PENENTUAN POSISI STASIUN GNSS CORS UNDIP EPOCH 2015 DAN EPOCH 2016 BERDASARKAN STASIUN IGS DAN SRGI MENGGUNAKAN PERANGKAT LUNAK GAMIT 10.6

Widi Hapsari, Bambang Darmo Yuwono, Fauzi Janu Amarrohman*)

Program Studi Teknik Geodesi Fakultas Teknik Universitas Diponegoro Jl. Prof. Sudarto, SH, Tembalang, Semarang Telp.(024)76480785, 76480788 Email: widihapsarii@gmail.com

ABSTRAK

Kegiatan penentuan posisi titik-titik control geodetik seiring dengan berjalannya waktu, telah beralih menggunakan GPS (Global Positioning System). Pembangunan sistem kerangka dasar nasional tersebut memanfaatkan dari aplikasi GPS yaitu CORS (Continuously Operating Refference Station). Titik control geodetik di Indonesia, direalisasikan dalam skala regional, nasional maupun global digunakan dalam bidang survey dan pemetaan, studi land subsidence, studi plate motion, gempa bumi, dll. Diperlukan pendefinisian stasiun dengan tingkat ketelitian yang tinggi dan berulang karena sifat stasiun CORS yang dinamis.

Pada penelitian ini melakukan pendefinisian ulang stasiun GNSS CORS UDIP pada epoch 2015 serta 2016, dengan menggunakan 9 titik ikat stasiun IGS (CNMR, COCO, DARW, IISC, PBRI, PIMO, TOW2, XMIS, dan YARR) serta 8 titik ikat stasiun SRGI (CBTL, CMAG, CMGL. CPAC, CPWD, dan CSEM) untuk mendefinisikan posisi dan kecepatannya. Pengolahan data menggunakan software ilmiah GAMIT 10.6.

Hasil dari penelitian ini adalah koordinat stasiun CORS UDIP dengan ketelitian terbaik, yaitu koordinat kartesian, dengan nilai X -2210748.65826 m ± 2.11 mm, nilai Y 5931893.19583 m ± 4.40 mm, dan nilai Z -777746.10639 m ± 1.27 mm. Serta kecepatandengan ketelitian terbaik yaitu Vx -0.02258 m ± 3.53 mm, Vy -0.01065 ± 6.52 mm, Vz -0.01089 ± 2.36 mm.

Kata Kunci: GAMIT 10.6, Kecepatan, Penentuan Posisi, Stasiun CORS,

ABSTRACT

Positioning geodetic control points time by time, has switched using GPS (Global Positioning System). The development of the basic framework of national system of GPS applications takes advantage of using CORS (Continuously Operating Refference Station). Geodetic control points in Indonesia, realized in regional scale, national and global are used in the field of surveying and mapping, land subsidence studies, studies of plate motion, earthquake, etc. In this case, required of defining stations with high precision and repeatedly because the dynamic nature of CORS stations.

In this research, doing redefinition station GNSS CORS UDIP the epoch at 2015 and 2016, using a nine point stations of IGS (CNMR, COCO, DARW, IISC, PBRI, PIMO, TOW2, XMIS, and YARR) and as well eight points of station SRGI (CBTL, CMAG, CMGL. CPAC, CPWD, and CSEM) to defined the position and velocity. Processing data using GAMIT 10.6 scientific software.

The results of this researchwere UDIP CORS station coordinates with the best accuracy, the cartesian coordinates, with the value of X -2210748.65826 $m \pm 2:11$ mm, the value of Y 5931893.19583 m \pm 4:40 mm, and the value of Z -777746.10639 m \pm 1:27 mm. And as well the velocity rates with the best accuracy were Vx -0.02258 m ±3.53 mm, Vy -0.01065 ±6.52 mm, Vz -0.01089 ±2.36 mm.

Keywords: CORS Station, GAMIT 10.6, Positioning, Velocity rate

^{*)} Penulis, Penanggung jawab

I. Pendahuluan

I.1.Latar Belakang

Penentuan posisi/kedudukan di permukaan bumi dapat dilakukan dengan metode terestris dan ekstra-terestris. Penentuan posisi dengan metode terestris dilakukan dengan pengamatan dan pengukuran di permukaan bumi, sedangkan penentuan posisi dengan metode ekstra-terestris dilakukan dengan pengamatan dan pengukuran terhadap obyek/benda di angkasa, baik yang bersifat alamiah seperti bintang, bulan, *quarsar*, maupun yang bersifat buatan manusia seperti satelit buatan manusia (Abidin, 2007).

Kegiatan penentuan posisi titik-titik control geodetik seiring dengan berjalannya waktu, telah beralih menggunakan GPS (Global Positioning System). Di Indonesia, GPS telah digunakan untuk menentukan koordinat titik-titik control yang membangun kerangka dasar nasional untuk survey dan pemetaan (Laksana, 2014). Pembangunan kerangka nasional sistem dasar tersebut memanfaatkan dari aplikasi GPS yaitu CORS (Continuously Operating Refference Station). GNSS CORS merupakan jaring kerangka geodetik aktif berupa stasiun permanen (base station) dilengkapi dengan receiver dan dapat menerima sinyal-sinyal dari satelit GNSS yang beroperasi secara kontinyu setiap hari (Purba, 2013).

Titik control geodetik di Indonesia, direalisasikan dalam skala regional, nasional maupun global digunakan dalam bidang survey dan pemetaan, studi land subsidence, studi plate motion, gempa bumi, dll. Untuk itu, diperlukan pendefinisian stasiun dengan tingkat ketelitian yang tinggi dan berulang karena sifatnya yang dinamis, mengingat letak wilayah Indonesia termasuk dalam aktivitas tektonik yang paling dinamis di dunia, yaitu terletak diantara tiga lempeng, diantaranya lempeng samudra pasifik yang bergerak ke arah barat-barat laut, lempeng Indo-Australia yang bergerak ke arah utara-timur laut serta lempeng benua Eurasia yang relatif diam.

