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Abstract. This paper investigates the problem of H,, performance analysis for
continous—time systems with two additive time-varying delays in the state. Our
objective is focused on stability analysis of a continuous system with two time-
varying delays with an H,, disturbance attenuation level y. By exploiting
Lyapunov-Krasovski functional and introducing free weighting matrix variables,
LMI stability condition have been derived.
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1 Introduction

Time delay is the property of a physical system by which the response to an
applied force (action) is delayed in its effect. When information or energy is
physically transmitted from one place to another, there is a delay associated
with the transmission [1]. It is well known that the presence of time-delay is a
source of instability [2]. Xia, et al. [3] presents some basic theories of stability
and synthesis of systems with time-delay, in the form of
x(t) = Ax(t) + A, x(t — 7(t)) , where () represents time-varying delay. Wu, et al.
[4] presents a method referred to as the free-weighting-matrix (FWM) approach
for the stability analysis and control synthesis of various classes of time-delay
systems. In [5], a new model for time delay systems is proposed, that is
x(t) = Ax(t) + A,x(t —7,(t) — 7,(t)) . The new model is motivated by practical
situation in Networked Control Systems (NCSs), where 7,(¢) is the time-delay
from sensor to the controller and 7,(¢) is the time-delay from controller to the
actuator.

Motivated by stability condition for system with two delays in the state, derived
in [6], in this paper we investigate conditions under which the continuous
system with two time-varying delays in the state is asymptotically stable with
an H,, disturbance attenuation level y. It is well known in systems and control
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community that H,-norm constraint can be used to provide a prespecified
disturbance attenuation level, and alternatively to analyze robust stability of
dynamical system under unstructured uncertainty. By exploiting Lyapunov-
Krasovski functional from [6] and introducing free weighting matrix variables,
the stability condition for the system is derived by using linear matrix inequality
(LMI) techniques.

Notation. The notation X > 0 denotes a symmetric positive definite, asterisk (*)
represents the elements of symmetric term in the symmetric block matrix. The
superscripts “7” and “-I” represent the transpose and inverse matrix,
respectively. L,[0,o0) is the space of square integrable functions on [0,00).

2 Problem definition

As stated previously, systems with two delays in the state can be found in the
Networked Control System (NCS), shown in Figure 1 [5]. In NCS, the physical
plant, sensor, controller and actuator are located at different locations and hence
the signals among those components are transmitted over network media.

Actuator > Physical Plant > Sensor
A
\4
Network Induced . Network Induced
Delay 7,(1) Network Medium Delay 7,(1)
A
Controller <

Figure 1 Networked control system [5].

We can see in Figure 1 that there are two delays, t,(¢) represents the delay of
data transmission from sensor to controller while z,(¢) represents the delay from
controller to actuator. The properties of these two delays may not be identical
due to the network transmission condition hence it is not reasonable to combine
them together [5]. Based on this observation, Lam, et al. [S] proposed new
model for time delay systems, described by x(¢) = Ax(¢) + A, x(t —7,(t) — 7,(2)) .
Based on such a system representation, Lam, et al. [5] derived the stability
condition. Gao, et al. [7] presented a new stability condition and investigated



An LMI Approach to H« Performance Analysis of Cont. Time 129

the problem of H, performance analysis. Dey, et al. [6] constructed a new
Lyapunov-Krasovskii functional in obtaining the stability condition for such
system, and provided less conservative delay upper bound, as compared to the
conditions in [5,7,8]. By using Lyapunov-Krasovskii functional in [6], in the
present paper we investigate the problem of H, performance analysis for
continuous—time systems with two additive time-varying delays in the state.

Consider the following system with two additive time varying delays in the
state [7],

x(1) = Ax(1) + A, x(t —7,(1) = 7, (1)) + Ew(0),

y(t) = Cx(1) + C,x(t — 7,(t) = 7,(1) )+ Fw(z), 1)

x(t) = ¢(t)’ te [—’Z_',O]
where  x(f)eR" is the state vector; y(f)eR” 1is the output vector;
7,(¢) and 7, (¢) represent two delays in the state; ¢(¢) is the initial condition on
the segment [-7,0]; w(r)e®R' is the disturbance input which belongs to
L,[0,0); A, Ay, E, C, Cy, and F are known system matrices with appropriate
dimension. For system in Eq. (1), it is assumed that [6,7],

0<7,(t)<7, <0, 7,<d, <0, 0<7,(t) <7, <o, 7,<d, <o, 2)

and 7=7,+7,, d=d +d,

Our objective is to investigate whether the continuous-time system with two
time-varying delays in the state is asymptotically stable with an H,, disturbance
attenuation level y.

