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Abstract. This paper investigates the problem of H∞ performance analysis for 

continous–time systems with two additive time-varying delays in the state. Our 

objective is focused on stability analysis of a continuous system with two time-

varying delays with an H∞ disturbance attenuation level γ. By exploiting 

Lyapunov-Krasovski functional and introducing free weighting matrix variables, 

LMI stability condition have been derived. 

Keywords: H∞ performance analysis; Linear Matrix Inequality (LMI); time delay 

systems. 

1 Introduction 

Time delay is the property of a physical system by which the response to an 

applied force (action) is delayed in its effect. When information or energy is 

physically transmitted from one place to another, there is a delay associated 

with the transmission [1]. It is well known that the presence of time-delay is a 

source of instability [2]. Xia, et al. [3] presents some basic theories of stability 

and synthesis of systems with time-delay, in the form of 

))(()()( ttxAtAxtx
d

 , where τ(t) represents time-varying delay. Wu, et al. 

[4] presents a method referred to as the free-weighting-matrix (FWM) approach 

for the stability analysis and control synthesis of various classes of time-delay 

systems. In [5], a new model for time delay systems is proposed, that is 

))()(()()(
21

tttxAtAxtx
d

  . The new model is motivated by practical 

situation in Networked Control Systems (NCSs), where τ1(t) is the time-delay 

from sensor to the controller and τ2(t) is the time-delay from controller to the 

actuator.  

Motivated by stability condition for system with two delays in the state, derived 

in [6], in this paper we investigate conditions under which the continuous 

system with two time-varying delays in the state is asymptotically stable with 

an H∞ disturbance attenuation level γ. It is well known in systems and control 
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community that H∞-norm constraint can be used to provide a prespecified 

disturbance attenuation level, and alternatively to analyze robust stability of 

dynamical system under unstructured uncertainty. By exploiting Lyapunov-

Krasovski functional from [6] and introducing free weighting matrix variables, 

the stability condition for the system is derived by using linear matrix inequality 

(LMI) techniques. 

Notation. The notation X > 0 denotes a symmetric positive definite, asterisk (*) 

represents the elements of symmetric term in the symmetric block matrix. The 

superscripts “T” and “-1” represent the transpose and inverse matrix, 
respectively. ),0[

2
L  is the space of square integrable functions on [0,∞). 

2 Problem definition 

As stated previously, systems with two delays in the state can be found in the 

Networked Control System (NCS), shown in Figure 1 [5]. In NCS, the physical 

plant, sensor, controller and actuator are located at different locations and hence 

the signals among those components are transmitted over network media. 

 

 

 

 

 

 

 

Figure 1 Networked control system [5]. 

We can see in Figure 1 that there are two delays, τs(t) represents the delay of 

data transmission from sensor to controller while τa(t) represents the delay from 

controller to actuator. The properties of these two delays may not be identical 

due to the network transmission condition hence it is not reasonable to combine 

them together [5]. Based on this observation, Lam, et al. [5] proposed new 

model for time delay systems, described by ))()(()()(
21

tttxAtAxtx
d

  .  

Based on such a system representation, Lam, et al. [5] derived the stability 

condition. Gao, et al. [7] presented a new stability condition and investigated 
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the problem of H∞ performance analysis. Dey, et al. [6] constructed a new 

Lyapunov-Krasovskii functional in obtaining the stability condition for such 

system, and provided less conservative delay upper bound, as compared to the 

conditions in [5,7,8]. By using Lyapunov-Krasovskii functional in [6], in the 

present paper we investigate the problem of H∞ performance analysis for 

continuous–time systems with two additive time-varying delays in the state. 

Consider the following system with two additive time varying delays in the 

state [7], 

 

 
 

]0,[             ),()(

),()()()()(

),()()()()(

21

21









tttx

tFwtttxCtCxty

tEwtttxAtAxtx

d

d


 (1) 

where  x(t) n  is the state vector; y(t) p  is the output vector; 

)( and )( 21 tt  represent two delays in the state; )(t  is the initial condition on 

the segment  .0, ; l
tw )(  is the disturbance input which belongs to 

);,0[
2

L  A, Ad, E, C, Cd, and F are known system matrices with appropriate 

dimension. For system in Eq. (1), it is assumed that [6,7], 

 ,)(0
11

  t ,
11

 d ,)(0
22

  t  ,
22

 d  (2)     

and ,
21
     

21
ddd   

Our objective is to investigate whether the continuous-time system with two 

time-varying delays in the state is asymptotically stable with an H∞ disturbance 

attenuation level γ. 