Jurusan Teknik Geodesi, Fakultas Teknik Universitas Diponegoro sendiri memiliki stasiun GNSS CORS aktif yang dinamai CORS UDIP. Pendefinisian CORS UDIP dilakukan pada tahun 2013 dan 2014. Penentuan koordinat stasiun CORS UDIP untuk tahun 2016 ini, pengolahan data menggunakan perangkat lunak GAMIT/GLOBK 10.6 untuk memperoleh koordinat definitifnya.

Perangkat lunak ini untuk pendefinisian koordinat dengan kategori ilmiah serta dapat dimanfaatkan untuk kegiatan penelitian terutama di perguruan tinggi dan lembaga riset (Artini, 2013).

Penggunaan perangkat lunak ilmiah ini menghasilkan koordinat yang teliti. Proses pengolahan data GPS didukung dengan adanya titik-titik ikat global sebagai parameter acuan dan diperhitungkan pengaruh parameter-parameter pendukung lainnya, seperti atmosfir, orientasi bumi (EOP), pasang surut dan cuaca. Dalam ilmu dan aplikasi geodesi, ketelitian merupakan suatu pokok pembahasan yang sangat penting yaitu dalam penentuan posisi/kedudukan. Penentuan posisi dengan menggunakan receiver GNSS ini merupakan cara yang efektif karena dilakukan dengan cara cepat dan teliti. Pada sistem GNSS ini memungkinkan user/pengguna memperoleh titik yang memadai karena sistem ini dirancang untuk memberikan informasi tentang posisi ketepatan tiga dimensi (Herring, 2006).

I.2.Perumusan Masalah

Berdasarkan latar belakang masalah di atas, maka rumusan masalah dari penelitian ini adalah :

- Berapakah koordinat definitif pada stasiun GNSS CORS UDIP pada epoch 2015 dan 2016?
- 2. Apakah terjadi pergeseran pada *epoch* 2016 terhadap 2015?
- 3. Berapakah nilai *velocity* stasiun GNSS CORS UDIP?

I.3. Tujuan dan Manfaat Penelitian

Tujuan dari penelitian ini adalah:

- 1. Mengetahui koordinat definitif stasiun GNSS CORS UNDIP pada *epoch* 2015 dan 2016.
- 2. Mengetahui terjadinya pergeseran pada epoch 2016 terhadap 2015.
- 3. Mengetahui nilai *velocity* CORS UDIP

I.5. Ruang Lingkup Penelitian

Adapun ruang lingkup dalam penelitian ini adalah sebagai berikut :

- Daerah penelitian Tugas Akhir adalah di lingkungan JurusanTeknik Geodesi, Fakultas Teknik Universitas Diponegoro dengan koordinat 7° 3' 3.0832524" LS dan 110° 26' 23,4520872" BT.
- Data pengamatan GNSS stasiun CORS UDIP adalah sebanyak 4 hari pada bulan Juni, Juli

- dan Agustus tahun 2015, serta 4 hari pada bulan Januari, Februari serta Maret tahun 2016.
- Melakukan pengikatan pada Stasiun IGS sebanyak 9 titik, yaitu CNMR, COCO, DARW, IISC, PBRI, PIMO, TOW2, XMIS, dan YARR.
- Melakukan pengikatan pada Stasiun SRGI sebanyak 8 titik, yaitu CBTL, CMAG, CMGL, CPAC, CPBL, CPWD, CPKL dan CSEM.
- Menggunakan jaringan ITRF (International Terestrial Reference Frame) 2008 dalam pengolahan data.
- 6. Pengolahan data CORS GNSS menggunakan perangkat lunak GAMIT/GLOBK 10.6.

II. Tinjauan Pustaka

II.1.GNSS (GNSS (Global Navigation Satellite System)

GNSS adalah sistem navigasi yang digunakan untuk menentukan posisi di atas permukaan bumi (Gleason dan Gebre-Egziabher, 2009). GNSS terdiri dari beberapa sistem satelit diantaranya adalah GPS milik Amerika Serikat, GLONASS milik Eropa, GALILEO milik Rusia, dan COMPASS milik China.

GNSS tersebut merupakan teknologi yang digunakan untuk menentukan posisi atau lokasi (lintang, bujur, dan ketinggian) serta waktu dalam satuan ilmiah di bumi. Satelit akan mentransmisikan sinyal radio dengan frekuensi tinggi yang berisi data waktu dan posisi yang dapat diambil oleh penerima yang memungkinkan pengguna untuk mengetahui lokasi dimanapun di permukaan bumi (Ulinnuha, 2014).

II.3.CORS (Continuosly Operating Reference Station)

CORS (Continuously Operating Reference Station) adalah suatu teknologi berbasis GNSS yang berwujud sebagai suatu jaring kerangka geodetik yang pada setiap titiknya dilengkapi dengan receiver yang mampu menangkap sinyal dari satelit-satelit GNSS yang beroperasi secara penuh dan kontinyu selama 24 jam perhari, 7 hari per minggu dengan mengumpukan, merekam, mengirim data, dan memungkinkan para pengguna (users) memanfaatkan data dalam penentuan posisi, baik secara post processing maupun secara

real time (sumber: Gudelines for New and Existing CORS).

CORS pertama kali dikembangkan di Amerika Serikat sejak Oktober 2001 oleh The National Geodetic Survey (NGS). Sejak tahun 2006 di Indonesia telah dibangun stasiun-stasiun CGPS (Continuous GPS) oleh Bakosurtanal yang ditempatkan di beberapa daerah di Indonesia, diantaranya di Kantor Pusat Bakosurtanal di Cibinong Bogor, Bali, kawasan industri di Selat Sunda, dan di Bandung tepatnya di Pusat Peneropongan Bintang Bosccha, Lembang. Sampai saat ini jaringan CGPS di Indonesia sudah mencakup Jawa Barat sebanyak 15 stasiun dan Bali sebanyak 7 stasiun. Diharapkan dalam beberapa tahun mendatang stasiun-stasiun CGPS ini dapat dikembangkan menjadi sistem yang aktif dan multiguna (Nugraha, 2010).

