ALGORITMA GENETIKA DALAM PROGRAM PENCARIAN JALUR ALTERNATIF

Wahyu Trianto Nugroho(1), Joko Purwadi(2), Nugroho Agus Haryono(3)

Abstrak:

Pencarian jalur alternatif pada saat terjadi kemacetan atau penutupan jalan bisa dilakukan dengan mengingat setiap jalan yang terhubung dengan jalan tersebut, tapi hal ini hanya bisa dilakukan oleh pengguna jasa kendaraan yang sudah mengenal jalan tersebut. Bentuk permasalahan yang terjadi diubah dalam bentuk graf dimana tiap titik merupakan perwujudan dari tiap persimpangan yang ada pada peta, sedangkan jaraknya diwujudkan dalam bentuk garis.

Pencarian jaraknya adalah dimulai dengan penginputan titik asal dan titik tujuan. Melalui perhitungan dengan algoritma genetika maka akan didapat jalur yang menurut sistem merupakan jalur yang dapat dilewati, dan jika terjadinya kemacetan pada jalur tersebut sistem akan mencari ulang jalur alternatifnya dengan titik awal adalah persimpangan dimana kemacetan terjadi.

Algoritma Genetika merupakan algoritma pencarian yang berdasarkan pada genetik dan seleksi alam. Dikarenakan prosesnya menggunakan evolusi yang diwakili dengan bilangan random, maka hasil yang didapat bervariasi mulai dari diketahui jalur alternatif paling baik, sampai jalur yang diinginkan tidak didapat.

Kata Kunci : graf, algoritma genetika, jalur alternatif, kecerdasan buatan.

1. Pendahuluan

Jalan darat merupakan sarana utama yang mampu menghubungkan satu tempat ke tempat yang lain. Hal ini mengakibatkan tingkat mobilitas yang terjadi sangat tinggi, dan tidak semua jalan yang ada di Indonesia memiliki lebar yang sama, sehingga pada akhirnya timbul penumpukan kendaraan pada jalan-jalan tertentu.

Kemacetan yang terjadi akan sangat baik jika dapat dihindari dengan mencari jalur yang lain, tetapi akan timbul permasalahan baru jika pengguna jalan tersebut merupakan orang yang tidak mengenal daerah itu, sehingga dengan terpaksa pengguna jalan tersebut menunggu dengan waktu yang lama untuk melewati jalan dengan antrian kendaraan yang panjang.

Penggunaan algoritma genetika yang merupakan algoritma pencarian heuristik dapat dipakai untuk mendapatkan solusi yang tepat untuk pencarian jalur alternatif dengan memilih jalur dengan nilai jarak seminimum mungkin.

2. Teori Graf

Karya Euler pada problem Jembatan Konigsberg (1735) yang kemudian menghasilkan konsep graf Eulerian merupakan awal dari lahirnya teori graf. Euler menyatakan bahwa jika suatu pseudograf G mempunyai sirkuit Euler (jalan tertutup yang memuat semua sisinya dan masing-masing hanya sekali) maka G pasti terhubung dan derajat setiap titiknya genap4.

Graf merupakan diagram yang memuat titik-titik yang disebut "verteks" yang masing-masing dapat dihubungkan dengan garis yang disebut dengan "egde".

Graf tak berarah (Undirected Graph) G didefinisikan sebagai pasangan himpunan (V(G), E(G)), dimana V(G) adalah himpunan tak kosong dari elemen-elemen yang disebut titik (verteks) dan E(G) adalah himpunan (mungkin kosong) dari pasangan tak terurut (u,v) dari titik – titik u,v di V yang disebut sisi (egde), Selanjutnya sisi e = (u,v) dalam graf G akan ditulis dengan e = u v dan graf tak berarah G akan disebut dengan graf G saja.

(1) Mahasiswa Teknik Informatika, Fakultas Teknik, Universitas Kristen Duta Wacana
(2) Joko Purwadi, S.Kom., M.Kom., Dosen Teknik Informatika, Fakultas Teknik, Universitas Kristen Duta Wacana
(3) Nugroho Agus Haryono, S.Si., M.Si., Dosen Teknik Informatika, Fakultas Teknik, Universitas Kristen Duta Wacana
(4) Profesor Edy Tri Baskoro, Mengenalkan Indonesia Melalui Teori Graf, Pidato Ilmiah Guru Besar Institut Teknologi Bandung, 13 Juli 2007, Balai Pertiemuan Ilmiah ITB
3. Algoritma Genetika

Genetic Algorithm (GA) merupakan algoritma pencarian yang berdasarkan pada mekanisme sistem natural yakni genetik dan seleksi alam. Algoritma ini dapat dipakai untuk mendapatkan solusi pencarian yang terbaik dari beberapa solusi yang ada dengan menggunakan proses evolusi.

