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Abstract. The financial implications and the time required for carrying out a 

comprehensive geotechnical investigation to characterize a site can discourage 

prospective private residential building developers, especially where a large area 

of land is to be investigated for construction purposes. Also, most of the 

geotechnical test procedures utilized during site investigation only provide 
information on points tested in the subsurface. This research method suggests an 

approach of investigating the subsurface condition of a site in order to obtain key 

subsoil geotechnical properties necessary for foundation design for proposed 

engineering facilities. Seismic wave velocities generated from near surface 

refraction were combined with percussion drilling and cone penetration tests to 

obtain a comprehensive geotechnical investigation. From the results of the 

seismic refraction method, the bulk density of the soil, Young’s modulus, bulk 

modulus, shear modulus and allowable bearing capacity of a competent layer 

that can bear structural load at the particular study site were determined. The 

most competent layer was found within the depth observed by geotechnical 

methods. In addition, regression equations were developed in order to directly 
obtain the bulk density of the soil, Young’s modulus, bulk modulus, shear 

modulus and allowable bearing capacity from the primary wave velocities.  

Keywords: characterization; environment; geophysical; geotechnical; seismic. 

1 Introduction 

The expenses and time required to carry out the geotechnical investigation of a 
proposed construction site can discourage the building developer, especially if 

the construction site is a large expanse of land. These challenges have made 

many private developers carry out various construction projects without 

undertaking a proper site investigation. One of the implications of this is its 
significant contribution to the incessant building collapse experienced in many 

developing countries. An effort to reduce the cost and reliably estimate the 

geotechnical parameters needed for proper foundation design will bring a sigh 
of relief to geotechnical engineers and building developers. A combination of 
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geophysical and geotechnical techniques to study the required geotechnical 

parameters needed for construction purposes has the potential to make this 

contribution. Typically, the results of geotechnical tests are for point 

measurements because of the inability of this technique to provide lateral 
information on the subsurface. Geophysical methods, on the other hand, can 

give volumetric measurement and produce images of the subsurface without 

physically disturbing the subsoil. Therefore, in order to cover a large expanse of 
land in the shortest possible time and at a highly reduced cost, geotechnical 

investigation could be conducted at certain central locations on the proposed 

site, while geophysical investigations would be conducted to cover up for the 

portion of the site not investigated by geotechnical methods. The results 
obtained from the geophysical investigation would be checked against the 

results of the geotechnical method, which would serve as the control for the 

entire subsurface characterization. According to Soupios, et al. [1], there is an 
increasing requirement for geophysical surveys conducted during geotechnical 

investigations so as to provide direct information about rock/soil quality and 

other geotechnical parameters that will be useful in correlating geophysical 
results with actual rock/soil properties.  

Bery and Saad [2] together with Karaman and Kesimal [3] proved that it is 

possible to study the P-wave velocities of materials both in the laboratory and 

the field. The P-wave values obtained by Bery and Saad [2] were later 
compared with the engineering parameters of a site such as the SPT-N (blow 

count) values, rock quality, friction angle, velocity index, density and 

penetration strength. Empirical correlations were also found for selected 
parameters and the regression coefficients obtained showed a high degree of 

correlation. They concluded that their method could be used to estimate and 

predict the properties of the subsurface material in order to reduce the cost of 

subsurface investigation. Altindag [4], Kahraman [5] and Yagiz [6], on the other 
hand, studied the relationship between P-wave velocity and mechanical 

properties of sedimentary rocks. The latter used already acquired data and a 

simple regression analysis. All the data were later subjected to a multi-
regression analysis and he went further to derive some empirical equations with 

high correlation coefficients that would be useful for rock engineers. Atat, et al. 

[7] carried out a study using seismic refraction techniques to determine the 
allowable bearing pressure of a site for construction purposes in the Eket area of 

Akwa Ibom State in Nigeria. They obtained both compressional and shear wave 

velocities, which were substituted into some equations from the literature to 

determine the elastic constants, allowable bearing capacity and the ultimate 
bearing capacity of the site. Their result revealed that the allowable bearing 

pressure increased with increase in shear modulus and shear wave velocity. The 

empirical relation between allowable bearing capacity and shear modulus also 
showed that the allowable bearing capacity increased with depth. Tezcan, et al. 
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[8] proposed an empirical formulation for the rapid determination of allowable 

bearing capacity of shallow foundations. The proposed expression consistently 

corroborated the results of the classical theory and it was proven to be rapid and 

reliable. It was indicated that once the shear and P-wave velocities were 
measured in situ by an appropriate geophysical survey, the allowable bearing 

capacity as well as the coefficient of subgrade reaction and many other elasticity 

parameters could be determined rapidly and reliably through a single-step 
operation for both soils and rock formations.  

