, prior, weighted likelihood and weighted prior to 

classifying the class. Likelihood is commonly known as 

conditional probabilities that is calculated using normal 

distribution of each attribute. This normal distribution of each 

attribute would be squared by weight that has been generated 

at training process. The product (π) of weighted normal 
distribution of all attributes is used to weighted likelihood 

value of class. The prior is also known as class probabilities. 

The value of prior of class calculated by divided weighted 

likelihood of class with sum of all weighted likelihood class. 

Then, weighted likelihood value would be multiplied with prior 

to classify. The detail of testing process of AC-WNB as 

follows: 

1. Calculate weighted likelihood 

For numeric attribute, likelihood calculates by using 
normal distribution. In this study, all attributes were 
numeric. The normal distribution was formulated as 
follows 𝑝(𝑎|𝑐)  = 1𝜎√2𝜋 𝑒−(𝑥−𝜇)22𝜎2  

Then, weighted likelihood can be calculated with 
formula as follows 𝐿 = ∏ 𝑝(𝑎𝑖|𝑐)𝑤𝑖𝑛

𝑖=1  

2. Calculate prior 
The prior of class calculated by divided weighted 

likelihood of class with sum of all weighted likelihood 

class. The prior can be formulated as follows 𝑝(𝑐) = ∏ 𝑝(𝑎𝑖|𝑐)𝑛𝑖=1 𝑤𝑖∏ 𝑝(𝑎𝑖|𝑐)𝑤𝑖𝑛𝑖=1  +  ∏ 𝑝(𝑎𝑖|𝑐)̅𝑛𝑖=1 𝑤𝑖  
3. Calculate probabilities of class 

In order to calculate probability of class, weighted 
likelihood value will be multiplied prior. The 
probabilities of class can be formulated as follows 𝑝(𝑐|𝐸) = 𝑝(𝑐) ∏ 𝑝(𝑎𝑖|𝑐)𝑛

𝑖=1  

4. Repeat steps1-3 for all class 

5. The predicted class was determined by the highest 
probability. 

 

4 DATA GATHERING 

NASA dataset that was used in this study was obtained 

from the MDP (Metric Data Program) Repository (“NASA-

SoftwareDefectDataSets,” n.d.), which can also be obtained 

from the PROMISE Repository. NASA datasets have been 

widely used for research in the field of software engineering(T. 

Hall et al., 2012). This dataset is devoted to research on the 

topic of software defect and software failures. Therefore, most 

studies use this dataset to do some research, ranging from doing 

predictions, associations, and to the development of a model 

for research. 

NASA dataset currently available from many Repository 

(MDP and PROMISE), therefore, the researchers used a dataset 

derived from the MDP Repository who has been repaired by 

Martin Shepherd(Shepperd, Song, Sun, & Mair, 2013), with 

the following specifications(Gray, Bowes, Davey, Sun, & 

Christianson, 2012) in Table 1. All attributes in NASA MDP 

dataset are numeric. Dataset has been fixed by removing data 

null or no value. Accordingly, this study used the dataset to do 

some research in determining the proposed model in the 

prediction of software defects. 

 

Table 1 Dataset Specifications 

 
 

