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SEQUENCE POLYMORPHISMS OF FOUR CHLOROPLAST 
GENES IN FOUR ACACIA SPECIES

Anthonius Y.P.B.C. Widyatmoko1,2 and Susumu Shiraishi3

ABSTRACT

 Sequence polymorphisms among and within four Acacia species, A. aulacocarpa, A. 
auriculiformis, A. crassicarpa, and A. mangium, were investigated using four chloroplast DNA 
genes (atpA, petA, rbcL, and rpoA).  The phylogenetic relationship among these species is discussed 
in light of the results of the sequence information.  No intraspecific sequence variation was found 
in the four genes of the four species, and a conservative rate of mutation of the chloroplast DNA 
genes was also confirmed in the Acacia species.  In the atpA and petA of the four genes, all four 
species possessed identical sequences, and no sequence variation was found among the four 
Acacia species.  In the rbcL and rpoA genes, however, sequence polymorphisms were revealed 
among these species.  Acacia aulacocarpa and A. crassicarpa shared an identical sequence, and A. 
auriculiformis and A. mangium also showed no sequence variation.  The fact that A. mangium 
and A. auriculiformis shared identical sequences as did A. aulacocarpa and A. crassicarpa indicated 
that the two respective species were extremely closely related. Although a putative natural hybrid 
of A. aulacocarpa and A. auriculiformis has been reported, our results suggested that natural 
hybridization should be further verified using molecular markers.
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I. INRODUCTION

There are more than one thousand documented species of Acacia, of which about 
650 species occur in Australia.  Acacia auriculiformis, A. mangium, A. aulacocarpa, 
and A. crassicarpa are four of only nine Australian Acacia species, whose distributions 
extend northward into Papua New Guinea and Indonesia (Moran et al., 1989).  The four 
species are multiple-purpose plantation species, and in the last decade, they have become 
a major plantation species used for pulp production in Southeast Asia. Acacia species 
have been introduced in commercial plantations in Southeast Asia. The total area of 
tree plantations is now approaching two million ha and the largest of these plantations 
(about 1.2 million ha) is located in Indonesia, where the major planted species is fast-
growing Acacia mangium Wild. (Arisman and Hardiyanto, 2006; Potter et al., 2006). 
In industrial pulpwood plantations, these four Acacia species are newcomers compared 
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to Eucalyptus.  However, these species are suitable for kraft pulp production based on 
criteria such as basic density, bleaching properties, and pulp quality.

The genetic relationship among the four species is important for evolutionary study.  
In breeding programs, this information is useful for predicting hybridization activities.  
Until now there has been little discussion of the relationship among these species 
(Pettigrew and Watson, 1975; Boland et al., 1990; Brain and Maslin, 1996).  Moreover, 
the classification of the four species is not well elucidated. Some studies have been 
conducted in order to investigate the relationship among the four species (Widyatmoko 
et al., 2010); however, no phylogenetic analysis among the four species has been reported 
using the sequence information of chloroplast DNA (cpDNA) genes. Phylogenetic 
relationship among Acacia species have been reported by Clarke et al. (2000), Byrne et 
al. (2001; 2002) and Brown et al. (2008). Both of the research were using chloroplast 
DNA. Acacia species which have been used for phylogenetic relationship study revealed 
the significant association between phylogenetic position of many haplotypes and their 
geographical distribution. Hamrick et al. (1992) reported the effect of pollination to 
genetic diversity of species. Long-lived, outcrossing and  wind-pollinated species has 
higher levels of allozyme diversity within population and less among population. 

DNA sequences of cpDNA genes have been utilized for estimating the phylogeny 
of many taxa of plants.  In particular, the chloroplast gene (rbcL) that encodes a large 
subunit of the enzyme ribulose-1,5-biphosphate carboxilase has been used to elucidate 
the relationships of Betulaceae (Chen et al., 1999), Rutaceae (Chase et al., 1999), Salix 
(Azuma et al., 2000) and Solanum (Bohs, 2004).  Intraspecific sequence polymorphism 
of cpDNA has also been investigated (Fujii et al., 1999; Amane et al., 2000; Zimmer et 
al., 2002).

In this study, sequence polymorphisms among the four Acacia species were 
investigated using four cpDNA genes (atpA, petA, rbcL, and rpoA).  Furthermore, a 
phylogenetic relationship among these species was discovered and is discussed with the 
results of the sequence polymorphism.

II. MATERIALS AND METHODS 

 Plant materials for the study were obtained from the Australian Tree Seed 
Centre of CSIRO (Commonwealth Scientific and Industrial Research Organization), 
Australia, and from the Forest Tree Improvement Research and Development Institute, 
Indonesia.  For each species, four seedlots (represented by one seed) were used for 
sequencing.  Details of each sample are shown in Table 1.