Seismic refraction is one of the geophysical techniques that offer a non-

intrusive and non-destructive way of performing geotechnical properties 

measurement. Seismic refraction can be an attractive alternative to boring when 
access is difficult with geotechnical equipment (see Anderson and Croxton, [9], 

Fitzallen [10], Uyanik, [11], Nastaran, [12], Mohd, et al. [13]). Also, this 

method can easily detect changes in the subsurface characteristics as there are 
changes in the behaviors of a passing seismic wave as it passes through media 

of different characteristics, in order to determine zones of structural weakness in 

the basement and analyze the stability of the subsurface. Therefore, in this 
study, a combination of seismic refraction, cone penetration and percussion 

drilling tests was used to reduce the difficulties usually faced by geotechnical 

engineers and building developers in determining the geotechnical parameters 

of a site for construction purposes. Also, empirical correlation equations were 
developed by correlating P-wave velocity with other geotechnical parameters. 

2 Geology and Location of the Study Area 

The area under investigation is part of the geologically termed alluvium 

deposits of the southwestern Nigeria basin, which is an integral part of the 

Dahomey embayment (Figure 1). The superficial materials of the general area 

under investigation are silts, sands and clays with fibrous peat on the surface in 
some places. The Dahomey sedimentary basin extends from the eastern part of 

Ghana through Togo and Benin Republic to the western margin of the Niger 

Delta. The eastern half of the basin lies within Nigerian territory. The base of 
the basin consists of unfossilerous sandstones and gravels weathered from the 

underlying Precambrian basement. The vegetation of the study area has given 

way to fens and other water loving shrubs and herbs (Adegbola and Badmus 

[14]).  
 

The study area lies between latitude 06° 26’
 
N and 06° 32’

 
N and longitude 03° 

35’
 
E and 03° 45’

 
E in the Lagos Island area of Lagos State[15]. The Nigeria 

coastal zone has a tropical climate with two seasons: a rainy season and a dry 

season. The rainy season is between April and November while the dry season 

is between December and March (Akintorinwa and Adesoji, [16]).  The amount 
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of annual rainfall varies between 2030 mm and 2540 mm (Obasi and 

Ikubuwaje, [17]). 

 

 

Figure 1 Geological map of Nigeria, showing the Nigerian part of the Dahomey 

basin (modified after Aizebeokhai and Oyeyemi [15]). 

 

Figure 2 Base map of the study area. 
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3 Theory 

Field surveys can readily provide both primary and shear wave velocities, 
P
V  

and 
S
V , measured in meters/seconds (m/s). These velocities can be used to 

determine the following engineering parameters: the Young modulus, the bulk 

modulus, the shear modulus and the Poisson ratio. These are used to measure 
the degree of stiffness of the subsurface material (Clayton, [18]). The three 

stiffness parameters are the Young modulus, the bulk modulus and the shear 

modulus. These elastic moduli are represented mathematically as expressed in 
Eqs. (1) to (6) below: 
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where γ  is the unit weight of the soil and g  is the acceleration due to gravity, 

which is given by 9.8 2
/m s . The unit weight of the soil relates with P-wave 

velocity pV  is as shown in Eq. (7) below: 

 0.002
o p

Vγ γ= +  (7) 
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0γ  is the reference unit weight value in 3
/kN m  for soil and rock types. The 

value of 0γ  is 16 for loose, sandy and clayey soil (Atat, et al. [7], Tezcan, et al. 