Munculnya algoritma ini pertama kali di ungkapkan oleh John Holland pada awal tahun 60 an dan di tuangkan dalam bukunya yang berjudul Adaptation in Natural and Artificial System. Algoritma genetika yang diperkenalkan oleh Holland pada masa itu tergolong umum dan sederhana, algoritmanya sendiri terdiri dari langkah-langkah sebagai berikut:

1. inisialisasi populasi
2. Evaluasi setiap kromosom dan populasi berdasarkan fitness
3. Pilih suatu kromosom dari populasi dengan nilai fitness terbaik
4. Lakukan perkawinan silang (crossover) antar kromosom, jika tidak ada persilangan lanjutkan langkah 5
 a. Pilih pasangan dalam populasi dengan probabilitas sama
 b. Tentukan titik perkawinan silang antara 1 sampai L dengan probabilitas sama,
 dimana L adalah panjang kromosom
 c. Lakukan rekombinasi kromosom dan mutasi pada kromosom jika ada
 keturunan baru yang dihasilkan ditempatkan pada populasi baru
5. Jika populasi baru belum penuh, lakukan langkah 3
 Populasi baru penuh (jumlah populasi baru = jumlah populasi lama) kembali ke
 langkah 2

Algoritma Genetika dapat di aplikasikan dalam berbagai macam bentuk, salah satunya adalah pencarian jalur alternatif. Pencarian jalur ini berupa untuk mencari jalur lain selain jalur yang biasa dilewati.

Sebagai contoh kasus dapat di mulai dari berapa pertanyaan berikut,
 a. Ada berapa jalur yang bisa dilewati untuk berjalan dari satu tempat ke tempat yang lain?
 b. Apakah jalur yang dilewati adalah jalur yang paling optimal?
 c. Adakah gangguan yang terjadi pada jalur yang akan dilewati?

4. Hasil Implementasi Algoritma Genetika Pada Pencarian Jalur Alternatif

Hasil implementasi Algoritma Genetika kedalam program dapat dilihat pada gambar 4.1

Pada gambar 4.1 dapat diketahui bahwa bentuk graf dengan node awal 19 dan node akhir 2 akan menghasilkan jalur dengan format 19-21-7-18-16-29-2, atau dengan kata lain ketika dari Jl. Dr. Wahidin akan ke hotel garuda di ujung jalan maliboro melewati Jl. Lempuyangan dan Jl. Abu Bakar Ali, sedangkan proses pencarian jalur tersebut dapat dilihat dengan menekan tombol “history” bentuknya dapat dilihat pada gambar 4.2

Pada jalur ini didapat jalur teropilimal pada saat pencarian berlangsung yaitu pada jalur 19-21-7-18-16-29-2 dan ketika terjadi kemacetan pada jalur 7 ke 18 maka pengguna dapat melakukan pencarian ulang jalur alternatifnya dengan memutuskan jalur dari node 7 ke node 18 dan menjadikan jalur ke 7 sebagai titik awal pencarian.

Hasil pencarian jalur setelah pemutusan jalur tersebut dapat dilihat pada form hasil pencarian dengan pemotongan seperti gambar 4.3.
Pada gambar 4.3 dapat dilihat jika jalur baru terbentuk dengan menggunakan node ke 7 atau dari lempuyangan melewati jl. Suryatmajan dan akhirnya melewati maliboro ke ujung maliboro dekat hotel garuda, atau jalur dibuat dengan melewati node 7-24-22-17-12-8-23-14-9-2.

Jalur yang terbentuk tidak dilengkapi dengan aturan jika jalur tersebut terkena kondisi jalan dengan ketentuan harus searah.

5. Analisis Hasil Penelitian
Pada bagian ini akan dijabarkan analisis implementasi algoritma genetika untuk menemukan jalur alternatif. Analisis dimulai dari proses perhitungan algoritma genetika yang digunakan untuk menemukan jalur alternatif.

Perhitungan dapat dilihat beberapa tahap dimana tahap pertama dimulai dengan penentuan jumlah iterasi dimana jumlah iterasi ini digunakan untuk menentukan proses perulangan yang akan dilakukan oleh sistem dalam menemukan jalur alternatif.