Definition 1  If there exist positive definite Lyapunov function V(x,t) such that 

the derivatives with respect to time t (w = 0) satisfies 0),( txV , then system 

(1) is said to be asymptotically stable. 

Lemma 1 For any n
yz ,  and for any symmetric positive definite matrix 

nn
X

 [9], 

 XyyzXzyz
TTT  12  

Lemma 2 Schur Complement. Schur’s formula says that the following 
statements are equivalent [10]: 
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i. 0
2212

1211 













T

 

ii. 
0

0

12

1

221211

22




 T


 

3 Main Result 

The Main result of the present paper is stated in the following theorem. 

Theorem 1  The continuous-time system with two additive time-varying delays 

in the state (1) satisfying (2) either 

(i) asymptotically stable with w = 0, or 

(ii) stable with H∞ disturbance attenuation level γ (w ≠ 0) 

if  there exist matrices ,0 T
PP  ,0

11
 T

QQ  ,0
22
 T

QQ ,0
33
 T

QQ  

,0
11
 T

RR  ,0
22
 T

RR  0
33
 T

RR  and  Gi, Li,  Mi, Ni, i = 1,..., 4  are free 

matrices with 
32

QQ   satisfying, 

 0
*

5

5663221 






 

 TT

 (3)     

where, 

   
  

































I

RRR

QQdd

QQd

PQQ

2

32211

3121

321

21

1

****

0***

001**

0001*

000





 

 
22212

  ,  T
d

EIAA  0
21

,  

  0
432122

TTTT
GGGG , 

 


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







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







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

0****
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0
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3

TTTT

TTTTTT

TTTTTTTT
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























000

444

333

222

111

5

NML

NML

NML

NML


,  FCC

d
00

6
 ,  

  
3

1

22

1

11

-1

5
-,-,-diag RRR

   

Proof. 

Define a Lyapunov-Krasovski functional as in [6], 

 )()()()(
321

tVtVtVtV   

 ),()()(
1

tPxtxtV
T  (4)     

 





)(

)()(

3

)(

2

)()(

12

1

21121

)()()()()()()(

tt

ttt

T

t

tt

T

t

ttt

T
dssxQsxdssxQsxdssxQsxtV





 (5) 

   





1

21121

)()()()()()()(
3213



   


t

t

t

T

t

t

t

T

t

t

t

T
dsdsxRsxdsdsxRsxdsdsxRsxtV   (6) 

The time derivative of  V(t) satisfying condition (2) is given by (as done in [5]) 

 )()(2)(
1

txPtxtV
T   , (7) 

       ))(())((1)()()(
13211212

ttxQQttxdtxQQtxtV
TT    

                  ))(())((1
3121

ttxQQttxdd
T    (8) 

   



t

tt

TT
dssxRsxtxRRRtxtV

)(

1322113
)()()()()(



   

               





)(

)(

3

)(

2

1

1

)()()()(

tt

tt

T

t

tt

T
dssxRsxdssxRsx





   (9) 

Now, introducing any free matrices Gi, i=1,2,3,4, one may write 

  
43211

)())(())(()(2 GtxGttxGttxGtx
TTTT     

               0)())(()()(  tEwttxAtAxtx
d

  (10) 

Simplifying Eq. (10), we get 
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 0)(
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34333

222
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
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

















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t
T
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d
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d

TTTT

d

TTTT

T   (11) 

where  TTTTT
twtxttxttxtxt )()())(())(()()(

1
  . 

Now, to eliminate integral terms in Eq. (9), we can use the Newton-Leibniz 

formula, and introducing free matrices Li, i = 1, 2, 3, 4,  we get 

 

 

0)())(()(

)())(())(()(2

)(

43211













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


t

tt

TTTT

dssxttxtx
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









 (12) 

Simplifying Eq. (12), we obtain 
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1
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L
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t
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TTT
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T



  (13) 

Applying Lemma 1 on the last term of Eq. (13), we get 
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Substituting Eq. (14) in the last term of Eq. (13) and with little manipulation, we 

get 
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 (15) 

We can remove the last two terms of Eq. (9) (integral terms) using similar way 

as done for Eqs. (12) – (15), to obtain 
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where Mi, i = 1, 2, 3, 4 and Ni, i = 1, 2, 3, 4 are free matrices. 