[8]). The relationship between shear wave and primary wave velocities is 

expressed in Eq.(8): 

 1.7
p s

V V≈
 (8) 

where E  is the Young modulus 2
( / )N m , G  is the shear modulus 2

( / )N m , 

B  is the bulk modulus 2
( / )N m , bρ  is the bulk density ( 3

/ )kg m and ν  is 

the Poisson ratio. The subgrade coefficient ( )
s

K , ultimate bearing capacity 

( )
f
q  and the allowable bearing capacity ( )

a
q  can be determined using the 

following equations respectively: 

 4
s s

K Vγ=  (9) 

 
40
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a

q
q

n
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where n is the safety factor and n = 4 for soils. The results of Eqs. (9) to (11) 

further confirm the strength of the soil being considered for construction 
purposes. 

4       Materials and Methods Applied 

4.1 Seismic Refraction Method 

Seismic refraction was carried out in the study area, using a 24-channel ABEM 

Terraloc Mark 6 seismograph. This method requires the use of a seismograph, a 
12-volt DC battery, a roll of trigger cable, 2 seismic cable reels, a 15 kg sledge 

hammer, a metal base plate, 24 geophones of 14 Hertz frequency, a log book 

and measuring tapes. The geophones were connected to the 2 seismic cable 
reels, which are signal cables that were in turn connected to the seismograph. 

The seismograph was placed in the middle of the survey line on each traverse. 

The geophones were planted at an interval of 2 m from each other along the 

traverse so as to obtain quality data and a good depth of investigation. The 
trigger cable reel connects the sledgehammer to the equipment and each time it 

is triggered, by hitting the hammer on a base plate, the seismogram records a 

seismic event. The base plate is a thick, heavy iron metal plate hit with the 



Evaluation of Geotechnical Parameters - Geophysical Data     101 
 

sledgehammer for the measurements to be taken. The base plate was placed at a 

distance of 2m from the first geophone.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3 (a)-(d) 2D seismic refraction image of the study area, indicating the 

number of layers, P-wave velocity of each layer and depth of investigation. 
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Four (4) traverses were surveyed in the areas studied, as shown in Figure 2. 

Shots were taken at the following points on each traverse: offset distance, which 

was 2 m from the first geophone, between the 6th and 7th geophones, between 

the 12th and 13th geophones, between the 18th and 19th geophones and 2 m 
after the 24th geophones. These shot points are termed the offset, quarter 

spread, mid-spread, three-quarter spread and off-end respectively (Keary, et al. 

[19], Mohd, et al. [13]). The SeisImager software application was used to 
produce a 2D seismic image of the collected data (Figure 3).  

Each traverse showed two geological layers with the topmost layer being 

characterized by low P-wave velocities, which may be as a result of the loose 

and soft nature of the soil material. The second layer, on the other hand, is 
composed of a formation that is relatively stiffer because of a higher velocity 

observed, which may be due to saturation and compression of the geomaterial in 

the subsurface. The significant change noticed in the elastic properties of the 
two layers may be due to a change in the composition of the subsurface, uneven 

saturation and changes in the unit weight of the soil. 

4.2    Geotechnical Methods 

In this study, geotechnical investigations, including cone penetration and 

borehole tests, were carried out in the area of study. A borehole was dug and 

two (2) cone penetration tests were carried out. These were carried out to 
determine the in situ bulk properties of the subsurface material and to provide a 

control for this research. They were carried out to provide a good level of 

confidence for our results. The borehole was dug to a depth of 30 m with the 
use of shell and auger boring equipment. Ordinary disturbed samples were 

collected at changes of strata and as deemed fit for strata identification purposes 

through visual inspection and classification tests. The result of the borehole test 

was used to produce a log that contains information on the lithology and 
strength of the area of study (Figure 4). 

Also, cone penetration tests were carried out using a Dutch cone penetrometer 

with a capacity of 2.5 tons. The apparatus consisted of a cylindrical probe of 
1000 mm

2
 cross sectional area and a conic head with an of apex angle 60°. The 

probe was forced down through the soil at a steady rate of about 20 mm/s by 

exerting pressure on the outer sounding tube (Hunt [20], Look [21]). The tests 

were terminated at depths where the machine anchors began to lift out of the 
ground. This method allows for the soil strength to be determined from the 

measured values of cone resistance and sleeve friction. The results of the cone 

penetration test are presented in the graph below (Figure 5). 
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5      Results and Discussion 

In this study, geotechnical parameters, i.e. density, Young’s modulus, bulk 

modulus, shear modulus, oedometric modulus, were obtained from the result of 
the primary and secondary wave velocities for each layer using Eqs.(1) to(8). 

