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Abstract. This paper discusses the development and application of a spatial tool 

for erosion modeling named Spatial Decision Assistance of Watershed 

Sedimentation (SDAS). SDAS computes export (yield) of sediment from 

watershed as product of erosion rate and sediment delivery ratio (SDR). The 

erosion rate is calculated for each raster grid according to a digital elevation 

model, soil, rain fall depth, and land cover data using the Universal Soil Loss 

Equation. SDR calculation is carried out for each spatial unit. A spatial unit is 

the smallest sub-watershed considered in the model and generated according to 

the TauDEM algorithm. The size of one spatial unit is assigned by the user as the 

minimum number of raster grids. SDR is inversely proportional to sediment 

resident time and controlled by rainfall, slope, soil, and land cover. Application 

of SDAS is demonstrated in this paper by simulating the spatial distribution of 

the annual sediment yield across the Citarum watershed in the northwest of Java, 

Indonesia. SDAS calibration was carried out based on sediment discharge 

observations from the upper catchment. We considered factors for hillslope flow 

depth and for actual and effective rainfall duration to fit the computed sediment 

yield to the observed sediment discharge. The computed sediment yield agreed 

with the observation data with a 7% mean relative accuracy. 

Keywords: decision support; sediment delivery ratio; sediment yield; spatial erosion. 

1 Introduction 

With the increase of global air temperature, excessive precipitation is expected 

to intensify primarily in tropical regions [1,2]. This may result in amplification 

of the risk of flooding due to surface erosion [3]. Erosion in upper watershed 

regions can reduce drainage capacity in lower regions, which, combined with 

increasing runoff, intensifies the risk of flooding [4,5]. In response to such a 

risk, proper adaptation plans must be made available. Absence of proper 

adaptation plans may result in rapid exacerbation of damages due to flooding 

[6]. Adaptation plans are often irreversible [7]. Therefore, thorough scientific 
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study in selecting adaptation plans is required to ensure success of reducing 

risks. Scientific works related to quantification of surface erosion are mostly 

complex and laborious. Conversely, regulators often require immediate 

information on projected risks with considerable reliability. This will allow 

them to review the relevance and impact of any established plan in order to 

minimize the risk of hydrologic disaster [8]. In recent years, various tools 

dedicated to watershed studies have been developed that can provide support for 

decision-making in accordance with spatial planning for reduction of watershed 

erosion [9-12]. Most of the present quantifications of information about erosion 

in spatially distributed zones rely on computer simulation [13,14]. The work by 

Arnold, et al. [15], to name one, is a comprehensive watershed simulation tool 

that involves hydrology, weather, sedimentation, soil temperature, crop growth, 

nutrients, pesticides, and agricultural management. 

Computer simulation for studying watershed erosion is beneficial as it offers 

cost-effectiveness, repeatability, and capability of considering what-if 

conditions, i.e. what output may result if a particular input is altered. Most tools 

for erosion simulation are facilitated by commercially licensed software or, if it 

is license-free, must be developed by people having expertise in programming 

as well as hydrology. The present work fills a gap in the existing erosion 

simulation tools by delivering a license-free computer application for academic 

training and educational purposes at the undergraduate level, such as class 

teaching and student assignments. This paper discusses the development and 

application of a tool for computing and geographically locating erosion and 

sediment yield in a watershed. The tool being developed±as presented in this 

paper±is named Spatial Decision Assistance of Watershed Sedimentation 

(SDAS). It integrates a sequence of equations that represent the physical 

processes of sediment detachment, transport, and deposition through a 

ZDWHUVKHG¶V� VXUIDFH�� 7KH� HTXDWLRQV� DUH� DSSOLHG� WR� HDFK� VSDWLDO� XQLW�� $� VSDWLDO�

unit is the smallest sub-watershed consisting of at least one section of reach 

catchment considered in the spatial model of a river basin. SDAS includes a 

spatial unit generator and user interface. The application of SDAS is 

demonstrated in this paper by simulating the sediment yield of the Citarum 

watershed in the northwest of Java. Results from SDAS computation were 

calibrated against observed sediment yield data from Nanjung station at the 

upper Citarum watershed. 