Substituting Eqs. (15), (16) and (17) into Eq. (9), we get 
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Then, from Eqs. (7), (8), (11) and (18) we have 
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Simplifying Eq. (19) we have 
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,,diag  RRR  , and 

2
 , 

3
 , 

5
  are given in Eq. (3). 

Thus, we have 
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where 
1

 , 
2

 , 
3

 , 
6

  are given in (3) and 
4

  is given in (20). 

First, we consider the asymptotic stability of system Eq. (1) satisfying Eq. (2) 

with w (t) = 0. For this case, from Eq. (21) we have 
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Notice that by Schur Complement (Lemma 2), Eq. (3) implies 

0
43221
  T  hence 0)( tV . Therefore, we can conclude that 

system (1) satisfying (2) with w(t) = 0 is asymptotically stable. 

Now, we consider stable system with H∞ performance, that 
22

wy  for all 

nonzero ),0[
2

Lw  under zero initial condition. 

By Schur Complement (Lemma 2), Eq. (3) guarantees 
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1
 , 

2
 , 

3
 , 

6
  are given in Eq. (3) 

and 
4

  is given in Eq. (20). Therefore, from Eq. (21) we have, 
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Thus, 
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22
wy   for all nonzero ),0[

2
Lw  and the proof is complete. □ 

Theorem 1 provides condition in terms of LMI (3) that can be numerically 

solved using any standard LMI solver, e.g. [11].  

Remark 1  A different LMI condition for H∞ performance analysis derived in 

Theorem 2 of [7]. Notice that, the LMI condition in Theorem 1 in this paper 

involves the same number of unknown parameters than those in [7].  

Remark 2  Due to the condition of network transmission, the delays τ1(t) and 

τ2(t) in Eq. (1) may not be identical [5] and another LMI condition may be 

obtained by assuming different properties of those delays. 

Using the result derived in this paper, we further consider the model of 

Networked Control Systems described in [7]. In this case, the two additive 

delays )(
1

t  and )(
2

t have very different properties in that )(
1

t  and )(
2

t  are 

assumed to be constant and non-differentiable, respectively, i.e. 
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We then have the following corollary. 

Corollary 1  System Eq. (1) satisfying Eq. (24) either 

(i) asymptotically stable with w = 0, or 

(ii) stable with H∞ disturbance attenuation level γ (w ≠ 0) 
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Other parameters are given in Eq. (3). 
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Proof. 

Define a Lyapunov-Krasovski functional, 
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where V1(t) and V3(t) are given in Eqs. (5) and (7), respectively and  
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Then, the proof  is derived along similar lines as in the proof of Theorem 1.   □ 

4 Illustrative Example 

Suppose the system matrices A, Ad, C, Cd, E, F in Eq. (1) are given as follows 

[7], 

,
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
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


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

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


5.0

3.0
E ,  01C ,  01

d
C , F = 0.5. 

The parameters for delay are given by d1 = 0.1 and d1 = 0.8.  

We assume the delay upper bound 
1
  and 

2
 .  Our objective is, to find the 

minimum guaranteed H∞ performance, γmin ,   that makes condition in Theorem 

1 feasible. Firstly, we assume 1
1
  and 1.0

2
 . By solving LMI (3), we get 

the minimum guaranteed H∞ performance, γmin = 1.919. Comparison for 

different cases with 
1
  and 

2
 varies is provided in Table 1.  It shows that the 

smaller the upper bound of the delay system, the smaller γmin we get. 

Table 1 Minimum guaranteed H∞ performance, γmin, for different cases of 1  

and 2 . 

1
 (s) 1 1.2 1.5 

2
 (s) 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 

γmin 1.919 3.308 7.841 2.632 5.276 14.109 4.419 10.222 36.609 

5 Conclusions 

In this paper, we have investigated the  asymptotic stability of continuous time 

system with two additive time-varying delays, with H∞ disturbance attenuation 

level γ. By exploiting Lyapunov-Krasovski functional and introducing free 
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weighting matrix variables, the stability condition and H∞ performance were 

derived by using linear matrix inequality (LMI) techniques. An illustrative 

example is provided to validate the analysis method. 
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