Definition 1 If there exist positive definite Lyapunov function V(x,r) such that
the derivatives with respect to time ¢ (w = 0) satisfies V(x,t) <0, then system
(1) is said to be asymptotically stable.

Lemma 1 For any z,ye®R" and for any symmetric positive definite matrix
X e R"™[9],
27"y <X z+y" Xy

Lemma 2 Schur Complement. Schur’s formula says that the following
statements are equivalent [10]:
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i. qb:[@“ @‘2}0

QIZ @22

.. ®22 < 0
ii.

@11 - @12@2*21@17; <0

3 Main Result

The Main result of the present paper is stated in the following theorem.

Theorem 1 The continuous-time system with two additive time-varying delays
in the state (1) satisfying (2) either
(i) asymptotically stable with w = 0, or

(ii) stable with H,, disturbance attenuation level y (w # 0)

if there exist matrices P=P" >0, 0, =0, >0, 0,=0," >0,0,=0," >0,
R =R'>0, R,=R, >0, R, =R,
matrices with Q, > Q, satisfying,

Y+, + )+ P

*

where,

0 +0,

0

* _(l_dl)(Qz_Qa)

wo=|  *
*

*

*

*

*

>0and G, L;, M;,, N,i = 1,..., 4 are free

¥, =¥, ¥, =[A 0 4, -1 EJ,

v, =l G¢I G &I o,

L+L +M +M/

*

7
5 1<0 3)
s
0 P 0
0 0 0
7(17d17d2)(Q1+Q3) 0 0
* R, +7,R, +7,R, 0
% * _},21
M +N, -L+L+M]-N, L +M,

LM, +
7M27M2T
*

*

0
+N,+N; —L,-M]-N,+N; -M{+N; O}
~L-L-N,-N -L-N 0
* 0 0
3k * 0
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Ll Ml Nl
LZ MZ NZ
v-|L M. N ¥ =[c 0 ¢, 0 F],
L4 M4 N4
0 O 0

[

, =diag{ 7'R,-7 'R, -5, 'R, }
Proof.

Define a Lyapunov-Krasovski functional as in [6],

V() =V,()+V,(0)+V, (1)

Vi(t) = x" (t)Px(t), 4)

1=7(1)

V0= [x(©)Qx0ds+ [x' ($)Qx()ds+ [ ()0x(s)ds (5)

=1y (1)=7, (1) =1, (1) =1, (1)=7, (1)

V.(H)= j j‘)‘CT ()R x(s)dsdb + j j)'cT ()R, x(s)dsd0 + I'fl j)'cT ()R, x(s)dsdf (6)

1-7,-7, 1-7,-7,

The time derivative of V(¢) satisfying condition (2) is given by (as done in [5])

V() =2x" (1) P(1), (7)
V(1) <x"(0)(Q, + 0, x(t) —(1—d )x" (t =7, ()NQ, — 0, )x(z —7, (1))
—(1=d —d)x" (t —())Q, + O, )x(z — (1)) (8)

V.(t) < x" ()R, +T R, + T,R, )x(r) — jx (s)R x(s)ds

1=7(1)
t t—7,(1)
= [¥ ()R x(s)ds— [ ()R (s)ds )
1-1,(1) 1=7(1)

Now, introducing any free matrices G, i=1,2,3,4, one may write

> =2l ()G, +x" (t —7,(1))G, +x" (t —(1)G, + & ()G, |

X [— X()+Ax(t)+ A, x(t —7(1))+ Ew(t)] =0 (10)
Simplifying Eq. (10), we get
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0! *
i

*

0

*
*

*

GZAd
G,A, +A]G] -G,+A,G,

*

*

(G A+A"G! A"G! G,A,+A"G! -G, +A'G!

-G

2

-G,-G!

*

1

G,E
G,E
G,E

0

G E |
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En=0 (D

where £() =[x"(t) X" (t-7,(t) * (t—2(0) @ wo].

Now, to eliminate integral terms in Eq. (9), we can use the Newton-Leibniz
formula, and introducing free matrices L, i = I, 2, 3,4, we get
2x" (L, +x" (1 =7, (1)L, + X" (t =)L, + &7 (1)L, ]

: (12)
x| x(t) — x(t — 7(t)) — jx(s)ds =0

t—7(t)

Simplifying Eq. (12), we obtain

L+L [ L+l I 0 L,
B * 0 L, 0o 0| . L 13)
ETn|  * * —L-L -L 00+ [ =287 L, [i(s)ds=0
ES 3k 3k O O 1=z (1) L4
* * * * 0 0

Applying Lemma 1 on the last term of Eq. (13), we get

T

Ll Ll Ll

L, L| |L
PN Fronl 1 o Fona [ : (14)
[ =287 0| L, |i()ds <z ET ()| Ly R]| Ly | E@)+ [£7 ()R, #(s)ds
1—7(t) L4 L4 L4 t—7(t)

