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 Studies on different physiological and pathophysiological properties of the 

dopaminergic system have led to novel evidences and theories that suggest 

the possible targeting of such system in a variety of pathologies and 

disorders. Herein, we illustrate the applications and the therapeutic 

importance that such findings and advances might have. We hope that the 

content of this work will guide researches devoted to dopaminergic aspects 

that combine neurosciences with pharmacology. 
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1. OVERVIEW 
Dopamine (DA) represents an important neurotransmitter not only due to the physiological 

functions it governs but also because the divers’ roles it has been shown to play within some diseases’ 

mechanisms[1]. Indeed, in the mammalian central nervous system, dopamine represents the most ubiquitous 

catecholamine neurotransmitter [2].  

Dopaminergic receptors (DRs) classification went through different steps. The initially identified D 

l and D2 subtypes [3] DRs have been recently classified, based on molecular biological data, into five 

different subtypes [3]. Thus, DRs are divided into two families classified as D1-like family ( that includes D1 

and D5 DRs) and D2-like family (that includes D2, D3 and D4 DRs) [4-6] . We notice that invertebrate 

neurons also express D1 and D2-like receptors [7], in addition, D2 and D1 like receptors are co-expressed on 

the same invertebrate neurons but probably govern different functions [6] thus, provides a model for 

laboratory’s study to further our understanding of this system. 

DRs are G protein coupled receptors (GPCRs). While D1-like receptors are usually coupled to 

protein Gs [3, 5], D2-like receptors are generally coupled to Go or Gi proteins [5]. After DR stimuli, 

dopamine is released then it binds to DRs and depending on the receptor subtype two possible pathways 

exist. D1-like receptors activate downstream adenylyl cyclase, D2-like receptor group inhibit adenylyl 

cyclase thus, modulate the production of cAMP that activates protein kinase A [8-10] and the extracellular 

signal-regulated kinase [11,12] that has been associated with many functions and properties such as 

behavioral responses to psychostimulants [13], apoptosis and cellular differentiation [10]. 
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2. DISTRIBUTION AND PHYSIOLOGY 

Generally speaking dopaminergic (DA) neurons form the nigrostriatal dopamine system that 

includes the substantia nigra and the locus ceruleus [14]. Other authors indicated that dopamine, which is 

synthesized from tyrosine, is stored in vesicles of dopaminergic neurons that are mainly found in the 

substantia nigra (SN) and ventral tegmental area (VTA) of the brain   [15, 16]. The anatomic distribution of 

the dopaminergic neurons shows that in the basal ganglia and mesolimbic areas of the brain dopamine is a 

major neurotransmitter [17-23] and within the mesocorticolimbic system, dopaminergic neurons, that project 

to the olfactory tubercle, the amygdala, the prefrontal cortex and the shell of the nucleus accumbens [24], 

begin in the ventral tegmental area (VTA) [25]. It has also been suggested that the subtype D4R of the DRs is 

expressed in the photoreceptors [26]. Therefore, shows the complexes distribution that suggests the divers 

functions this system controls. 

Dopaminergic system has been linkd to a variety of physiological functions. Indeed, dopamine is 

involved in the control of a variety of functions such as endocrine regulation, locomotion, emotion [2, 17-23] 

and food intake [2]. It is also believed to play a role in short-term memory and attention [27-31]. Both the 

normal development and the neuronal activity in the prefrontal cortex (PFC) appear to involve dopaminergic 

afferents from the mesencephalon [32]. This activity was confirmed by the presence of dopamine in the 

developing PFC of the 17-day embryo [33]. Furthermore, in  primates while during  adolescence increased  

dopamine concentrations have been reported in  cortical  and  subcortical  tissue  compared  to childhood  and  

adulthood [34, 35], D1 and D2  receptors  densities  appear to decline from  adolescence  to  adulthood [36-

38] . In addition, in the adult forebrain dopaminergic projections have important roles in the neurogenesis 

[39] and during rat retinal ontogenesis dopamine exist in an early stage[40, 41] thus, reflects the importance 

dopaminergic system has during the neurodevelopment. 

On the other hand, the fact that tissue plasminogen activator (tPA) can act as a modulator of 

neurotransmission and synaptic plasticity by influencing dopaminergic and glutamatergic functions [42] 

shows the role dopamine can play in synaptic plasticity. Dopaminergic system is also implicated in the 

decision making process[43].  