Attribute NASA MDP Dataset 

CM

1 

JM

1 

KC

1 

KC

3 

MC

1 

MC

2 

PC

1 

PC3 PC

4 

PC

5 

LOC_BLANK √ √ √ √ √ √ √ √ √ √ 

BRANCH_COUNT √ √ √ √ √ √ √ √ √ √ 

CALL_PAIRS √     √ √ √ √ √ √ √ 

LOC_CODE_AND_COMMENT √ √ √ √ √ √ √ √ √ √ 

LOC_COMMENTS √ √ √ √ √ √ √ √ √ √ 

CONDITION_COUNT √     √ √ √ √ √ √ √ 

CYCLOMATIC_COMPLEXITY √ √ √ √ √ √ √ √ √ √ 

CYCLOMATIC_DENSITY √     √ √ √ √ √ √ √ 

DECISION_COUNT √     √ √ √ √ √ √ √ 

DECISION_DENSITY √     √  √ √ √ √  

DESIGN_COMPLEXITY √ √ √ √ √ √ √ √ √ √ 

DESIGN_DENSITY √     √ √ √ √ √ √ √ 

EDGE_COUNT √     √ √ √ √ √ √ √ 

ESSENTIAL_COMPLEXITY √ √ √ √ √ √ √ √ √ √ 

ESSENTIAL_DENSITY √     √ √ √ √ √ √ √ 

LOC_EXECUTABLE √ √ √ √ √ √ √ √ √ √ 

PARAMETER_COUNT √     √ √ √ √ √ √ √ 

GLOBAL_DATA_COMPLEXITY       √ √ √      √ 

GLOBAL_DATA_DENSITY       √ √ √      √ 

HALSTEAD_CONTENT √ √ √ √ √ √ √ √ √ √ 

HALSTEAD_DIFFICULTY √ √ √ √ √ √ √ √ √ √ 

HALSTEAD_EFFORT √ √ √ √ √ √ √ √ √ √ 

HALSTEAD_ERROR_EST √ √ √ √ √ √ √ √ √ √ 

HALSTEAD_LENGTH √ √ √ √ √ √ √ √ √ √ 

HALSTEAD_LEVEL √ √ √ √ √ √ √ √ √ √ 

HALSTEAD_PROG_TIME √ √ √ √ √ √ √ √ √ √ 

HALSTEAD_VOLUME √ √ √ √ √ √ √ √ √ √ 

MAINTENANCE_SEVERITY √     √ √ √ √ √ √ √ 

MODIFIED_CONDITION_COUNT √     √ √ √ √ √ √ √ 

MULTIPLE_CONDITION_COUNT √     √ √ √ √ √ √ √ 

NODE_COUNT √     √ √ √ √ √ √ √ 

NORMALIZED_CYLOMATIC_COMPL

EXITY 

√     √ √ √ √ √ √ √ 

NUM_OPERANDS √ √ √ √ √ √ √ √ √ √ 

NUM_OPERATORS √ √ √ √ √ √ √ √ √ √ 

NUM_UNIQUE_OPERANDS √ √ √ √ √ √ √ √ √ √ 

NUM_UNIQUE_OPERATORS √ √ √ √ √ √ √ √ √ √ 

NUMBER_OF_LINES √     √ √ √ √ √ √ √ 

PERCENT_COMMENTS √     √ √ √ √ √ √ √ 

LOC_TOTAL √ √ √ √ √ √ √ √ √ √ 

Number of Code Attributes 37 21 21 39 38 39 37 37 37 38 

Programming Language C C C+

+ 

Jav

a 

C 

and 

C++ 

C C C C C+

+ 

Number of Modules 327 778

2 

118

3 

194 198

8 

125 705 107

7 

128

7 

171

1 

Number of defect Modules 42 167

2 

314 36 46 44 61 134 177 471 



Journal of Software Engineering, Vol. 1, No. 1, April 2015               ISSN 2356-3974 

Copyright © 2015 IlmuKomputer.Com                      42 

http://journal.ilmukomputer.org 

5 RESULT AND ANALYSIS 

The proposed model was developed using Java using 

NetBeans IDE 7.3.1. Datasets that used in this study are: CM1, 

JM1, KC1, KC3, MC1, MC2, PC1, PC3, PC4 and PC5. The 

weight values that calculated by AC-WNB shown in Table 2. 

 

Table 2 Weight of attribute 

 
One of the performance indicators to evaluate the 

performance of the classifier in the experiment, area under the 

curve (AUC) was applied. AUC used in this study to evaluated 

the classifier on class imbalance data as recommended by 

Lessmann et al. (Lessmann, Baesens, Mues, & Pietsch, 2008) 

and Brown et al.(Brown & Mues, 2012). The results of all the 

methods would be compared using Wilcoxon signed-rank test 

to verify whether there is a significant difference between 

methods. 

 

Table 3 Performance of the NB and AC-WNB Model 

Datase

t 

NB AC-WNB AC-WACNB 

Accurac

y 

AUC Accurac

y 

AUC Accurac

y 

AUC 

CM1 81.04 0.76

8 

81.04 0.81

4 

81.35 0.85

7 

JM1 78.09 0.80

3 

78.17 0.81

0 

78.08 0.81

3 

KC1 72.02 0.79

3 

72.19 0.80

7 

72.19 0.83

4 

KC3 79.38 0.83

0 

79.38 0.87

9 

79.38 0.85

1 

MC1 88.58 0.83

6 

88.98 0.85

5 

89.03 0.83

3 

MC2 72.00 0.84

0 

72.80 0.84

3 

72.00 0.81

7 

PC1 87.66 0.80

0 

87.94 0.81

7 

87.80 0.84

7 

PC3 28.04 0.87

3 

69.73 0.86

2 

70.66 0.89

0 

PC4 86.01 0.79

7 

82.28 0.83

8 

82.13 0.90

6 

PC5 74.63 0.78

2 

74.93 0.80

5 

74.93 0.85

2 

 

As shown in Table 3, Absolute Correlation based Weighted 

Naïve Bayes have better average accuracy that is 78.74%, 

followed by Naïve Bayes with 74.74%, while for AUC values, 

the average of AUC values of Absolute Correlation Weighted 

Naïve Bayes is higher than Naïve Bayes. The average of AUC 

values of Absolute Correlation Weighted Naïve Bayes is 0.833, 

and then Naïve Bayes is 0.812 

The results of the comparison of the AUC can be described 

in Figure 2. The AUC values of AC-WNB higher than NB. It 

can be concluded that Absolute Correlation based Weighted 

Attribute-class Naïve Bayes is much better than others method. 