2 Materials and Methods 

2.1 Estimation of Sediment Yield 

Sediment yield (y) refers to the discharge of sediment exported out from a 

watershed, which is usually evaluated per annum and expressed in tons per year. 
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Sediment yield is a product of erosion (e) throughout the watershed surface and 

efficiency of the watershed in transporting sediment from the source of erosion, 

or the sediment delivery ratio (SDR): 

 .SDRy e  (1) 

A process-based approach of SDR estimation has been proposed by Lu, et al. 

[16], which was used here as a primary reference for sediment yield simulation. 

While the rate of erosion (e) can be directly estimated using the Universal Soil 

Loss Equation (USLE) [17], estimation of the SDR requires several steps that 

consider the transport mechanism of sediment particles through the watershed 

surface. SDR estimation in SDAS is based on a concept proposed by Sivapalan, 

et al. [18]. It divides a drainage basin into so-called hillslope storage (h) and 

network channel storage (n). Figure 1(a) illustrates the sediment originated from 

erosion exported out from a watershed through the final outlet (y) and the SDR 

across the entire hillslope and channel networks calculated in each of the spatial 

units that are considered as sub-watersheds (Figure 1(b)). 

  
(a) Hillslope and channel network transport  (b) Spatial unit representing sub-watershed  

Figure 1 Conceptual visualization of total yield of sediment from a watershed. 

2.1.1 Sediment Delivery Ratio 

Estimation of SDR in SDAS is operated according to the analytical solution of a 

time-dependent equation expressing storage of sediment in the hillslope and 

channel network as developed by Sivapalan, et al. [18], which is a function of 

sediment resident time in the hillslope (th), sediment resident time in the channel 

network (tn), and effective rainfall duration (ter): 
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Eqs. (2a) and (2b) consider the inversely proportional relation between SDR and 

sediment resident time, both in the hillslope (th) and in the channel network (tn) 

[18,19]. This implies that the longer the sediment resident time is, the smaller 

the SDR. Due to this, the yield of sediment (y) will hence be smaller. The role 

of the sediment resident time in governing the SDR is based on the basic 

relationship between travel time, travel speed of the water flow that transports 

the sediment particles from the source of erosion, and travel distance: 
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with thw = travel time of water flow in the hillslope, tnw = travel time of water 

flow in the channel network, Vh = travel speed of water flow in the hillslope, Vn 

= travel speed of water flow in the channel network, and D = travel distance in 

the watershed surface model, i.e. digital elevation model (DEM). As D can be 

obtained from the DEM used for the watershed surface model, thw and tnw can be 

calculated according to Vh and Vn as: 
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with ie = rainfall excess rate, L = travel distance along the flow path, s = decimal 

slope, n  � 0DQQLQJ¶V� URXJKQHVV� FRHIILFLHQW�� DQG� a = streambed roughness 

coefficient. The excess rate of rainfall ie is calculated as: 
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with tr = average rainfall duration and Pe = rainfall excess depth, where: 
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with P = actual, observed, or known rainfall depth and S = land cover dependent 

storage term: 
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with CN = land cover variability number, obtained according to: 
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with i = sub-area (inside spatial unit) having a particular type of land cover, m = 

number of sub-areas, CNi = number representing water storage capacity for a 

particular type of soil, and Ai = size of pixels covering a sub-area, i.e. areas with 

similar CNi. A look-up table for CNi is given in Table 1. The numbers in the 

header (0, 1, 2, 3) of Table 1 represent a code for the group of soil type. 

 
Table 1 CN [20]. 

Types of Land Use 
CN 

0 1 2 3 

Residential 49 69 79 84 

Shrub, pastures, park 48 67 77 83 

Forest 30 55 70 77 

Farm, garden, dry field 72 81 88 81 

Aquatic vegetation / wetland 66 74 80 82 

River / pond / lake 98 98 98 98 
Note: 0 for andosol, grumosol, podsol, podsolic; 1 for latosol; 2 for regosol, litosol, 

organosol, renzina, mediteran; 3 for alluvial, planosol, grey hydromorph, lateric. 

Table 2 0DQQLQJ¶V�URXJKQHVV�FRHIILFLHQW�>��@. 

Land Use 
Vegetation Cover (Cv) in % 

Cv<30 30<Cv<70 Cv>70 

Pasture 0.15 0.4 0.6 

Crop 0.15 0.25 0.4 

Forest 0.2 0.6 0.8 

Built-up areas 0.1 0.3 0.5 

Wetland and ponds 0.125 0.125 0.125 

Table 3 Channel roughness parameter [16]. 