0 0 0

Substituting Eq. (14) in the last term of Eq. (13) and with little manipulation, we
get

L+ L -+l L o] [L] [L
* 0 -L, 0 o |L| |L
I-T . T .T T = 1 3 (15)
- [FORds<E 0] *  x —L-L -L 0+7| LR L] £
=20 * * * 0 0 L, L,
* * * * 0 0 0

We can remove the last two terms of Eq. (9) (integral terms) using similar way
as done for Egs. (12) — (15), to obtain
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M +M -M+M] M7 M 0] [M] [M
. * -M,-M] -M] -M] 0 M,| |M,
- [F @R ids<E W] * 0 0 0f+7 M, |R'|M,| &)
=n (0 * * * 0 0 M, M,
* * * * 0 0 0
0 N, -N, 0 0 N [NT
oo * N,+N! —N,+N! NI 0 N,| |N,
- [FORKAs<ET @3 *  *  -N,=N] =N O|+5|N,|R'|N,| (E@0)
e * o * 0 0 N,| |N,

where M;,i=1,2,3,4and N,, i = 1, 2, 3, 4 are free matrices.
Substituting Eqgs. (15), (16) and (17) into Eq. (9), we get

V() <& (TR +T.R, +T,R K(t)+ E (), +V,, +V,, +V, JE®)

where
L+L+M +M] L-M+M]+N, -L+L+M/-N L+M] 0
* -M,-M]+N,+N, —-L-M]-N,+N. -M]+N, 0
V3| = * * _Ls_lGT_Nz_NZ _LZ_NAT 0
T r N, [N
L, L, M, M, I 1
L, L, M, M, N, N,
_ _ _ _ _ = -1
Vo, =1L, Rll Ly | > Vy=1,| M, Rz] M, » Vi, =7, Ny |[Ry| N,
L4 L4 M4 M4 N4 N4
0 0 0 0 0] [ 0]
Then, from Egs. (7), (8), (11) and (18) we have
V) =V,@)+V,) +V,() + X
Q” ‘QIZ QIS QM ‘Qli l1 Iﬂ i Ml Ml ' Nl Nl '
* QZZ 023 024 025 LZ l‘Z MZ M NZ NZ
V<& 0y * F 2 Dy O |+T LR L | 7 MR M, | T N RN, | (€0
* * * Q-'M 'QAs L, L, M, M, N, N,
LA B R o B 0 0 0 0 0 0

where,
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(16)

A7)

(18)

19)
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2,=0+0,+GA+A'Gl +L+L + M, + M/ ,Q2,=A"G, +L, —M,+ M. +N,,
Q2,=GA,+A'G -L+L,+M! -N,,Q,=P-G +A'G, + L, + M,
QISZGIE’ .sz=—(1—dl)(Q2—Q3)—M2—M2T+N2+N2T,

-023 :GzAd_Lz_Msr_Nz"'N;"QM :_Gz_M4T+N4T"st :GzE’

Q33 =—(1—d1—dz)(Ql+Q3)+G3Ad+A;G3T—L3—L§—N3—N3T,
Q,=-G,+AG -L,-N,,Q, =G,E, 0, =R +7,R, +T,R, -G, -G, ,
Q.,=GE, Q,=0.

Simplifying Eq. (19) we have

V) <ET O+, + ¥+, + 7, @) (20)
where
0 +0, 0 0 P 0
* _(l_dlez_Qz) 0 0 0
571: * * _(l_dl_dz)(Ql+Q3) 0 0}’
* * * R +T,R,+7,R, 0
% * * *k 0

v =WEY E =diag{zﬂ€]‘1,zﬁR2",f2R;‘}, and ¥,, ¥, , ¥ are given in Eq. (3).
Thus, we have

Vi) +y Oy®) -y w @Ow) <

_ _ (21)
EN 0+, + ¥+, + 0+ E ()
where ¥, ¥,, ¥,, ¥, are given in (3) and ¥, is given in (20).

First, we consider the asymptotic stability of system Eq. (1) satisfying Eq. (2)
with w (¢) = 0. For this case, from Eq. (21) we have

V) <E O[T +T, + 7 +F,+ T, (1) (22)
where

D=l @) Fe-r0) Fe-r0) F@f
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[0,+0, 0 0 P

o * _(1_d1)(Q2_Q3) 0 0

¥ = * * _(1_d1_d2)(Q1+Q3) 0
* * * TR, +7,R, +T,R,

5722572151_/22911721:[‘4 0 A, _I]T’&?zz:[GlT GzT G3T G4T]

L+L +M +M] L -M+M!+N, -L+L+M]-N, L +M]

g -M,-M]+N,+N] -L —-M]-N,+N] —-M]+N/

2 . A A G

* * * 0

L M, N,
%:?fsiﬂr,i:diag{ﬂ?;l,zﬂRz",sz;I},i: L, M, N,
‘ L3 M3 N3
L4 M4 N4

Notice that by Schur Complement (Lemma 2), Eq. (3) implies
P+ + "+ +%, <0 hence V(r) <0. Therefore, we can conclude that
system (1) satisfying (2) with w(¢) = 0 is asymptotically stable.