 

 

3. SELECTED THERAPEUTICS AND PHARMACOLOGICAL POSSIBILITIES 

Based on the biological properties and the pharmacological observations, divers emerging 

possibilities and applications came out and described how dopaminergic system already constitutes a target 

for some diseases and a potential target for other pathologies. As instance, administering dopamine D2 

agonists could target D2 sensitization and attenuate relapse [44].On the other hand, dopamine has a 

protective effect in the retina [5] supposing a possible therapeutic application of the dopaminergic agonists. 

In psychiatry, the links between both the pleasure [45, 46]  and the anti-stress effect [47] on one side with the 

dopamine on the other side may constitute a starting point to new psychiatric drugs. DRs stimulation leads to 

an increased feelings of wellbeing [48] and stress reduction [49] supposing also a possible targeting of the 

dopaminergic system in some psychiatric and psychological diseases. It has also been reported that 

individuals with lack of D2 receptors have an important risk to develop eating bingeing, pathological 

gambling, sex addiction, ADHD, and antisocial behavior [50-62] and authors suggested a possible link 

between the heightened DA efficacy and adolescents’ risk-taking  and  emotional lability [63].  

In addition, hyperactivity of the dopaminergic system was involved in the positive symptoms of 

schizophrenia [64-66] and it has been reported that cognitive deficits in schizophrenia may be aggravated by 

the dopaminergic impairments [67]. On the other hand, positive symptoms in schizophrenia may be 

controlled by the use of D2 blockers via increasing the activity of GABA systems[68]  and many authors 

suggested  that  D1  agonists  and  D2  antagonists can increase NMDAR-  and  GABA-R-activated  synaptic  

conductances and thus, be useful  in the treatment of schizophrenic symptoms  [2, 69].  Herein, we mention 

that Reward Deficiency Syndrome (RDS) treatments was proposed as a multi-approach that includes slow 

acting and less powerful dopamine agonists and natural dopaminergic repletion therapy in addition to 

exercise and an appropriate diet [70]. Importantly, D1-like receptors agonists have been proposed as an 

antihypertension treatment [71]. 

For the neurodegenerative diseases both neurite outgrowth and an increased high-affinity DA uptake 

has been reported as the results of the GDNF-promoted survival and differentiation of DA neurons [72-75] 

highlighting link between the DA and the neurite outgrowth for which many publications pointed out the 

dopamine D5 receptor as playing a role in it. Indeed, dopamine has the ability to promote or inhibit neurite 

outgrowth [76-78] therefore, a detailed description of the divers DRs remains important to clarify the role of 

dopamine during development and regeneration [6]. Importantly, D5 receptors that are localized in the 

substantia nigra-pars compacta, hypothalamus, striatum, cerebral cortex, nucleus accumbens and olfactory 

tubercle [79] , have been linked to neurogrowth functions. In fact, D1-like receptors (D1 and D5) likely 
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mediate growth cone collapsing behavior via the link they have with the cytoskeleton in the Lymnaea 

neurons [78]. D1-like receptors is also associated with an antiapoptotic effect in early postnatal retinas [80] 

and both dopamine and a D1-agonist have a protective effect of the retinal neurons via the inhibition of the 

glutamate-induced activation of nitric oxide synthase [81]. More important, D1/D5 receptors could represent 

targets to develop new pharmacological approaches to prevent synapse failure in Alzheimer’s disease [82]. 

Different toxicological observations could lead to possible therapeutic applications. Dopaminergic 

deficit leads to multiple drug-seeking behavior [5, 83] and also the fact that, in alcohol preferring rodents, 

gene therapy has shown that DNA-directed compensatory over-expression of the DRD2 receptors can release 

the alcohol craving behavior [84] and in high alcohol preferring rats, D2 receptor agonists have the ability to 

reduce alcohol intake [85, 86]. These facts may open new therapeutic possibilities. Furthermore, several 

publications made a strong link between the dopaminergic system and some drugs. Previously, reward circuit 

has been proposed to involve dopaminergic imbalances [84] and studies carried out with Drosophila showed 

a role of dopaminergic systems in the cocaine’s effects [87-89]. Heightened dopamine overflow in striatal 

regions was associated with amphetamine repeated administration [90, 91] and, in animals, dopaminergic 

system role was confirmed in the methamphetamine -or cocaine- induced sensitization [10]. Importantly, 

morphine, METH, nicotine and other abused drugs increase the dopamine release in the NAc [9] and 

hyperactivity of the dopaminergic system has been involved in addiction to both alcohol [92] and cocaine 

[93], and in the development of tardive dyskinesia [64]. Papers have, in addition, suggested that a 

dysfunction in the brain reward circuitry, especially in the dopaminergic system, causes a hypodopaminergic 

trait [94] and individuals with lack of D2 receptors show an important risk for multiple addictive, severe 

alcoholism, cocaine, heroin, marijuana and nicotine use [50-57, 59-62, 95]. 