Channel section 
Upstream area 

(Ha) 
A 

Concentrated shallow flow 1.8 ± 18 4 

Intermittent stream 18 ± 360 4.5 

Permanent stream >360  5 
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0DQQLQJ¶V�URXJKQHVV�FRHIILFLHQW�n is given to Eq. (4a) according to the generic 

type of land use and percentage of vegetation cover (Cv) as shown in Table 2. 

The values for channel network flow speed a used by Eq. (4b) are given in 

Table 3. 

Sediment residence time is obtained from travel time of water flow. In the 

hillslope, the sediment residence time (th) is calculated according to travel time 

of water flow (thw) and a multitude function (Fh). Similarly, in the channel 

network, the sediment residence time (tn) is calculated according to travel time 

of water flow (tnw) and a multitude function (Fn): 

 
h hw h

t t F  (9a) 

 
n nw n

t t F  (9b) 

with thw = travel time of water flow across hillslope and tnw = travel time of 

water flow across channel network. Fh and Fn are the multitude functions: 
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with ws = falling velocity of sediment in the water column. Jh and Jn respectively 

describe depth of water flow across hillslope (hh) and depth of water flow across 

channel network (hn), in which Jh = hh�1 and Jn = hn�1. The velocity of sediment 

settling is calculated as: 
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with Us = density of sediment, U = density of water, g = acceleration due to 

gravity, d = sediment size, and Rep = wsd/Q. Rep LV�WKH�5H\QROGV¶�QXPEHU�IRU�WKH�

given settling velocity and sediment grain size being a function of water 

kinematics viscosity (Q) and drag coefficient (CD). Drag coefficient (CD) reads 

as: 
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2.1.2 Rate of Erosion 

SDAS utilizes USLE as proposed by Wischmeier & Smith [17] for estimating 

the rate of erosion (e). USLE considers the empirical relation between e and the 

slope index (LS), land cover (C), erodibility (K), and erosivity (R): 

 CKRLe
S

  (13) 

Slope index LS is obtained from the DEM [17]: 
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In Eq. (14), b accounts for slope index, s is slope in percent, and L is length of 

sloping profile [21], where b = 0.2 for 0 d s < 1, b = 0.3 for 1 d s < 3, b = 0.4 for 

3 d s < 4.5 and b = 0.5 for s�t 4.5, and k is a series of constants, i.e. k = 22.1, k1 

= 65.41, k2 = 4.56 and k3 = 0.065. The type of land cover (C) is ranked and 

grouped according to exposure and can be obtained from a look-up table (Table 

4). Erodibility (K) indicates mobility of sediment particles due to detachment by 

kinetic energy generated by raindrops and transport by surface runoff. It can be 

seen as sediment resistance from movement, which can be influenced by 

properties of the soil, including texture, stability, infiltration and content, both 

organic and chemical. Determination of K follows a look-up table (Table 5). 

Table 4 Land cover value [22]. 

Land cover type C 

Rivers / ponds / lakes 0.0001 

Industrial zone 0.0005 

Residential 0.0007 

Aquatic vegetation / wetland 0.001 

Forest 0.002 

Shrub, pastures, park 0.003 

Farm, garden, dry field 0.005 

Open land 0.4 

Mining zone  0.7 

Table 5 Erodibility [23,24]. 

Soil type K Code 

Alluvial, planosol, grey hydromorph, lateric 0.20 3 

Latosol 0.23 1 

Mediteran 0.24 2 

Andosol, grumosol, podsol, podsolic 0.26 0 

Regosol, litosol, organosol, renzina 0.31 2 
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Erosivity (R) represents external forcing generated by rainfall to detach 

sediments from the soil surface. R is expressed as a function of rainfall depth P 

[25]: 

 36.121.2 PR   (15) 

with P = monthly rainfall depth. 

2.2 Computation Sequence 

SDAS is constructed from five primary components: terrain, storage, erosion 

rate, SDR, and sediment yield. The terrain component facilitates generation of a 

sink-free DEM, which is used by the erosion rate component for carrying out a 

calculation for each grid cell. Output from the terrain component is also used by 

the storage component to generate the spatial unit (see: Figure 1(b)). The 

process of defining a spatial unit is critical, as it provides the basis for the 

virtual extent of the area inside the watershed for the calculation of the SDR. 