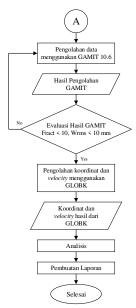
II.2.IGS (International GNSS Service)

IGS didirikan oleh *International Association* of Geodesy (IAG) pada tahun 1993, dan operasi formalnya dimulai tahun 1994. IGS beranggotakan organisasi dan badan multi nasional yang menyediakan data GPS, informasi orbit GPS, serta data dan informasi pendukung penelitian geodetik dan geofisik lainnya (IGS, 2008).IGS, sebagai komponen dari Global Geodetic Observing System, mengoperasikan jaringan global stasiun GNSS tanah, pusat data, dan pusat analisis data untuk menyediakan data dan produk turunan data yang sangat penting untuk penelitian ilmu kebumian multi-disiplin positioning, navigasi, dan waktu (PNT) aplikasi dan pendidikan.

Dasar dari IGS adalah jaringan global lebih dari 400 permanen, terus beroperasi, stasiun kualitas geodetik pelacakan GPS, GLONASS, Galileo, Beidou, QZSS, dan SBAS. IGS produk inti set - orbit satelit, jam, parameter rotasi bumi, dan posisi stasiun ditambah dengan produk yang lebih baru lahir dari IGS *Working Groups* (WG) dan Proyek Percontohan (PP).

II.4.SRGI (Sistem Referensi Geospasial Indonesia)

SRGI adalah suatu *terminology* modern yang sama dengan *terminology* Datum Geodesi Nasional (DGN) yang lebih dulu didefinisikan, yaitu sistem koordinat nasional yang konsisten dan *compaptibel* dengan sistem koordinat global. SRGI


koordinat mempertimbangkan perubahan berdasarkan fungsi waktu, karena adanya dinamika SRGI (Sistem Referensi Geospasial Indonesia) tunggal sangat diperlukan untuk mendukung kebijakan Satu Peta (One Map) bagi Indonesia. Dengan satu peta maka pelaksanaan pembangunan di Indonesia dapat berjalan serentak tanpa tumpang tindih kepentingan. Sistem Referensi Geospasial merupakan suatu sistem koordinat konsisten nasional yang kompatibel dengan sistem koordinat global, yang secara spesifik menentukan lintang, bujur, tinggi, skala, gayaberat, dan orientasinya mencakup seluruh wilayah NKRI, termasuk bagaimana nilai-nilai koordinat tersebut berubah terhadap

Dalam realisasinya sistem referensi geospasial ini dinyatakan dalam bentuk Jaring Kontrol Geodesi Nasional dimana setiap titik kontrol geodesi akan memiliki nilai koordinat yang teliti baik nilai koordinat horisontal, vertikal maupun gayaberat.Pemutakhiran sistem referensi geospasial atau datum geodesi merupakan suatu hal yang wajar sejalan dengan perkembangan teknologi penentuan posisi berbasis satelit yang semakin teliti.

III. Metodologi Penelitian

Berikut merupakan tahapan-tahapan penelitian meliputi :

Gambar III.1 Diagram Alir Penelitian

III.1.Penggabungan *File* RINEX dan Cek Kualitas Data Menggunakan TEQC

Sebelum melakukan pengolahan menggunakan GAMIT, terlebih dahulu dilakukan penggabungan file observasi hasil convert dari RAW menggunakan software TEQC data. (metadata extraction, (Translation, Editing formatting, windowing, dan splicing). TEQC menggabungkan *file* observasi per jam pengamatan menjadi satu doy. Kemudian dilakukan pengecekan kualitas data observasi untuk mengetahui kualitas file observasi dengan melihat nilai MP1 dan MP2 < 0.5, yang menunjukkan adanya efek multipath.

III.2.Pengolahan Menggunakan GAMIT

Pengolahan menggunakan dilakukan menggunakan data primer (file observasi CORS UDIP, file observasi IGS dan SRGI, file broadcast ephemeris, file precise ephemeris) serta data sekunder (Data koreksi pasut, atmosfer, dan pemodelan cuaca). Dilakukanbeberapa strategi pengolahan data, yaitu UDP1, UDP2, UDP3, UDP4, UDP5, dan UDP6. Dimana, pada project UDP1 pengolahan koordinat menggunakan titik ikat IGS sebanyak 9 stasiun, serta menggunakan data tahun 2015. Begitu juga dengan project UDP2, tetapi pada project UDP2 menggunakan data tahun 2016. Project UDP3 pengolahan koordinat menggunakan 8 titik ikat SRGI, dengan menggunakan data tahun 2015.

Begitu juga pada *project* UDP4 tetapi pada *project* UDP4 menggunakan data tahun 2015. Sedangkan pada *project* UDP5, melakukan pengolahan *velocity* menggunakan 9 titik ikat IGS dan data pada dua *epoch* yaitu tahun 2015 dan

2016. Serta, *project* UDP6, melakukan pengolahan *velocity* menggunakan 8 titik ikat SRGI dan data pada dua *epoch* yaitu tahun 2015 dan 2016.

Pengolahan GAMIT dilakukan dengan melakukan editing control file terlebih dahulu meliputi, lfile, process.default, sites.default, sittbl, dan sestbl. Setelah dilakukan editing control file, kemudian dilakukan pengolahan GAMIT melalui proses automatic batch processing.

III.3.Pengolahan Menggunakan GLOBK

Pengolahan menggunakan GLOBK, menggunakan hfile hasil dari pengolahan GAMIT serta hfile global yang dapat didownload pada ftp://garner.ucsd.edu/pub/hfiles. Pengolahan koordinat dan velocity menggunakan file biner hasil dari konversi hfile global, dan hfile hasil dari GAMIT, yang kemudian dikonversi menjadi file *.gdl yang berisi pembobotan. Pada pengolahan koordinat maupun velocity, dijalankan menggunakan file command globk_comb.cmd dan glorg_comb.cmd pada perhitungan koordinat, serta globk_long.cmd dan glorg long.cmd pada perhitungan velocity.