These toxicological observations need to be completed by further studies that would map the related 

implicated mechanisms which could eventually allow the development of a new generation of drugs that 

would be useful in drugs withdraw and to treat drugs abuse-related symptoms.   

 

 

4. PERSPECTIVES AND CHALLENGES 

We expect more advances in the therapeutics of the dopaminergic system especially with the 

development of new study methods. For instance, Drosophila that has the major neurotransmitters and 

pathway mechanisms that exist in mammals’ neural function [96, 97], represents a model to study the divers 

aspects of the dopaminergic system. The “knockout” is also a laboratory approach that allows a better 

understanding of the dopaminergic functions. It is possible to destroy dopaminergic neurons with 6-

hydroxydopamine (6-OHDA) [9] or use genetically-derived animals lacking receptors genes [1].  For 

example, we mention the use of “Bio-neuter” chemicals to modify the receptors expression which will create 

a new condition for a better study of the receptors pharmacological properties [98].  Since DRs represent 

GPCRs, taking into consideration the new factors that can influence GPCRs’ system functions [99] could be 

helpful in both the study of the dopaminergic system and the development of the related drugs. Importantly, 

the establishment of assays for high throughput drug screening allows the identification of a higher number 

of active compounds [100, 101]. 

However, The lack of agents for the several DR subtypes remains an obstacle for the research [4]. 

However, some agonist and antagonists exist in the literature. For example, the dopamine D1 receptor (D1R) 

agonist SKF38393, the D2 receptor agonist quinpirole [67] , dopamine D1R antagonist SCH23390 and D2 

receptor (D2R) antagonist raclopride [102] have been reported. On the other hand, in disorders linked to 

dopaminergic hyperactivity can be therapeutically reversed using oligodeoxynucleotides [4] which illustrates 

possible therapeutic and laboratory usages for such kind of compounds. Importantly, pharmacognosy has 

introduced DRs agonists [71] which will enrich the compounds libraries the literature already has.  

In pharmacovigilance, the interactions dopaminergic system may have with both drugs and 

neurotransmitters is a main element that should be taken into consideration especially if we consider the 

neurotransmitters as a part of a neural network within which many elements are in continuous interactions 

[103]. The dopmainirgic system may interfere with some drugs for example individuals with low D2 

receptors liked the effects of psychostimulants [104] which may link the dopaminergic expression with the 

drugs’ effects. It has also been suggested that serotonergic and dopaminergic agonists could attenuate drug 

seeking behavior [44]. In addition, in some medium spiny projection neurons D1 and D2 receptors are co-

localized [105] in both human and rat neurons[106] supposing an inert-influence between the two receptors 

subtypes. Furthermore, while, D1  receptor stimulation  can increase  NMDA and  GABA  transmission,  D2-

receptor  activation  produces  the  opposite  effect  [2, 68, 107] and dopamine release is facilitated via P2 

receptor activation in the mesolimbic system[108-110]. The concept of increased DA release following 

GABA inactivation has also been reported [44]. Dopamine D5 receptors have also been reported in the 

somata, dendrites, and axons of cholinergic cells [111]. In addition, dopaminergic system plays important 
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roles within the neuro-tumoral interactions and has effects on both cancer growth and anticancer drugs[112]. 

These examples illustrate the interaction that the dopaminergic system has with the other neuronal networks. 

In addition to the possible interactions and inter-influences the dopaminergic system may have on 

therapeutics, these data point the importance of rigorous studies of the related pharmacovigilance.   

However, pharmacological possibilities of the dopaminergic system, which belong to the big family 

of the GPCRs systems, remain important and need further investigations that could be supported-due to the 

similarities and common properties of the GPCRs- by novel advances about other GPCRs systems and 

related pathways. This might lead to find out both new pharmacotherapies and novel descriptions for various 

pathogenic phenomena[113]. Importantly, studies of the physiological basis and biological mechanisms 

constitute basic points to start form the pharmacological properties and reach therapeutical implications.  
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