These relationships also led to the determination of the ultimate bearing 

capacity and the allowable bearing capacity of the area of study. The results 

obtained are presented in Table 1. As mentioned before, two geologic layers 
were delineated with the SeisImager software application. The first geologic 

layer had a lower seismic wave velocity while the second layer had a higher 

seismic wave velocity. The bulk density of the first layer ranged between 

1.7088 3/kg m and 1.7457 3/kg m  with an average bulk density of 1.7286 

3/kg m . The bulk density of the second layer ranged between 1.7527 3/kg m  

and 2.0433
3/ mkg  with an average density of 1.9420 3/kg m .  

This result shows that the second layer is more compressed than the first layer. 
This may be as a result of the geologic formation of this layer, its level of 

saturation and the level of cementation of the geomaterial. It was also observed 

that the density of the subsurface increased in direct proportion with the seismic 

wave velocity and the two parameters increased with depth. The Young 

modulus of the first layer ranged between 0.2032GPa  and 4.5808GPa , while in 

the second layer, the modulus ranges between 0.5181 GPa  and 7.0719 GPa . 

The average Young moduli for the first and the second layers were 0.3354 GPa  

and 4.5048GPa  respectively. This also shows that the second layer has more 

strength than the first layer.  

The oedometric modulus, which is a measure of the ease of deformation of 

subsurface geomaterial, ranged between 0.2377GPa  and 0.5358GPa  with an 

average layer modulus of 0.3922GPa  for the first layer. In the second layer, the 

modulus ranged between 0.6060GPa  and 8.2714GPa  with an average layer 

modulus of 5.2690GPa . This result also shows that the first layer would deform 

more easily under shear stress than the second layer. The bulk modulus for the 

first layer ranged between 0.12806 GPa  and 0.2886 GPa , while it ranged 

between 0.3264GPa  and 4.4553GPa  in the second layer. The average bulk 

moduli for the first and second layers were 0.2113GPa  and 2.8381GPa  

respectively. This further confirmed the second geologic layer to be more 
competent than the first layer.  

The shear modulus ranged between 0.0823GPa  and 0.1854GPa  with an 

average modulus of 0.1357GPa  in the first layer. On the other hand, the second 

layer had a shear modulus that ranged between 0.2097GPa  and 2.8621GPa  
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with an average layer modulus of 1.8232GPa . This result reveals that the 

second geologic layer is more competent than the first layer.  

The ultimate bearing capacity and the allowable bearing pressure were also 

estimated, to buttress the results provided by the earlier discussed elastic 

moduli. The ultimate bearing capacity for the study area ranged between 0.3674 

MPa  and 0.5575 MPa , while it ranged between 0.5941 MPa  and 2.3699 

MPa  in the second layer. The average ultimate bearing capacity was 0.4702 

MPa  and 1.7356 MPa  in the first and second layers respectively. This further 

confirms the second layer to have more bearing capacity than the first layer. 

Also, the allowable bearing pressure for the study site ranged between 0.0919

MPa and 0.1394 MPa  with an average of 0.1175 MPa  in the first layer while 

it ranged between 0.1485 MPa  and 0.5925 MPa  with an average of 0.4339 

MPa  in the second layer. This result also shows that the second layer is more 

competent than the first layer. Furthermore, it shows that the depth to the most 
competent layer ranges between 7 m and 15.7 m. This result is in agreement 

with the results obtained from the borehole log and the cone penetration tests 

carried out in the area of study.  

Table 1 Seismic wave velocities for each traverse and their geotechnical 
parameters. 
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2.0329 

7.6 

15.7 

0.2355 

0.2355 

0.3677 

6.6837 

0.4301 
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0.2317 
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0.1488 

2.7050 

0.0199 
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2.2981 

0.1245 

0.5745 

S2 554 

1503 

325.88 

884.12 

1.7457 

1.9394 

8.7 

10.9 

0.2355 

0.2354 

0.4581 

3.7458 

0.5358 

4.3811 

0.2886 

2.3598 

0.1854 

1.5160 

0.0223 

0.0672 

0.5575 

1.6804 

0.1394 

0.4201 
S3 460 

2012 

270.59 

1183.53 

1.7265 

2.0433 

7.9 

11.4 

0.2354 

0.2354 

0.3124 

7.0719 

0.3653 
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0.1968 

4.4553 
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2.8621 

0.0185 

0.0948 

0.4578 

2.3699 

0.1145 
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S4 373 
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219.41 
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1.7088 