The spatial unit also indicates the resolution of the SDR and sediment yield 

computation. In optimizing the trade-off between model resolution and 

computing effort, a spatial unit should contain several grids or a river of order 

greater than one. Here, we applied the TauDEM algorithm [26] to delineate a 

spatial unit that consists of several grids. In the spatial unit, all grids containing 

a river of order greater than one are defined as channel network element, 

whereas the remaining grids are defined as hillslope element. In Figure 2, a flow 

diagram is given of how SDAS operates when implementing details of the 

components of the model. 

In Figure 3 the generation of hillslope and channel network from a sink-free 

DEM is shown. The flow direction is defined throughout the DEM, being the 

steepest descent from a grid to its eight surrounding grids [27]. The network of 

flow directions is then constructed, contributed by all grids. The numbering of 

the river order in the network can hence be applied and for this particular 

purpose we use the numbering from Strahler [28] and Strahler [29]. The highest 

river order number is connected to all contributing flow directions of the sub-

watershed, whereas a river order of one means a grid with one flow direction, 

which is considered a hillslope. Consequently, the river network would then be 

the rest of the raster grids in the computation domain, i.e. grey and black grids. 

Calculation of SDR is done by averaging travel time of water flow (from source 

of erosion to sub-catchment outlet) through the flow path within a spatial unit. 

This requires identification of the extent of the hillslope and the length of the 

river network in the computation domain. The yield of sediment exported out 

from the watershed (ytot) through the final outlet is the total accumulation of 

sediment produced by all spatial units in the watershed model: 
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 ¦ itot
yy  (16) 

with i = spatial unit and yi = yield of sediment exported from a sub-watershed 

(represented by the corresponding spatial unit) being the product of total rate of 

erosion and average SDR inside that spatial unit (i.e. SDRi): 

 
ixyi

ey SDR¦  (17) 

 

Figure 2 SDAS operation flow diagram. 
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89 83 85 80 88  �È Ì È Ì È  1 1 1 1 1 

81 84 77 79 75  Ì Ì Ì È Ë  1 1 2 1 2 

85 79 75 71 73  Ì Ì Ì Ì È  1 2 1 3 1 

78 77 67 59 53  Ì Ì Ì Ì È  1 1 2 1 3 

76 63 57 55 47  Æ Æ Æ Æ Æ  1 2 2 2 3 

(a) DEM (b) Flow direction (c) River order 

Figure 3 Sequence of generation of hillslope and channel network model.  

2.3 Sensitivity Test and Data Input 

Calculation of USLE and SDR requires several input maps (i.e. rainfall, soil 

type, distribution of land cover, and topography or DEM) and information on 

the physical properties of flow depth and sediment size. Information on the 

physical properties of flow depth and sediment size must be assumed. 

Experience in applying the same method for estimating y and SDR [19] 

suggests a sediment size of 80 Pm with a corresponding settling velocity of 0.09 

m/s. This is based on the assumption that the watershed surface is entirely 

covered by fine sand material. Furthermore, we also initially assumed that the 

height of flow is 0.025 m for hillslopes and 1 m for network channels. 

Additional approximation is expected for determining average rainfall duration 

(tr) and effective rainfall duration (ter). It has been proposed in [19] that average 

and effective rainfall duration are directly proportional to mean annual rainfall 

(MAR). An investigation of the relationship between MAR with the 

corresponding rainfall duration and effective rainfall has been documented in 

[30]. It was shown that with a MAR ranging from 250 to 1500 mm, the range of 

total average rainfall duration and effective rainfall duration per month is 

between 7.5 and 25 hours. Here, it is assumed that erosion occurs during the 

entire effective rainfall duration. In this work we used a DEM extracted from 

Advanced Space-borne Thermal Emission and Reflection Radiometer Global 

DEM (ASTER GDEM) data [31], which are available in a spatial resolution of 

30 m × 30 m (Figure 4). 