IV. Hasil dan Pembahasan IV.1.Hasil TEQC

Proses cek nilai *multipath* data menggunakan TEQC menghasilkan informasi yang memuat nilai efek multipath dari sinyal L1 (MP1) dan L2 (MP2) dari data observasi yang digunakan. Berikut berupakan hasil dan ulasan dari cek kualitas data observasi menggunakan TEQC.

Tabel IV.1TEQC Tahun 2015

	Tahun 2015				
DOY	MP1	MP2			
076	0.1323700	0.1612610			
077	0.1759070	0.2068560			
078	0.1775600	0.2259410			
079	0.1691620	0.1989440			
098	0.1858980	0.2717370			
099	0.0953960	0.1426880			
100	0.1008960	0.1554160			
101	0.0982550	0.1664710			
131	0.3424800	0.3858380			
132	0.1219470	0.1759410			
DOY	MP1	MP2			
133	0.1184010	0.1792780			
134	0.0901930	0.1482760			

Pada tabel IV.1, dapat dilihat bahwa pada data tahun 2015, nilai MP1 berkisar antara 0.0901930 sampai dengan 0.3424800 dengan nilai rata-rata sebesar 0.1507054. Sedangkan pada MP2 mempunyai nilai terkecil yaitu0.1426880 dan nilai terbesarnya adalah 0.3858380 serta mempunyai nilai MP2 rata-rata sebesar 0.2015539. Nilai tersebut masuk ke dalam kriteria baik, mengingat syarat kualitas data yang baik adalah 0.5.

Berikut adalah tabel hasil cek kualitas MP1 dan MP2 pada tahun 2016.

Tabel IV.2 Hasil TEQC Tahun 2016

	Tahun 2016				
DOY	MP1	MP2			
008	0.1209930	0.1609250			
009	0.1416370	0.1745870			
010	0.1576430	0.1802760			
011	0.0889340	0.1226480			
039	0.1210920	0.1454020			
040	0.1415340	0.1766950			
041	0.1521050	0.1807760			
042	0.4449040	0.5036280			
077	0.3971010	0.5005870			
078	0.4553100	0.5744200			
079	0.7176800	0.9061210			
080	0.7474180	0.9465460			

Pada Tabel IV.2 menunjukan bahwa data pengamatan tahun 2016, mempunyai kisaran nilai MP1 yang terkecil adalah 0.0889340 dan yang terbesar adalah 0.7474180 dengan nilai rata-rata sebesar 0.3071959. Sedangkan nilai MP2 mempunyai kisaran dari yang terkecil 0.1226480 dan yang terbesar adalah 0.9465460 dengan nilai rerata sebesar 0.3810509. Pada Tabel IV-2, terdapat beberapa nilai MP1 dan MP2 yang berada diatas 0.5, hal ini menunjukkan bahwa dalam pengukuran terjadi efek *multipath* yang besar.

IV.2. Hasil Pengolahan GAMIT

Pengolahan menggunakan GAMIT menghasilkan tiga *file* penting yang terdapat dalam folder DOY, yang berisi nilai *posfit*, nilai *prefit*, nilai *fract* serta *apriori coordinate* yang berguna untuk pengolahan selanjutnya. Tiga *file* tersebut diantaranya adalah *hfile*, *qfile*, serta *sh_summary*.

qfile merupakan file output solusi dari proses solve, berisi analisis evaluasi dari pengolahan data. qfile memuat tentang nilai fract, dimana dalam pengolahan GLOBK, nilai *fract* yang diizinkan < 10. *Fileqfile* berbentuk ASCII, dimana pada satu proses *sh_gamit* didapat dua bentuk jenis *qfile* yaitu q<*expt*>1.DOY, q<*expt*>a.DOYdimana q<expt>a.DOY merupakan hasil perhitungan literasi dari q<expt>1.DOY. Berikut merupakan cuplikan nilai *fract* dari *project* UDP1 pada DOY 076.

Tabel IV.3 Nilai Fract DOY 076 Project UDP1

Project	DOY	Label	Apriori	Adjust	Formal	Fract	Posfit
		Latitude dms	S07:00: 14.8592	0.0021	0.0207	0.1	S07:00:1 4.85919
UDP1	076	-	E110:26 :23.456 48	-0.0223	0.0509	-0.4	E110:26: 23.45575
		km	6378.06 047285 45	-0.0013	0.0528	-0.0	6378.060 47153

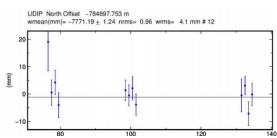
Pada penelitian ini, dihasilkan nilai *posfit* nrms, serta nilai ambiguitas fase yang dapat dipecahkan. Dimana, nilai WL yang baik adalah lebih dari 90%, bila kurang menandakan ada noise pada pseudorange. Nilai NL yang baik adalah lebih 80%, bila kurang menandakan adanya kesalahan pada ukuran dan konfigurasi jaringan, kualitas orbit, koordinat apriori, atau kondisi atmosfer (Muliawan, 2012).

Berikut adalah hasil nilai *posfit nrms* pada pengolahan *project* UDP1.