Tahap kedua adalah penentuan parameter-parameter yang akan digunakan untuk proses pencarian jalur dimana parameter-parameter tersebut sudah ditentukan diawal pembuatan program. Parameter tersebut dapat dilihat pada tabel 5.1 yang berisi parameter genetika beserta nilainya.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Popsize</td>
<td>10</td>
<td>Ukuran populasi</td>
</tr>
<tr>
<td>Pc</td>
<td>0,5000</td>
<td>Peluang Crossover</td>
</tr>
<tr>
<td>Maxgen</td>
<td>1 – 30</td>
<td>Jumlah Iterasi</td>
</tr>
<tr>
<td>Long</td>
<td>4 – 20</td>
<td>Jumlah Node</td>
</tr>
</tbody>
</table>

Tahap ketiga adalah tahap pembentukan populasi awal dimana populasi tersebut merupakan bentuk dari beberapa solusi yang dapat terbentuk dari kasus yang ditentukan.
Pembentukan populasi awal dapat dilihat pada tabel 5.2 yang berisi no urutan kromosom berserta node-nodenya.

<table>
<thead>
<tr>
<th>Kromosom ke -</th>
<th>Bentuk Kromosom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19-5-20-5-20-6-1-2-9-2-9-25-8-12-8-23-8-12-24-12-8-25-29-16-4-6-1-6-20</td>
</tr>
<tr>
<td>5</td>
<td>19-5-20-5-20-5-20-6-1-2-28-2-1-2-28-2-9-25-9-14-9-2-1-6-20-6-4-16-4</td>
</tr>
<tr>
<td>6</td>
<td>19-21-7-18-3-15-20-6-1-2-9-25-8-25-9-25-28-2-28-16-4-6-20-6-6-6-6-6-20-5-20</td>
</tr>
<tr>
<td>7</td>
<td>19-26-22-24-12-17-12-18-4-16-4-18-3-19-13-21-7-18-16-28-2-9-14-9-14-9-14-23-14</td>
</tr>
<tr>
<td>8</td>
<td>19-21-7-29-13-15-3-18-16-4-16-3-19-13-21-7-18-16-28-2-9-14-9-14-9-14-23-14</td>
</tr>
<tr>
<td>9</td>
<td>19-5-20-6-4-6-1-6-1-6-1-6-16-28-16-4-6-1-9-2-9-25-8-23-14-23-10-23-8</td>
</tr>
<tr>
<td>10</td>
<td>19-5-20-6-4-6-1-6-1-6-16-28-16-4-6-1-9-2-9-25-8-23-14-23-10-23-8</td>
</tr>
</tbody>
</table>

Tahap keempat adalah tahap pemberian fungsi evaluasi yang digunakan untuk mencari jalur alternatif, dimana fungsi – fungsi tersebut adalah fungsi fitnes, fungsi fitnes relatif, dan fungsi fitnes komulatif. Pencarian fungsi tersebut didasarkan pada rumus seperti berikut:

- Nilai Fitnes
 \[
 \frac{1}{\sum_{i=1}^{n} F_i} \tag{5.1}
 \]
 dengan, \(j = \) node tujuan
 \(n = \) jarak antar node
 \(F = \) nilai fitnes tiap kromosom

- Fitnes Relatif dan fitnes komulatif
 - \(\text{totfitnes} = \sum_{i=1}^{j} F_i \) dengan \(i = 1, 2, ..., j \) \[
 \tag{5.2}
 \]
 - \(P_k = \frac{F_k}{\text{totfitnes}} \) dengan \(P_k = \) fitnes relatif tiap kromosom \[
 \tag{5.3}
 \]
 - \(Q_k = P_k \cdot Q_{k-1} + P_k \) dengan \(Q_k = \) fitnes komulatif \(k = 2, 3, ..., j \) \[
 \tag{5.4}
 \]

Penggunaan fungsi evaluasi diterapkan pada populasi yang ada, sehingga akan didapat populasi penuh seperti pada tabel 5.3 yang berisi populasi beserta nilai fitnesnya.