However, this increase should be examined more deeply with 

significance test. 

 

 
Figure 2 Performance (AUC) of the Models 

 

AUC values of Naïve Bayes and Absolute Correlation 

based Weighted Naïve Bayes would be compared using 

Wilcoxon signed-rank test. A significant different in 

performance was considered when the results of Wilcoxon 

signed-rank test showed that P-value<alpha (0.05). Wilcoxon 

signed-rank test results on the statistical test of AUC of Naïve 

Bayes and Absolute Correlation based Weighted Naïve Bayes 

was shown in Table 4. The average of AUC values for AC-

WNB was higher than NB that is 0.833 with P-value 0.01. As 

the computed P-value was lower than the significance level 

alpha, the null hypothesis (H0) that is the two samples follow 

the same distribution should be rejected and accept the 

alternative hypothesis (Ha) that is the distributions of the two 

samples are different. It means that NB and AC-WNB had 

significant differences P-value<alpha (0.05). Therefore, it can 

be concluded that AC-WNB makes an improvement when 

compared with NB in prediction performance. Hence, it means 

that the absolute value of correlation coefficient can improve 

the performance of Naïve Bayes for classifying on software 

defect prediction 

 

Table 4 Wilcoxon Signed-Rank Test of AUC of NB and AC-

WNB 
  NB AC-WNB 

Observation 10 10 

Mean 0.8122 0.833 

Median 0.8015 0.8275 

Standard Deviation 0.030085877 0.02484351 

The Test Procedure    

Hypothetical Mean 

Difference 

0  

Nb. Of Zero Differences 0  

Rank Sum 55  

Rank Average 5.5  

Test Statistic (S+) 52  

Significance Level 0.05   

Exact Procedure    

Critical Value 8  

Decision Rule Reject H0 if (S+) > 8 

Final Decision The Null Hypothesis Cannot be 

Rejected 

 due to Insufficient Evidence in the 

Sample 

P-Value 0.01  

Attribute NASA MDP Dataset 

CM

1 

JM

1 

KC

1 

KC

3 

MC

1 

MC

2 

PC

1 

PC

3 

PC

4 

PC

5 

LOC_BLANK 0.18 0.21 0.25 0.34 0.37 0.37 0.38 0.49 0.24 0.15 

BRANCH_COUNT 0.19 0.20 0.22 0.25 0.20 0.37 0.19 0.09 0.01 0.23 

CALL_PAIRS 0.28     0.30 0.29 0.24 0.24 0.24 0.11 0.21 

LOC_CODE_AND_COMMENT 0.04 0.12 0.05 0.38 0.42 0.17 0.32 0.29 0.48 0.28 

LOC_COMMENTS 0.35 0.17 0.17 0.10 0.31 0.39 0.44 0.38 0.11 0.19 

CONDITION_COUNT 0.19     0.20 0.17 0.38 0.18 0.08 0.22 0.21 

CYCLOMATIC_COMPLEXITY 0.19 0.18 0.22 0.26 0.12 0.37 0.20 0.09 0.01 0.23 

CYCLOMATIC_DENSITY 0.28     0.19 0.29 0.07 0.52 0.21 0.33 0.22 

DECISION_COUNT 0.19     0.20 0.16 0.38 0.17 0.07 0.23 0.20 

DECISION_DENSITY 0.03     0.00   0.16 0.01 0.13 0.48   

DESIGN_COMPLEXITY 0.23 0.16 0.22 0.26 0.03 0.31 0.19 0.09 0.06 0.23 

DESIGN_DENSITY 0.16     0.03 0.12 0.13 0.05 0.00 0.13 0.06 

EDGE_COUNT 0.20     0.28 0.22 0.40 0.20 0.10 0.05 0.22 

ESSENTIAL_COMPLEXITY 0.12 0.14 0.15 0.17 0.13 0.36 0.13 0.01 0.14 0.18 

ESSENTIAL_DENSITY 0.00     0.05 0.00 0.34 0.01 0.03 0.11 0.11 

LOC_EXECUTABLE 0.29 0.21 0.25 0.29 0.24 0.34 0.33 0.13 0.19 0.19 

PARAMETER_COUNT 0.07     0.06 0.00 0.14 0.17 0.15 0.14 0.07 

GLOBAL_DATA_COMPLEXITY       0.26 0.01 0.34       0.21 

GLOBAL_DATA_DENSITY       0.11 0.23 0.06       0.09 

HALSTEAD_CONTENT 0.31 0.22 0.24 0.31 0.23 0.11 0.47 0.20 0.11 0.03 

HALSTEAD_DIFFICULTY 0.21 0.18 0.30 0.22 0.13 0.11 0.15 0.04 0.15 0.28 

HALSTEAD_EFFORT 0.14 0.09 0.22 0.23 0.04 0.38 0.16 0.02 0.13 0.18 

HALSTEAD_ERROR_EST 0.26 0.20 0.27 0.26 0.20 0.34 0.29 0.08 0.17 0.13 