Tabel IV.4 Nilai Posfit Nrms Project UDP1

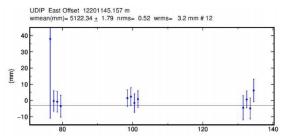
DOY	const	raint	loose		ambiguitas fase	
	free	fixed	free	fixed	WL-fixed	NL-fixed
076	0.18868	0.19259	0.17561	0.17994	81.70%	53.60%
077	0.18732	0.19077	0.17592	0.18081	91.20%	57.40%
078	0.18475	0.18882	0.17708	0.18123	85.50%	72.90%
079	0.18228	0.18632	0.17491	0.17908	87.70%	79.20%
098	0.19014	0.19468	0.18271	0.18761	87.20%	74.70%
099	0.18615	0.18976	0.17926	0.18313	82.60%	74.70%
100	0.18547	0.18874	0.17858	0.18243	84.50%	77.00%
101	0.19147	0.19538	0.18182	0.18633	86.80%	78.50%
131	0.18843	0.19239	0.17904	0.18301	84.50%	68.20%
132	0.18801	0.19208	0.18109	0.18468	82.40%	75.10%
133	0.18399	0.1878	0.17526	0.17938	82.80%	72.40%
DOY	const	raint	loose		ambiguit	tas fase
	free	fixed	free	fixed	WL-fixed	Nl-fixed
134	0.18842	0.19156	0.18086	0.18376	75.40%	61.70%

Tabel IV.4 menunjukkan bahwa pada project UDP1 dihasilkan nilai posfit constraint free/fixed dengan rentan antara 0.18 sampai dengan 0.19 serta nilai posfit loose free/fixed mempunyai

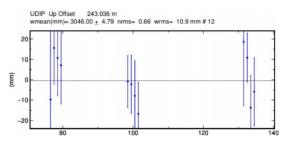

rentan antara 0.17 sampai dengan 0.18. Sedangkan nilai *WL-fixed* berada pada kisaran 75.40% sampai dengan 91.20%. Serta nilai *NL-fixed* berada pada kisaran 53.60% sampai dengan 79.20%. Pada *project* UDP1, masih banyak ditemui nilai NL yang kurang dari 80%, dan nilai WL kurang dari 90% akan tetapi hasil pengolahan GAMIT dari *project* UDP1 masih digunakan, karena nilai *posfit* memenuhi dari standar pengolahan GAMIT yang baik.

IV.3. Hasil Pengolahan GLOBK

Hasil pengolahan GLOBK adalah *file* berekstensi *.org. *File* *.org memuat tentang koordinat definitif serta panjang *baseline* beserta *adjust* dan *simpangan bakunya* yang dijadikan sebagai analisis. Hasil dari pengolahan GLOBK meliputi : hasil pengolahan GLRED, panjang *baseline* dan ketelitiannya, nilai koordinat serta nilai *velocity rate*.


IV.3.1. Hasil Pengolahan GLRED

Pada hasil *plotting time series*, kita dapat melihat data *outlier* dengan ketentuan nilai *wrms* < 10 mm dan nilai *nrms* < 2 mm (Purba, 2013).Bila terdapat *outliers* dapat dilakukan pengolahan ulang pada GAMIT dengan perubahan pengaturan pada GAMIT sehingga dapat menghilangkan *outliers*.Ataupun dengan cara menghapus hgamit dari data *outlier* dan tidak digunakan kembali. Berikut adalah hasil *plotting time series project* UDP1


Gambar IV.1*Plotting time series north project*UDP1

Gambar IV.1 menunjukkan hasil plotting time series komponen north pada project UDP1, pada pengolahan data tahun 2015 dengan menggunakan sembilan titik ikat IGS, yang mempunyai nilai wrms 4.1 mm, dan nilai nrms 0.96 mm, nilai tersebut masih termasuk dalam toleransi nilai wrms dan nrms yang diijinkan yaitu 10 mm dan 2 mm.

Gambar IV.2Plotting time series east project UDP1

Gambar IV.2 menunjukkan hasil plotting time series komponen east pada project UDP1, pengolahan data tahun 2015 dengan menggunakan sembilan titik ikat IGS, mempunyai nilai wrms 3.2 mm dan nilai nrms 0.52 mm, nilai tersebut masih termasuk dalam toleransi nilai wrms dan nrms yang diijinkan yaitu 10 mm dan 2 mm.

Gambar IV.3Plotting time series up project UDP1

Gambar IV.3 menunjukkan hasil plotting time series pada komponen up pada project UDP1, pengolahan data tahun 2015 dengan menggunakan sembilan titik ikat IGS, mempunyai nilai wrms 10.9 mm dan nilai nrms 0.66 mm, nilai tersebut k termasuk dalam toleransi nilai wrms dannrmsyang diijinkan yaitu 10 mm dan 2 mm. Maka dari itu, dilakukan penghapusan data outlier.

IV.3.2.Panjang Baseline dan Ketelitiannya

Panjang baseline dan ketelitiannya didapat dari hasil proses GLOBK, dimana panjang baseline dan ketelitiannya dapat dilihat melalui file globk.org, dengan melakukan editing file perintah pada globk_comb.cmd. Berikut adalah hasil pengolahan baselinepada project UDP1.

Tabel IV.5 Panjang Baseline Project UDP1

No	Stasiun		Length (m)	Sigma (mm)
	Dari	Ke		
1	CNMR	UDIP	4508649.219	2.820
2	UDIP	COCO	1593143.919	1.630
3	DARW	UDIP	2343154.219	1.880
4	UDIP	IISC	4180561.923	2.510
5	UDIP	PBRI	2826647.545	1.880
6	PIMO	UDIP	2650895.397	1.740

7	TOW2	UDIP	4107292.150	2.400
8	UDIP	XMIS	643618.017	1.360
9	YARR	UDIP	2472847.388	1.500

Pada project UDP1, didapatkan nilai baseline yang terpanjang adalah antara Stasiun UDIP ke Stasiun CNMR yaitu dengan panjang 4508649.219 baseline sebesar simpangan baku 2.820 mm. Sedangkan baseline terdekat didapat dari Stasiun UDIP menuju XMIS dengan panjang 643618.017 simpangan baku sebesar 1.360 mm. Rata-rata simpangan baku panjang baseline pada project UDP1 adalah sebesar 1.969 mm.

IV.3.3.Hasil Koordinat Bulanan

Pada penelitian ini, diperlukan pengolahan koordinat bulanan, yang bertujuan untuk melihat perubahan koordinat selama tiga bulan dalam kurun waktu satu tahun. Berikut adalah hasil dari pengolahan koordinat pada bulan Maret, April serta Mei pada Tahun 2015.