A sensitivity test of the SDAS output (i.e. sediment yield) due to changes in 

inputs and key-in constants was carried out. SDAS calculation considers 

changes in land cover and precipitation, while assuming DEM and soil type to 

be constant. These inputs, i.e. land cover and precipitation, are the primary 

concern in a practical sense in order to evaluate the impact of climate 

(represented by precipitation) and human activity (represented by land cover) in 

controlling the alteration of erosion behavior on watersheds. Key-in constants 

comprise of flow depth (across hillslopes and channel networks ± hh and hn), 

sediment settling velocity (ws), rainfall duration (tr) and effective rainfall 
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duration (ter). We ran SDAS with half, once, and twice the values of the inputs 

and constants (F), and then evaluated the resulted sediment yields (y = f(F)).  

 

Figure 4 Digital elevation model of the study area. 

Table 6 shows the results from the sensitivity test. From Table 6, one may learn 

that calculation of sediment yield performed by SDAS is sensitive to hillslope 

flow depth and settling velocity, and slightly sensitive to precipitation, land 

cover, and effective rainfall. Changes in hillslope flow depth (hh) are directly 

proportional to sediment yield magnitude. Increasing and lowering hh by a 

factor of 2 means sediment yield is increased by 1 order of magnitude and 

lowered by 3 orders of magnitude, respectively. Changes in sediment settling 

velocity (ws) are indirectly proportional to magnitude of sediment yield. 

Increasing and lowering ws by a factor of 2 means sediment yield is increased 

by roughly 1 order of magnitude and lowered by almost 3 orders of magnitude, 

respectively. Precipitation (P) and land cover (C) are directly proportional to 

magnitude of sediment yield. Changing P and C by a factor of 2 gives triple and 

double sediment yield magnitudes, respectively. 

Table 6 Sensitivity test results. 

Type F�
 y=f�F��  

0.5F F 2F 

Input P 0.27 1 3.54 

 C 0.557 1 2.229 

Constant hn 1 1 1 

 hh 0.003 1 9.17 

 ws 9.17 1 0.002 

 tr 1.31 1 0.77 

 ter 0.5 1 2 
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Application of SDAS is presented by simulating e, SDR, and y across the entire 

Citarum watershed on Java Island, Indonesia. The modeling period covers the 

early 20th century until the beginning of the 21st century on an annual basis, i.e. 

from 1901 to 2005. The land cover data originate from various sources (Table 

7). The global precipitation time-series dataset covering a century record (i.e. 

1901-2005) is available from the Climatic Research Unit (CRU), University of 

East Anglia, United Kingdom [32]. The CRU provides a gridded set of monthly 

FOLPDWH�UHDQDO\VLV�GDWD�IRU�WKH�HQWLUH�JOREH�DW�D���¶�× ��¶�UHVROXWLRQ��,Q�DGGLWLRQ�

to that, climatology data from the same source (i.e. CRU) were also used. These 

show the mean monthly temperature and precipitation for the same period at a 

KLJKHU�VSDWLDO�UHVROXWLRQ����¶�× ��¶���EXW�DUH�QRW�DYDLODEOH�DV�D�WLPH�VHULHV�>��@��

The low-resolutLRQ� ���¶� × ��¶�� FOLPDWH� WLPH-series datasets were statistically 

GRZQVFDOHG�WR� WKH�KLJKHU���¶�× ��¶�UHVROXWLRQ��'HWDLOV�RI�FOLPDWH�GRZQVFDOLQJ�

for the domain being investigated and assessment of the quality of the 

precipitation map are discussed in Poerbandono, et al. [34]. In Table 8, a 

VXPPDU\�RI�WKH�TXDOLW\�DVVHVVPHQW�RI�WKH�&58¶V�PRQWKO\�SUHFLSLWDWLRQ�PDSV�DV�

documented in Poerbandono, et al. [34] is given.  

Table 7 Sources of land cover map. 

No. Title of map Source Year 

1. Natural forest cover of Java [35] 1891 

2. Vegetation of Indonesia US Dept. of Forest Service 1950 

3. Land use map of Java Madura FAO 1963 

4. Land use map Ministry of Interior Indonesia 1980 

5. Natural forest cover of Java [35] 1987 

6. MODIS land cover product [36] 2001-2006 

Table 8 Agreement between precipitation datasets and observations [34]. 

Station r % 

Tanjung Priok 0.54 184 

Halim 0.27 101 

Depok 0.38 106 

Katulampa 0.87 80 

2.4 Calibration and Computation of Sediment Yield 

Calibration of SDAS was carried out for the upper Citarum catchment (UCC). 