\(^{10} \text{Kromosom merupakan kumpulan dari beberapa gen atau node.} \)
<table>
<thead>
<tr>
<th>Kromosom ke -</th>
<th>Bentuk Kromosom</th>
<th>Nilai Fitnes (F)</th>
<th>Fitnes Relatif (Pk)</th>
<th>Fitnes Komulatif (Qk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19-5-20-5-20-6-1-2-9-2-9-25-8-12-8-23-8-12-24-12-8-25-19-6-4-6-1-6-20</td>
<td>0.0008</td>
<td>0.1127</td>
<td>0.1127</td>
</tr>
<tr>
<td>2</td>
<td>19-21-13-15-13-21-13-21-7-18-4-6-1-2-28-16-18-3-15-21-21-13-29-3-29-13-29</td>
<td>0.0007</td>
<td>0.0986</td>
<td>0.2113</td>
</tr>
<tr>
<td>3</td>
<td>19-21-7-18-16-28-2-1-6-20-5-20-15-13-21-13-15-13-15-3-18-16-4-16-4-16-4-28</td>
<td>0.0018</td>
<td>0.2535</td>
<td>0.4648</td>
</tr>
<tr>
<td>5</td>
<td>19-5-20-5-20-6-1-2-28-2-1-12-28-2-9-25-9-14-9-2-1-6-20-6-4-16-4</td>
<td>0.0006</td>
<td>0.0845</td>
<td>0.6056</td>
</tr>
<tr>
<td>6</td>
<td>19-21-7-18-3-15-20-6-1-2-9-25-8-25-9-25-28-2-28-16-4-6-20-6-4-20-5-20</td>
<td>0.0009</td>
<td>0.1268</td>
<td>0.7324</td>
</tr>
<tr>
<td>7</td>
<td>19-26-22-24-12-17-12-24-22-17-12-8-12-24-7-24-22-17-10-23-14-9-14-9-2-28-16-28-16</td>
<td>0.0005</td>
<td>0.0704</td>
<td>0.8028</td>
</tr>
<tr>
<td>8</td>
<td>19-21-7-29-13-15-3-18-16-4-16-18-3-19-13-21-7-18-16-28-2-9-14-9-14-9-14-23-14</td>
<td>0.0006</td>
<td>0.0845</td>
<td>0.8873</td>
</tr>
<tr>
<td>9</td>
<td>19-5-20-5-20-6-20-5-20-5-20-6-1-2-9-25-9-14-23-8-23-8-12-17-22-26-11</td>
<td>0.0004</td>
<td>0.0563</td>
<td>0.9436</td>
</tr>
<tr>
<td>10</td>
<td>19-5-20-6-4-6-1-6-16-4-16-28-16-4-6-1-2-9-2-9-25-8-23-14-23-10-23-8</td>
<td>0.0004</td>
<td>0.0563</td>
<td>0.9999</td>
</tr>
</tbody>
</table>

Tahap kelima dilakukan seleksi setiap kromosomnya dengan menggunakan metode Roulette Wheel Selection, yang menggunakan bilangan random sebagai bilangan pembandingnya, dan hasil seleksinya dapat dilihat di tabel 5.4 dimana bentuk populasi baru muncul setelah proses seleksi.

<table>
<thead>
<tr>
<th>Kromosom ke -</th>
<th>Bentuk Kromosom</th>
<th>Nilai Fitnes (F)</th>
<th>Fitnes Relatif (Pk)</th>
<th>Fitnes Komulatif (Qk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19-21-7-18-3-15-20-6-1-2-9-25-8-25-9-25-28-2-28-16-4-6-20-6-4-6-20-5-20</td>
<td>0.0009</td>
<td>0.1268</td>
<td>0.7324</td>
</tr>
<tr>
<td>2</td>
<td>19-21-7-18-16-28-2-1-6-20-5-20-15-13-21-13-15-13-15-3-18-16-4-16-4-28</td>
<td>0.0018</td>
<td>0.2535</td>
<td>0.4648</td>
</tr>
<tr>
<td>3</td>
<td>19-21-7-18-16-28-2-1-6-20-5-20-15-13-21-13-15-13-15-3-18-16-4-16-4-28</td>
<td>0.0018</td>
<td>0.2535</td>
<td>0.4648</td>
</tr>
<tr>
<td>4</td>
<td>19-5-20-6-4-6-1-6-16-4-16-28-16-4-6-1-2-9-2-9-25-8-23-14-23-10-23-8</td>
<td>0.0004</td>
<td>0.0563</td>
<td>0.9999</td>
</tr>
<tr>
<td>5</td>
<td>19-5-20-5-20-6-1-2-9-2-9-25-8-12-8-23-8-12-24-12-8-25-16-4-6-1-6-20</td>
<td>0.0008</td>
<td>0.1127</td>
<td>0.1127</td>
</tr>
<tr>
<td>6</td>
<td>19-21-7-18-16-28-2-1-6-20-5-20-15-13-21-13-15-13-15-3-18-16-4-16-4-28</td>
<td>0.0018</td>
<td>0.2535</td>
<td>0.4648</td>
</tr>
<tr>
<td>7</td>
<td>19-26-22-24-12-17-12-24-22-17-12-8-12-24-7-24-22-17-10-23-14-9-14-9-2-28-16-28-16</td>
<td>0.0005</td>
<td>0.0704</td>
<td>0.8028</td>
</tr>
<tr>
<td>8</td>
<td>19-21-13-15-13-21-13-7-18-4-6-1-2-28-16-8-3-15-13-21-13-29-3-29-13-29</td>
<td>0.0007</td>
<td>0.0986</td>
<td>0.2113</td>
</tr>
</tbody>
</table>
Tahap keenam adalah proses penyilangan dan proses mutasi dimana proses ini dilakukan untuk mencari variasi bentuk kromosom yang baru. Penyilangan dilakukan dengan menggunakan metode *Multi Point Crossover* dan dalam kasus ini jumlah titik potong ada dua buah yaitu pada gen ke-dua dan gen tengah kromosom. Setelah melalui proses penyilangan dan mutasi maka akan didapat populasi baru seperti tampak pada tabel 5.5