Tabel IV.6 Nilai Koordinat Bulanan Kartesian 3D Tahun 2015 Menggunakan Titik Ikat IGS Project UDP1 (X, Y, Z)

Bulan	Koordinat (m)				
Duian	X	Y	Z		
Maret	-2210748.66091	5931893.20723	-777746.10536		
April	-2210748.65650	5931893.18970	-777746.10558		
Mei	-2210748.65999	5931893.19797	-777746.10793		
Bulan	Sir	mpangan Baku (mn	1)		
Dulan	σX	σΥ	σZ		
Maret	4.65	9.58	2.70		
April	3.26	6.80	2.07		
Mei	3.61	7.36	2.10		

Tabel IV.7 Nilai Koordinat Bulanan Kartesian 3D Tahun 2015 Menggunakan Titik Ikat SRGI Project UDP3 (X, Y, Z)

Bulan	Koordinat (m)				
Dulali	X	Y	Z		
Maret	-2210748.60155	5931893.25295	-777746.08119		
April	-2210748.59734	5931893.25420	-777746.08282		
Mei	-2210748.59762	5931893.26225	-777746.08477		
D. J.	Sin	mpangan Baku (mn	n)		
Bulan	σX	σΥ	σ Z		
Maret	4.93	7.63	4.12		
April	4.37	6.73	3.84		
Mei	4.29	6.56	3.77		

Berikut adalah hasil pengolahan koordinat bulan Januari, Febuari, Maret tahun Koordinat yang dihasilkan dalam koordinat kartesian 3D.

Tabel IV.8 Nilai Koordinat Bulanan Kartesian 3D Tahun 2016 Menggunakan Titik Ikat IGS Project UDP2(X, Y, Z)

Bulan	Koordinat (m)			
Bulan	X	Y	Z	
Januari	-2210748.66909	5931893.18086	-777746.11190	
Febuari	-2210748.68229	5931893.19221	-777746.11559	
Maret	-2210748.68577	5931893.18560	-777746.12127	
D1	Simpangan Baku (mm)			
Bulan	σX	σΥ	σZ	
Januari	4.12	9.18	2.42	
Febuari	3.50	7.71	2.07	
Maret	5.96	8.78	4.64	

Tabel IV.9 Nilai Koordinat Bulanan Kartesian 3D Tahun 2016 Menggunakan Titik Ikat SRGI Project UDP4(X, Y, Z)

Bulan	Koordinat (m)				
Duian	X	Y	Z		
Januari	-2210748.58981	5931893.23665	-777746.08253		
Febuari	-2210748.59333	5931893.24324	-777746.08219		
Maret	-2210748.59941	5931893.23053	-777746.08339		
D 1	Simpangan Baku (mm)				
Bulan	σX	σΥ	σZ		
Januari	5.01	7.99	4.27		
Febuari	4.15	6.26	3.68		
Maret	6.26	9.13	5.51		

IV.3.4. Hasil Pengolahan Data Tahunan

Pada pengolahan koordinat definitif tahunan yaitu pada tahun 2015 dan 2016, pengolahan dilakukan berdasarkan penyusunan project dari strategi pengolahan data. Berikut adalah hasil koordinat dari proses GLOBK.

Tabel IV.10 Nilai Koordinat Kartesian 3D (X, Y

		, L)			
Duniont	Koordinat (m)				
Project	X	Y	Z		
UDP1	-2210748.65826	5931893.19583	-777746.10639		
UDP2	-2210748.67803	5931893.18701	-777746.11521		
UDP3	-2210748.60077	5931893.26658	-777746.08422		
UDP4	-2210748.59026	5931893.24230	-777746.08099		
Project	Simpangan Baku (mm)				
Frojeci	σX	σΥ	σZ		
UDP1	2.11	4.40	1.27		
UDP2	2.51	5.63	1.48		
UDP3	3.84	5.21	3.53		
Project	σΧ	σΥ	σZ		
UDP4	3.99	5.85	3.61		

Pada tabel IV.10 menunjukkan hasil koordinat kartesian 3D hasil sistem pengolahan solusi tahunan, standar deviasi yang dihasilkan pada komponen X berkisar antara 2,11 mm sampai dengan 3,99 mm. Dimana, standar deviasi terkecil terdapat pada project UDP1, serta standar deviasi terbesar terdapat pada 3.99 mm. Pada komponen Y, standar deviasi yang dihasilkan berkisar antara 4.40 mm sampai dengan 5.85 mm, dimana standar devasi terkecil terdapat pada project UDP1 serta standar deviasi terbesar terdapat pada project UDP4. Sedangkan pada komponen Z, mempunyai standar deviasi yang berkisar dari 1.27 mm sampai dengan 3.61 mm. Dimana standar deviasi terkecil terdapat pada project UDP1 dan standar deviasi terbesar terdapat pada UDP4. Dalam pengolahan solusi tahunan yang dihasilkan, project UDP1 mempunyai standar deviasi yang paling kecil, sedangkan project UDP4 mempunyai standar deviasi yang besar.

IV.3.5 Hasil Perhitungan Velocity Rate

Hasil perhitungan velocity rate dapat pada directory /vsoln pada globk vel.org. Nilai velocity pada tahun 2015 dan 2016 dapat dilihat pada tabel dibawah ini:

Tabel IV.11 Hasil Perhitungan Velocity rate

Project	Ve	elocity Rate (m/	yr)		
Trojeci	Vx	Vy	Vz		
UDP5	-0.02258	-0.01065	-0.01089		
UDP6	-0.00633	-0.01297	-0.00153		
Project	Sim	pangan Baku (1	mm)		
Trojeci	σVx	σVy	σVz		
UDP5	3.53	6.52	2.36		
UDP6	4.75	7.04	3.98		
Project	Velocity Rate (m/yr)				
1 rojeci	Vn	Ve	Vu		
UDP5	-0.01107	0.02488	-0.00075		
UDP6	0.00023	0.00140	0.00140		
Project	Sim	Simpangan Baku (mm)			
Trojeci	σVn	σVe	σVu		
UDP5	2.22	2.97	6.84		
UDP6	3.90	4.42	7.30		

Hasil pengolahan velocity pada keempat project, nilai velocity yang dihasilkan berkisar antara 0.00023m sampai dengan 0.02488m. Sedangkan nilai simpangan baku yang dihasilkan berkisar antara 2.22mm sampai dengan 7.30 mm.