Now, we consider stable system with H,, performance, that ||y||2 < 7/||w||2 for all

nonzero w € L,[0,o0) under zero initial condition.

By Schur ~ Complement (Lemma  2), Eq. A3 guarantees
Y+ +¥ + W+ +, <0, where ¥, ¥,, ¥,, ¥, are given in Eq. (3)
and ¥, is given in Eq. (20). Therefore, from Eq. (21) we have,

Y @Oy@) = 7w WD) +V () <0 (23)

for all nonzerow € L,[0,00) . Under zero initial condition, we have V(0) = 0 and
V(o) = 0. Taking integration on both sides of Eq. (23) yields,

TyT (@) y(0)dt ~ T yiw' (Ow(t)de + TV(t)dt <0

oI =7 <0
Thus,
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|| y||2 < 7/||w||2 for all nonzero w € L,[0,00) and the proof is complete. o

Theorem 1 provides condition in terms of LMI (3) that can be numerically
solved using any standard LMI solver, e.g. [11].

Remark 1 A different LMI condition for H,, performance analysis derived in
Theorem 2 of [7]. Notice that, the LMI condition in Theorem 1 in this paper
involves the same number of unknown parameters than those in [7].

Remark 2 Due to the condition of network transmission, the delays z;(¢) and
7,(#) in Eq. (1) may not be identical [5] and another LMI condition may be
obtained by assuming different properties of those delays.

Using the result derived in this paper, we further consider the model of
Networked Control Systems described in [7]. In this case, the two additive
delays 7,(#) and 7,(¢) have very different properties in that 7,(¢) and 7,(z) are

assumed to be constant and non-differentiable, respectively, i.e.
7,(t)=7,<0,0<7,(t) <7, <© (24)

We then have the following corollary.

Corollary 1 System Eq. (1) satisfying Eq. (24) either

(i) asymptotically stable with w = 0, or
(ii) stable with H,, disturbance attenuation level y (w # 0)

if there exist matrices P=P" >0, Q,=Q, >0, R =R’ >0, R, =R, >0,
R, = R3T >0and G, L;, M;,N;,i = 1,....4 are free matrices satisfying,

T, + ¥+ W,

5 1<0 (25)
* =
—~'5
where,
o 0 0 P 0
-0, 0 0 0
o= x * 0 0 0
* % ¥ IR4TR +T,R, 0
* * * * _721

Other parameters are given in Eq. (3).
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Proof.

Define a Lyapunov-Krasovski functional,
V(1) =V,(0) +V, () +V, (1)

where V,(t) and V;(t) are given in Egs. (5) and (7), respectively and

t

V() =[x (5)Q,x(s)ds

It

Then, the proof is derived along similar lines as in the proof of Theorem 1. O

4 Illustrative Example

Suppose the system matrices A, A, C, C, E, F in Eq. (1) are given as follows
(71,

A:[O 1}, Ad:{o 1},E:{0'3},C:[1 0], c,=1 0],F=05.

-1 =2 -1 -2 0.5

The parameters for delay are given by d; =0.1 and d;, = 0.8.

We assume the delay upper bound 7, and 7,. Our objective is, to find the
minimum guaranteed H,, performance, y,,,, , that makes condition in Theorem
1 feasible. Firstly, we assume 7, =1 and 7, =0.1. By solving LMI (3), we get
the minimum guaranteed H, performance, 7, = 1.919. Comparison for
different cases with 7, and 7, varies is provided in Table 1. It shows that the
smaller the upper bound of the delay system, the smaller y,,;,, we get.

Table 1 Minimum guaranteed H,, performance, y,,, for different cases of 7,

and 7,.
7, (s) 1 1.2 1.5
T,(s) 0. 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

Vmin 1919 3.308 7.841 2632 5.276 14109 4.419 10.222 36.609

5 Conclusions

In this paper, we have investigated the asymptotic stability of continuous time
system with two additive time-varying delays, with H,, disturbance attenuation
level y. By exploiting Lyapunov-Krasovski functional and introducing free
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weighting matrix variables, the stability condition and H. performance were
derived by using linear matrix inequality (LMI) techniques. An illustrative
example is provided to validate the analysis method.
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