HALSTEAD_LENGTH 0.27 0.22 0.28 0.27 0.21 0.35 0.31 0.11 0.19 0.16 

HALSTEAD_LEVEL 0.27 0.14 0.18 0.21 0.09 0.34 0.24 0.21 0.18 0.30 

HALSTEAD_PROG_TIME 0.14 0.09 0.22 0.23 0.04 0.38 0.16 0.02 0.13 0.18 

HALSTEAD_VOLUME 0.26 0.20 0.27 0.26 0.20 0.34 0.29 0.08 0.17 0.13 

MAINTENANCE_SEVERITY 0.13     0.09 0.01 0.18 0.14 0.16 0.28 0.21 

MODIFIED_CONDITION_COUNT 0.19     0.20 0.18 0.37 0.18 0.09 0.22 0.22 

MULTIPLE_CONDITION_COUNT 0.19     0.20 0.17 0.38 0.18 0.09 0.22 0.20 

NODE_COUNT 0.19     0.28 0.22 0.40 0.19 0.10 0.06 0.21 

NORMALIZED_CYLOMATIC_COMPLEXI

TY 

0.32   0.28 0.26 0.13 0.54 0.27 0.37 0.14 

NUM_OPERANDS 0.26 0.22 0.28 0.26 0.20 0.35 0.31 0.11 0.18 0.17 

NUM_OPERATORS 0.27 0.21 0.27 0.28 0.21 0.34 0.31 0.11 0.18 0.15 

NUM_UNIQUE_OPERANDS 0.31 0.23 0.30 0.29 0.31 0.21 0.37 0.24 0.15 0.14 

NUM_UNIQUE_OPERATORS 0.34 0.17 0.30 0.26 0.24 0.41 0.33 0.19 0.14 0.34 

NUMBER_OF_LINES 0.30     0.30 0.33 0.37 0.43 0.29 0.23 0.20 

PERCENT_COMMENTS 0.29     0.22 0.47 0.22 0.38 0.43 0.44 0.10 

LOC_TOTAL 0.26 0.22 0.26 0.29 0.28 0.34 0.35 0.16 0.44 0.20 

 

0.700

0.750

0.800

0.850

0.900

CM1 JM1 KC1 KC3 MC1 MC2 PC1 PC3 PC4 PC5

NB ACWNB
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6 CONCLUSION 

Naive Bayes proved effective in predicting software 

defects. However, Naïve Bayes perform less well for predicting 

software defects due to the assumption that all attributes are 

equally important and are not related to each other while, in 

fact, this assumption is not true in many cases. One of the ways 

to develop Naïve Bayes is set a different weight value of each 

attributes. 

Absolute Correlation Weighted Naïve Bayes has been 

proposed. Absolute Correlation Weighted Naïve Bayes 

provides weight to each attribute. The weight values are 

depending on how relevant the attribute with class. The 

correlation coefficient is used to measure the relevance 

between class and attribute. Therefore, absolute value of 

correlation coefficients was used as weight at Absolute 

Correlation Weighted Naïve Bayes. 

The results of experiments showed that the mean of AUC 

value of Naïve Bayes for classifying software defect was 

0.8122, while the average AUC value of Absolute Correlation 

Weighted Naïve Bayes was 0.833. The results of Wilcoxon 

signed-rank test showed that Absolute Correlation Weighted 

Naïve Bayes had significant differences with Naïve Bayes P-

value 0.008 < alpha (0.05). Therefore, it can be concluded that 

absolute correlation coefficient can improve the performance 

of Naïve Bayes for classifying on software defect prediction. 

 

7 FUTURE WORK 

In this study, absolute coefficient correlation could improve 

the performance of Naive Bayes for classifying on software 

defect prediction. Absolute correlation was used as weight for 

attribute by calculated the relevance between attribute. It used 

to measure the strength of relationship between two 

attributes(Freund & Wilson, 2003). Taheri et al.(Taheri et al., 

2013) proposed a new attribute weighted Naïve Bayes 

classifier, called AWNB, which provide more than one weight 

for every attribute. Therefore, investigation to improve the 

performance of Naive Bayes for classifying on software defect 

prediction by using absolute correlation to provide more than 

one weight is one of main direction for future work. 
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