IV.4. Analisis Uji T

Pada penelitian ini, df (degree of freedom) diasumsikan ∞ karena, data yang digunakan sangat banyak, maka pada penelitian ini digunakan selang kepercayaan 95% maka, nilai t tabel yang digunakan adalah 1,96. Pada perhitungan uji statistik, terdapat dua *project* yang diuji, yaitu menggunakan titik ikat IGS, serta menggunakan titik ikat SRGI. Pada hitungan statistik uji T pada *project* IGS hitungan statistik bulan Maret ke April didapatkan nilai T hitungan sebesar 3.0546, sedangkan pada nilai t_{df} , $\alpha/2$ adalah 1.96 maka, H0 ditolak. Dengan begitu terjadi pergeseran titik pengamatan antara bulan Maret terhadap bulan April 2015.

Pada bulan April ke Mei 2015 nilai T hitungan sebesar 3.8012, sedangkan pada nilai $t_{df, \alpha/2}$ adalah 1.96 maka, H0 ditolak. Dengan begitu terjadi pergeseran titik pengamatan antara bulan April terhadap bulan Mei 2015. Pada bulan Januari ke Febuari 2016, didapatkan nilai T hitungan sebesar 17.893, sedangkan pada nilai $t_{df, \alpha/2}$ adalah 1.96 maka, H0 ditolak. Dengan begitu terjadi pergeseran titik pengamatan antara bulan Januari terhadap bulan Febuari 2016.

Pada bulan Febuari ke Maret 2016, didapatkan nilai T hitungan sebesar 17.514, sedangkan pada nilai t_{df} , $\alpha/2$ adalah 1.96 maka, H0 ditolak. Dengan begitu terjadi pergeseran titik pengamatan antara bulan Febuari terhadap Maret 2016. Hasil hitungan statistik koordinat tahun 2015 dan 2016 didapatkan nilai T hitungan sebesar 71.313, sedangkan pada nilai t_{df} , $\alpha/2$ adalah 1.96 maka, H0 ditolak. Dengan begitu terjadi pergeseran titik pengamatan antara tahun 2015 terhadap tahun 2016.

Sedangkan pada hitungan statistik uji T pada project SRGI, perhitungan statistik bulan Maret ke April 2015 didapatkan nilai T hitungan sebesar 8.1170, sedangkan pada nilai t_{df} , $\alpha/2$ adalah 1.96 maka, H0 ditolak. Dengan begitu terjadi pergeseran titik pengamatan antara bulan Maret terhadap bulan April 2015. Pada perhitungan bulan April ke Mei 2015 didapatkan nilai T hitungan sebesar 8.1170, sedangkan pada nilai t_{df} , $\alpha/2$ adalah 1.96 maka, H0 ditolak. Dengan begitu terjadi pergeseran titik pengamatan antara bulan April ke bulan Mei 2015.

Pada perhitungan bulan Januari ke Febuari 2016 didapatkan nilai T hitungan sebesar 1.8602, sedangkan pada nilai t_{df} , $\alpha/2$ adalah 1.96 maka, H0 diterima. Dengan begitu tidak terjadi pergeseran titik pengamatan antara bulan Januari ke bulan Febuari 2016. Pada perhitungan Febuari

ke Maret didapatkan nilai T hitungan sebesar 3.7347, sedangkan pada nilai t_{df} , $\alpha/2$ adalah 1.96 maka, H0 ditolak. Dengan begitu terjadi pergeseran titik pengamatan antara bulan Febuari ke bulan Maret 2016. Perhitungan statistik koordinat tahun 2015 dan 2016 didapatkan nilai T hitungan sebesar 13.946, sedangkan pada nilai t_{df} , $\alpha/2$ adalah 1.96 maka, H0 ditolak. Dengan begitu terjadi pergeseran titik pengamatan antara bulan Febuari ke bulan Maret 2016.

IV.5.Analisis Perubahan Koordinat dan Kecepatan

Pada koordinat hasil pengolahan *project* UDP1, UDP2, UDP3 dan UDP4, dilakukan analisis untuk mengetahui perbedaan nilai koordinat. Berikut adalah tabel perbedaan nilai koordinat tahun 2015 dan 2016 berdasarkan titik ikat IGS dan SRGI.

Tabel IV.12 Selisih Koordinat CORS UDIP

Project	Selisih (m)		
	ΔX	ΔΥ	ΔZ
UDP1	0.01977	0.00882	0.00882
UDP2			
UDP3	0.01051	0.02428	0.00323
UDP4			
UDP4			

Pada nilai koordinat tahun 2015 dan 2016, pada *project* UDP1 dan UDP2 yang menggunakan titik ikat IGS, mempunyai selisih 0.01977 m pada komponen X, 0.00882 m pada komponen Y, dan 0.00882 m pada komponen Z. Pada *project* UDP3 dan UDP4 yang menggunakan titik ikat SRGI, mempunyai selisih 0.01051 m pada komponen X, 0.02428 m pada komponen Y, dan 0.00323 m pada komponen Z.

Serta pada nilai standar deviasi yang dihasilkan, tahun 2015 dan 2016, pada *project* UDP1 dan UDP2 yang menggunakan titik ikat IGS, mempunyai selisih 0.4 mm pada komponen X, 1.23 mm pada komponen Y, dan 0.21 mm pada komponen Z. Pada *project* UDP3 dan UDP4 yang menggunakan titik ikat SRGI, mempunyai selisih standar deviasi sebesar 0.15 mm pada komponen X, 0.64 mm pada komponen Y, dan 0.08 mm pada komponen Z.

Pada tabel IV.11pada sub bab IV.3.5. menunjukkan hasil dari perhitungan *velocity*. *Project* UDP5 menunjukkan nilai Vx -0.02258 m

±3.53 mm, Vy -0.01065 ±6.52 mm, Vz -0.01089 ±2.36 mm. Sedangkan *project* UDP6 menunjukkan nilai *velocity* sebesar Vx -0.00633 m ±4.75 mm, Vy 0.01297 m ±7.04 mm, Vz -0.00153 m ±3.98 mm.