The UCC covers an approximate area of 1,771 km
2
 [19] and is part of the 

Citarum watershed, which contributes to the Saguling reservoir (Figure 5). 

Monthly rainfall recorded in 2001 varied from 45 to 352 mm with an 

accumulated annual value of 2,200 mm [19]. The terrain is mountainous along 

its boundaries, with a flood plain in the centre of the basin. Regular monitoring 

of sediment discharge (yield) from the UCC has been made by the Water 

Resources Research and Development Centre of the Office of Public Works of 
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West Java Province (Pusat Penelitian dan Pengembangan Sumberdaya Air, 

Kantor Pekerjaan Umum Propinsi Jawa Barat). The monitoring station is 

located in Nanjung (Figure 5). The magnitude of the annual sediment discharge 

is available from five years (Table 9). 

 

Figure 5 The upper Citarum catchment [19]. 

Table 9 Measured sediment yield in Nanjung station [19]. 

Year y (×10
6
tons/year) 

1976 0.27 

1981 0.86 

1993 1.20 

2003 2.15 

2004 2.18 

In order to calibrate the SDAS output, we initially fixed the factors for inputs 

and constants (Table 10), and fit the computation results (i.e. annual yield of 

sediment) with the first two data from the observation series. Input factors that 

are fairly sensitive to sediment yield calculation (i.e. P,C) were left uncalibrated 

(equal to one). We assumed that rainfall duration (tr) and effective rainfall 

duration (ter) were 20 and 7 hours per month respectively. 

Table 10 Initial setting of factors for inputs and constants. 

Factor P C hn hh ws tr ter 

Value 1 1 1 0.025 0.05 20 7 
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The results show that while the computed sediment yield was fit to an epoch of 

observation data, a large discrepancy with the other epoch of observation data 

resulted. This could be due to the assumption of using constant and uniform 

hillslope flow depth and sediment grain size. As discussed by Boer & 

Puigdefábregas [37], hillslope discharge and soil loss could be affected by 

variation in the spatial correlation structure of coupled vegetation cover and soil 

patterns alone. In addition to that, rainfall intensity and slope gradient play a 

contributing role. This suggests that the hillslope flow depth, which provides 

strong control on the sediment yield calculation, should vary with the variability 

of the type of land cover and precipitation. Hence, we verified the effect of 

changes in hillslope flow depth by carrying out a calculation of the sediment 

yield for the first two epochs and concluded that hillslope flow depth should 

change over time. We propose to represent this by relating hillslope flow depth 

(hh) to land cover (C): 

 hh = ±1.944C ± 0.2 (17) 

3 Result and Discussion 

3.1 Agreement between Computed and Observed Sediment Yield 

Figure 6 shows a comparison between the computed sediment yield using 

SDAS and the observed sediment yield. The observation data covered the years 

1976, 1981, 1994, 2003 and 2004. It can be seen from Figure 6 that SDAS was 

capable of providing results in the same order of magnitude with respect to the 

observed sediment yield. SDAS computation could also accommodate the trend 

of increasing sediment yield. This indicates that time-dependent SDAS input 

can be well considered. The agreement between computed and observed 

sediment yield is shown in Table 11. It gives an average deviation of 7%, with a 

coefficient correlation of 0.99 and an overall ratio of computed and observed 

magnitude of 111%. When looking at the last two epochs, quite a discrepancy 

can be seen, especially in terms of overestimation. 

The estimate of the hillslope flow depth is thought to contribute to the 

inaccuracy of the sediment yield calculation. Assuming that the change of flow 

depth is solely due to a change in land cover, as in Eq. (17), seems to be an 

oversimplification of the natural physical processes. It neglects the variability of 

soil patterns, rainfall intensity, and slope gradient. Calculation of yield of 

sediment assumes a constant and uniform sediment size. While sediment size 

has a strong influence on sediment yield computation, only one single epoch of 

soil type map was used here as source of sediment. Bearing in mind the 

limitations of accuracy of SDAS computation within the range of the period of 
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calibration, we carried out a simulation of the watershed where the calibration 

was made for a decadal time range. 

 

Figure 6 Comparison between computed and observed sediment yield. 