Pada tabel 5.5 hasil populasi akhir terlihat jika nilai jalur yang baru adalah dari node 19 ke node 2 melalui node 21-7-18-16-29, atau dengan kata lain ketika dari JL. Dr. Wahidin akan ke hotel garuda di ujung jalan maliboro melewati JL. Lempuyangan dan JL. Abu Bakar Ali. Ketika terjadi pemutusan jalur dari node 7 ke node 18 proses penyelesaian masih dengan perhitungan yang sama tetapi node asal merupakan node awal pemutusan dan jalur yang terpotong tidak akan ikut dalam proses pencarian, sehingga diperoleh jalur alternatif yang melewati node 24-22-17-12-8-23-14-9-2, atau dari lempuyangan melewati jL. Suryatmajan dan akhirnya melewati maliboro ke ujung maliboro dekat hotel garuda.

<table>
<thead>
<tr>
<th>Kromosom ke -</th>
<th>Bentuk Kromosom</th>
<th>Nilai Fitnes (F)</th>
<th>Fitnes Relatif (Pk)</th>
<th>Fitnes Komutatif (Qk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19-21-7-18-3-15-20-6-1-2-9-25-8-25-9-25-28-2-28-16-4-6-20-6-4-20-5-20</td>
<td>0.0009</td>
<td>0.0928</td>
<td>0.0928</td>
</tr>
<tr>
<td>2</td>
<td>19-21-7-18-16-28-2-1-6-20-5-20-15-13-21-13-13-13-5-18-4-6-14-6-16-28</td>
<td>0.0018</td>
<td>0.1856</td>
<td>0.2784</td>
</tr>
<tr>
<td>3</td>
<td>19-21-7-18-16-28-2-1-6-20-5-20-15-13-21-13-13-13-5-18-4-6-14-6-16-28</td>
<td>0.0018</td>
<td>0.1856</td>
<td>0.4640</td>
</tr>
<tr>
<td>4</td>
<td>19-5-20-6-4-6-1-6-1-6-14-28-16-4-15-2-1-6-9-2-25-8-23-14-23-10-23-8</td>
<td>0.0004</td>
<td>0.0412</td>
<td>0.5052</td>
</tr>
<tr>
<td>5</td>
<td>19-21-7-18-16-28-2-1-6-20-5-20-15-13-21-13-13-12-24-12-25-28-16-4-6-1-6-20</td>
<td>0.0018</td>
<td>0.1856</td>
<td>0.6908</td>
</tr>
<tr>
<td>6</td>
<td>19-21-7-18-16-28-2-1-6-20-5-20-15-13-21-13-13-15-3-18-16-4-6-14-6-16-28</td>
<td>0.0018</td>
<td>0.1856</td>
<td>0.8764</td>
</tr>
<tr>
<td>7</td>
<td>19-26-22-24-12-17-12-24-22-17-12-8-12-24-7-24-22-17-10-23-14-9-14-9-2-28-16-28-16</td>
<td>0.0005</td>
<td>0.0515</td>
<td>0.9279</td>
</tr>
<tr>
<td>9</td>
<td>19-21-7-29-13-15-3-18-16-4-16-18-3-19-13-21-7-18-16-28-2-9-14-9-14-9-14-23-14</td>
<td>0.0006</td>
<td>0.0619</td>
<td>1.062</td>
</tr>
</tbody>
</table>

6. Kesimpulan

Berdasarkan perancangan dan implementasi sistem dapat diambil beberapa kesimpulan sebagai berikut:

- Hasil pencarian jalur alternatif bervariasi. Hal ini ditentukan oleh beberapa faktor diantaranya jumlah iterasi, jumlah egde, dan jumlah node.
- Penggunaan bilangan random menjadikan beberapa kali pencarian yang dilakukan tidak dapat mendapatkan hasil yang diharapkan.
7. Daftar Pustaka