1.7527 

7.0 
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0.2355 

0.2033 

0.5181 
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0.6060 

0.1281 

0.3264 

0.0823 

0.2097 

0.0147 

0.0238 

0.3674 

0.5941 

0.0919 

0.1485 

The result from the borehole log (Figure 4) revealed the geomaterial in the 

second layer to be sandy clay of firm to stiff consistency underlain by a medium 

dense sand material. The sand material is more geotechnically stable because it 

has high shear strength and low compressibility potential (Atat, et al. [7], 
Sarsby, [22]). The formation at this depth can be considered for engineering 

construction purposes. The result of the cone penetration tests confirmed that 

the geomaterial at that depth has stable geotechnical properties. Also, the cone 
penetration log showed a rise in the cone resistance values from a depth of 6.50 

m in the log presented below (Figure 5). 
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Figure 4 Result of the borehole log obtained from the area of study. 

                          BOREHOLE LOG   

      Ground Water Level :   Surface level     

Depth 

(m) 
Samples Soil Description  Symbol 

Nspt 

0 10 20 30 40 50 

0 

Soft dark brown organic PEAT.   

            

0.6               

0.75             

                

1.5             

2.25               

    

Soft dark brown organic peaty CLAY   

            

3             

                

4.5             

5.25               

    

Firm to stiff greyish/pinkish sandy CLAY 

              

6               

                  

7.5 
 

              

7.75               

    

Medium dense dark grey very silty SAND 

              

9       23       

                  

9.75               

                  

10.5       23       

                  

12       26       

                  

13.5       27       

                  

15       26       

                  

16.5               

                  

                  

18 

Medium dense to dense grey silty SAND 

      25       

                  

19.5         35     

20                 

    

Soft dark greyish organic CLAY 

              

                  

24               

    
Light greyish coarse SAND 

              

25.5               

    

Very stiff dark organic CLAY 

              

27               

                  

                  

30               

    End of Borehole               

        KEYS:               
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Figure 5  Cone penetration test result in Lagos Island area. 

6 Evaluation of Geotechnical Parameters from Seismic Data 

This study was also aimed at obtaining model equations from the correlations of 

the primary wave velocities and the different geotechnical parameters studied. 
This was to obtain direct relationships between the P-wave velocity and the 

geotechnical parameters. These equations can be used for a speedy evaluation 

and inexpensive estimation of the various geotechnical parameters. The graphs 
of the geotechnical parameters were plotted against the primary wave velocities. 

The regression equations and their coefficient of determination were obtained. 

The graph of density against the P-wave velocity (Figure 6) gave the empirical 

equation below. The empirical correlation equation is defined in Eq. (12). 
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11 26 10 0.0002 1.6328

p p
V Vρ −= × + +   (12) 

The coefficient of determination is 1. This also shows the polynomial 

relationship between the density of the subsurface and the primary wave 

velocity. Also, the graph of the Young modulus against the primary wave 
velocity was plotted (Figure 7). The empirical correlation equation was obtained 

in Eq. (13): 

 
-6 22 10 -0.0009 0.3082

p p
E V V= × +   (13) 

The coefficient of determination was obtained to be 1. This implies that the 
higher the primary wave velocity of the geomaterial, the higher the level of its 

competence. The graph of the bulk modulus against the primary wave velocity 

was also plotted (Figure 8). The empirical correlation equation and the 
coefficient of determination were obtained. The empirical correlation equation 

was obtained in Eq. (14): 

 
6 21 10 0.0006 0.1942

p p
B V V−= × − +   (14) 

while the coefficient of determination is 1. This shows the polynomial 
relationship between the bulk modulus and the primary wave velocity in the 

area of study. This simply implies that the higher the primary wave velocity, the 

higher the strength of the geomaterial that is being tested. The shear modulus 
was also plotted against the primary wave velocity, as shown in Figure 9. Both 

the empirical correlation equation and the coefficient of determination were 

obtained. The empirical correlation equation is defined in Eq. (15): 

 
7 29 10 0.0004 0.1247

p p
G V V−= × − +   (15) 