 

Table 11 Comparison between computed and observed sediment yield. 

Year 
y (× 10

6
tons/year) 

Discrepancy 
Observed Computed 

1976* 0.27 0.27 N/A 

1981 0.86 0.79 ±8% 

1993 1.20 1.17 ±3% 

2003 2.15 2.49 16% 

2004 2.18 2.66 22% 

Average 1.60 1.78 7% 
Note: * This epoch was not considered in the assessment of agreement 

3.2 Simulation of Spatially Distributed Sediment Yield 

Selected representative results of the simulation are shown. Digital cartographic 

software is needed to generate a visual presentation of the SDAS output. SDAS 

delivers tabulated results in ASCII format and we used ESRI ArcGIS software 

to depict the spatial distribution of sediment yield. Analysis of coverage and 

change of erosion behavior in the investigated domain throughout the 20
th
 

century were also made. In Figures 7 and 8, the spatial distributions of the 

sediment yield are given as overlays on the DEM. 
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Figure 7 Sediment yield (y) distribution in 1901. 

 

Figure 8 Sediment yield (y) distribution in 2005. 

In Table 12, areas experiencing normal erosion (y d 3,000 tons/km2/year) and 

critical erosion (y > 3,000 tons/km2/year) are shown. Table 13 shows the 

maximum and mean yield of sediment computed for 2005 and 1901. Citarum 

experienced an increase of critically eroded areas and yields of sediment. While 

in 1901 only 0.4% of Citarum experienced critical erosion, in 2005 the extent of 

critical erosion has increased to 8.4%. In the case of mean sediment yield, the 

increase of magnitude was found to be by a factor of 4. Spatial changes in 

sediment yield throughout the 20th century can also be detected visually. In 

Figure 9 a map is shown that was generated by subtracting the sediment yield 

map for 1901 from that for 2005. Figure 9 illustrates how much the yield of 
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sediment in the region had increased. A major increase of sediment yield is 

found predominantly in the upper watersheds. This is thought to be due to 

conversion of vegetated zones, e.g. forests, into bare land or plantation and 

agricultural areas. 

Table 12 Area experiencing normal and critical erosion in % of watershed area. 

Type y (tons) 1901 2005 

Normal d 3,000 99.6 91.6 

Critical > 3,000 0.4 8.4 

Change 
a)

     21.0 
Note: a) factor of increase 

Table 13 Total annual sediment yield in 1901 and 2005 in tons/km
2
/year. 

19 01 20 05 Change
 a)

 

Max. Mean Max. Mean Max. Mean 

6,485 204 103,900 917 16.0 4.5 
Note: a) factor of increase 

 

 

Figure 9 Changes of sediment yield distribution between 1901 and 2005. 

The computation results from SDAS output as given in Table 12 and Table 13, 

as well as classification of erosion states and the corresponding changes from 

two different epochs indicate cases that could be useful for evaluation and 

spatial planning of watershed management. It should be noted that these results 

were limited by the assumptions used in SDAS calculation. Overestimation of 

the results by up to 22% can be expected for recent results of simulation. 
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4 Conclusion 

SDAS is developed as a spatial tool for simulation of watershed erosion and is 

composed of the following model components: terrain model, spatial units, and 

computation of measures of watershed erosion (erosion rate, sediment delivery 

ratio, and sediment yield). At the present stage, SDAS is available as a license-

free computer application for academic training and educational purposes at the 

undergraduate level. It assists class teaching and exercises for students. The 

capability of SDAS to perform what-if computations within a range of climate 

change periods (105 years) in the Citarum river basin, with changes of 

precipitation on a monthly basis and land cover in a single watershed, was 

discussed in this paper. The applicability of SDAS is limited by the complexity 

of data preparation, primarily in setting up uniform input maps (DEM, land 

cover, soil type, precipitation) from various secondary sources. As SDAS is not 

facilitated by a presentation component, additional software (i.e. spreadsheet, 

graphic, mapping) for specific analyses and visual presentation is needed. 

SDAS has indeed delivered substantial information on spatial erosion rate and 

sediment yield, which were computed based on the latest knowledge on spatial 

modeling of watershed erosion. SDAS allows presentation of the impact of 

changes in land cover for the case of the Citarum river basin over the course of 

a century for consideration by policy makers in watershed management. 
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