Perubahan nilai koordinat pada keempat project di atas berkisar antara 1 s.d 2 cm pada komponen X, 8 mm s.d 2,4 cm pada komponen Y, serta 3 s.d 8 mm pada komponen Z. Serta perubahan nilai kecepatan berkisar antara -0.00633 s.d -0.02258 m/yr pada X,-0.01065 s.d 0.01297 m/yr pada Y dan -0.00153s.d -0.01089m/yr pada Z. Perubahan tersebut masih dalam kategori wajar, mengingat Indonesia terdapat pada wilayah dengan aktifitas seismik paling dinamis di dunia, sehingga lempeng kerak bumi di wilayah Indonesia senantiasa bergerak. Pergerakan lempeng kerak bumi adalah sebesar 5 cm hingga 5 meter dan kecepatan pergerakan lempeng tektoniknya sebesar 65 mm/tahun (Subarya, 2009 dalam Muliawan, 2012). Perubahan nilai koordinat yang terjadi masih berada dibawah kecepatan 65 mm/tahun.

V. Kesimpulan dan Saran

V.1.Kesimpulan

- 1. Dalam pengolahan menghasilkan nila koordinat terbaik pada *project* UDP1 yaitu:
 - a. Koordinat kartesian 3D, dengan nilai X 2210748.65826 m \pm 2.11 mm, nilai Y 5931893.19583 m \pm 4.40 mm, dan nilai Z -777746.10639 m \pm 1.27 mm.
 - Koordinat geodetic, dengan nilai Lintang
 7° 3' 3.0839652" LS, dan Bujur 110° 26'
 23.4541749" BT.
 - c. Koordinat UTM Zona 49, nilai *Easting* 438136.433362654 m, *Northing* 9220591.975206760 m, dan *Up* 243.0462061m.
- 2. Berdasarkan uji statistik T (analisis pergeseran) dengan menggunakan selang kepercayaan 95% dengan nilai df ∞, nilai t tabel 1,96. Terjadi pergeseran antara tahun 2015 terhadap tahun 2016, pada semua project.
- Dalam perhitungan *velocity rate*, dihasilkan nilai *velocity rate* dengan ketelitian terbaik, yaitu dengan nilai Vx -0.02258 m ±3.53 mm, Vy -0.01065 ±6.52 mm, Vz -0.01089 ±2.36 mm.

V.2.Saran

Pada penelitian ini, terdapat beberapa saran yang digunakan untuk penelitian selanjutnya:

- Perlunya dilakukan pendefinisian ulang koordinat Stasiun GNSS CORS UDIP secara berkala, mengingat sifatnya yang dinamis.
- 2. Dalam pemilihan titik ikat, sebaiknya memperkirakan panjang baseline titik ikat serta titik pengamat, serta diperlukan strategi pengolahan data yang baik dengan membuat konfigurasi jaring yang baik.
- 3. Dalam pemilihan titik ikat lokal, sebaiknya melihat ketersediaan data stasiun yang akan digunakan.
- 4. Diperlukan strategi pengolahan data yang baik, meliputi jumlah data, titik ikat, serta perintah yang digunakan, untuk menghasilkan koordinat dengan ketelitian terbaik.
- Diperlukan penguasaan dan pemahaman OS Linux, serta software GAMIT/GLOBK guna mempermudah proses penginstallan dan pengolahan data.

DAFTAR PUSTAKA

- Abidin, H.Z., 2007. *Penentuan Posisi dengan GPS*dan Aplikasinya, Pradnya Paramita:

 Jakarta.
- Artini, S.R., 2013, Penentuan Koordinat Stasiun GNSS CORS GMU1 Dengan Kombinasi Titik Ikat GPS Global dan Regional, Thesis Teknik Geodesi dan Geomatika, Fakultas Teknik Universitas Gadjah Mada.
- Gleason. S., dan Gebre-Egzibher. D., 2009, *GNSS Application and Methods*, Artech House. Inc, Boston.
- Herring, T.A., King S.W. dan McClussky S.C., 2006, *Introduction to GAMIT/GLOBK*, Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology.
- Laksana, I., 2014. Penentuan Posisi Stasiun GNSS

 CORS UNDIP pada Tahun 2013 dan
 2014 Menggunakan Perangkat Lunak
 GAMIT, Skripsi Teknik Geodesi Fakultas
 Teknik Universitas Diponegoro.

- Muliawan, L.A., 2012. Penentuan Koordinat
 Stasiun GNSS CORS GMU1 Bulan Mei
 Tahun 2011, Skripsi Teknik Geodesi dan
 Geomatika Fakultas Teknik Universitas
 Gadjah Mada.
- Purba, E.S., 2013. Penentuan Koordinat Definitif

 Epoch 2013 Stasiun CORS Geodesi

 UNDIP dengan Menggunakan Perangkat

 Lunak GAMIT 10.04, Skripsi Teknik

 Geodesi Fakultas Teknik Universitas

 Diponegoro.
- Ulinnuha, H., 2014. Perbandingan 7 Parameter
 Transformasi Datum Dari ITRF 2008 Ke
 ITRF 2005 Metode Molodensky-Badekas
 dengan Parameter Global IERS, Skripsi
 Teknik Geodesi dan Geomatika Fakultas
 Teknik Universitas Gadjah Mada.

PUSTAKA DARI INTERNET:

- IGS., 2008, International GPS

 Services, http://igscb.jpl.nasa.gov/network/

 refframe.html. Diakses pada 17 April
 2016, pukul 19.00 WIB.
- Nugraha, A.P., 2010. Continuosly Operating
 Reference Station
 (CORS),http://arryprasetya.blogspot.co.id/
 2010/12/continuously-operating
 reference.html. Diakses pada 4 Maret
 2011 pukul 10.00 WIB.