The coefficient of determination obtained is 1. This confirmed the polynomial 

relationship between the shear modulus and the primary wave velocity. This 

implies that the higher the value of the primary wave velocity, the more 
confidence we can have in the fitness for construction purposes of the 

subsurface being studied. The oedometric modulus was also plotted against the 

primary wave velocity (Figure 10); the empirical correlation equation is given 
as in Eq. (16): 

 

6 22 10 0.001 0.3606
c p p
E V V−= × − +

  (16) 

 The coefficient of determination is 1. The graph of unlimited bearing capacity 

was plotted against the primary wave velocity (Figure 11); the correlation 
equation is given as in Eq. (17): 
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7 2 51 10 0.0009 8 10

f p p
q V V− −= × + − ×   (17)  

The correlation equation derived from the graph of allowable bearing capacity 

versus the primary wave velocity (Figure 12) is given in Eq. (18):  

 

8 2 53 10 0.0002 6 10
a p p
q V V x− −= × + −

   (18)                                            

The coefficient of determination is 1. 

 

Figure 6 Graph of density (kg/m3) against primary wave velocity (m/s). 

 

Figure 7 Graph of Young’s modulus (GPa ) against primary wave velocity 

(m/s). 
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Figure 8 Graph of bulk modulus (GPa ) against primary wave velocity (m/s). 

 

Figure 9 Graph of shear modulus (GPa ) against primary wave velocity (m/s). 

 

Figure 10 Graph of Oedometric modulus (GPa ) against primary wave 

velocity (m/s). 
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Figure 11 Graph of ultimate bearing capacity (MPa ) against primary wave 

velocity (m/s). 

 

Figure 12  Graph of allowable bearing pressure (MPa ) against primary wave 

velocity (m/s). 

Figures 6 to12 are the graphs of density against primary wave velocity, Young’s 
modulus against primary wave velocity, bulk modulus against primary wave 

velocity, shear modulus against primary wave velocity, oedometric modulus 

against primary wave velocity, ultimate bearing capacity and allowable bearing 

pressure against primary wave velocity. The results of the regression analysis 
showed good correlations between the properties tested in all cases. This shows 

that we can estimate the engineering parameters of the subsurface from the 

primary wave velocity data acquired (Bery and Saad [2]). The results obtained 
in the present study correlated well with the results of Altindag [4], Bery and 

Saad [2] and Atat, et al. [7].  
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The small variations observed in the correlation coefficient could be a result of 

the difference in geological formation, the types of curve fitting approximation 

engaged and the geotechnical parameters of interest could also be a factor. This 

is because curve-fitting approximations with the highest correlation coefficient 
were selected in each study. Also, the geotechnical parameters of interest varied 

in the various studies. For instance, in Altindag [4] the study was conducted on 

sedimentary rock samples and power curve fitting was observed to give the 
highest correlation coefficient. The correlation coefficient differs from the 

present study by a factor of 0.23, which could be as a result of the type of 

geomaterial and the geotechnical parameters studied. The correlation coefficient 

obtained in Bery and Saad [2] differs from the present study by 0.0685. This 
variation could be as a result of the geotechnical parameters studied and the 

linear curve fitting approximations used. In the present study, the geological 

formation is alluvium and the geotechnical parameters of interest also differ 
from the previous study. Polynomial curve fitting of order two was used 

because it was found to give the highest correlation coefficient.  

7 Conclusion 

A geophysical survey was carried out using a seismic refraction method and 

some geotechnical information was obtained from the study site. The seismic 

refraction results revealed two geologic layers with the second layer being more 
competent. The geotechnical results also confirmed the result obtained by the 

seismic refraction method. There is a correlation between the depths of 

competence delineated by the two methods.  

This study also revealed that the P-wave velocities can be used to determine the 

geotechnical parameters of a site that can be used to easily characterize its 

subsurface condition. Also, the empirical equations obtained can be used to 

evaluate and predict the geotechnical parameters of the site studied. There was a 
good correlation between the results of the present and previous studies.  

The results obtained are applicable to any area with a similar geological 

formation as the current study area, but a similar procedure may be applicable in 
other areas as well. This method has the potential to reduce the cost of 

geotechnical investigations. This approach will help to reduce the cost of 

geotechnical investigations and also protect the environment from destruction 

caused by the invasive nature of geotechnical equipment. 
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