Total genomic DNA was extracted from the seeds with a mortar and pestle by 
an SDS isolation. Each seed was ground using 400 µl SDS extraction buffer, which 
contained 50 mM Tris-HCl (pH 9.0), 1% (w/v) SDS, 10 mM EDTA, and 0.5% (v/v) 
2-Mercaptoethanol.  After incubation at 65oC for 60 min, 200 µl of 7.5 M ammonium 
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acetate was added.  The solution was kept on ice for 30 min, and was then centrifuged at 
0oC at 15,000 rpm for 40 min.  The sample in the aqueous phase (400 µl), was transferred 
to a new tube, and the DNA was precipitated by the addition of 400 µl isopropanol.  
After circa 10 min, the precipitate was collected by centrifugation at 15,000 rpm for 10 
min.  The supernatant was completely removed, and the pellet was washed twice with 1.0 
ml of 70% Ethanol.  After the pellet was washed using a vacuum evaporator for 2 min, it 
was resuspended in 100 µl purified H

2
O.  Finally, the crude solution was purified using a 

GeneClean III Kit (BIO 101), and the purified DNA was utilized as a template for PCR.

Table 1. List of sample materials for the four cpDNA genes

Species Seed source

Seedlot No. Location*

A. aulacocarpa 16946-AK 000012** Balimo District, PNG

13866-BH 012313** Garioch, QLD

17905-TREE** 10K NW Mt. Molloy, QLD

17739-BG 000022** 3K S Mt. Larcom, QLD

A. auriculiformis 16606-BVG 01220** Morehead R Rouku WP, PNG

18359-MHL 20** Lower Poscoe River, QLD

16756-BG 004936** E Normamby River, QLD

18601-6** (R) Orchard Melville Is., NT

A. crassicarpa AC-1107** Kuel, Irian Jaya, IND

13680-JC 001503** Wemenever Prov., PNG

17944-MHL 04** Claudie River, QLD

16775-BH 013582** Parish of Annan, QLD

A. mangium 570*** Piru, Seram, IND

16971-BVG 01626** Wipim District WP, PNG

17946-GJM 1110** Claudie River, QLD

17703-GLM 00920** Tully-Mission Beach, QLD
Notes: *    PNG, Papua New Guinea; QLD, Queensland, Australia; NT, Northern Territory, Australia; 

IND, Indonesia
 **   Seedlot No. of CSIRO, Australia
 ***  Seedlot No. of FTIRDI, Indonesia

Seven pairs of PCR primers shown in Table 2 (Shiraishi et al., unpublished) were used 
for amplifying four genes.  PCR was performed in a total volume of 20 µl containing 4 ng 
of genomic DNA, 0.25 µM of each primer, 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 3.0 
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mM MgCl
2
, 200 mM of each dNTP, and 0.25 unit/10µl Ex Taq DNA polymerase.  DNA 

amplification was performed with a Gene Amp PCR System Model 9600 (Perkin-Elmer) 
programmed as follows: 95oC for 90 s, 30 cycles of 30 s at 94oC, 30 s at 55 oC, and 90 s 
at 72oC, followed by 60 s at 72oC.  The PCR product was separated by electrophoresis in 
1.5% agarose gel and the target fractions were excised from the gel.  DNA was recovered 
from the gel particles and was purified using QIAEX II Gel Extraction (QUIAGEN).  
The sequence reaction was carried out using a Thermo Sequenase fluorescent labeled 
primer cycle sequencing kit (Amersham Pharmacia Biotech), the template DNA, and 
-21M13 (TGTAAAACGACGGCCAGT) / M13Rev (CAGGAAACAGCTATGA-
CC) sequence primer 5’-labeled with Texas Red fluorescent dye (Amersham Pharmacia 
Biotech).  The sequence was analyzed with a Hitachi SQ5500 DNA Sequencer.

Table 2. Primer sequences for amplifying the four cpDNA genes

Gene Zone Primer Sequences (5`→3`)

atpA a FO-021 (TGTAAAACGACGGCCAGT)GAGGCTTATTTGGGTCGTGT

FO-124 (CAGGAAACAGCTATGACC)GAGAACTTGATTTAGCGGCTC

b FO-122 (TGTAAAACGACGGCCAGT)GCTTATCGCCAAATGTCTCTT

FO-026 (CAGGAAACAGCTATGACC)ATATGATTTCTTGGAACTGAGG

petA FO-055 ( TG TA A A AC G AC G G C C AG T ) C T TC C C G ATAC C G TAT T T-
GAAGCA

FO-056 (CAGGAAACAGCTATGACC)TCTGCATCTCCTTGACCAAATCC

rbcL a FO-001 (TGTAAAACGACGGCCAGT)GTCGGATTCAAAGCTGGTGT

FO-104 (CAGGAAACAGCTATGACC)TCGCATGTACCCGCAGTAGC

b FO-102 (TGTAAAACGACGGCCAGT)TGAGAATGTGAACTCCCAACC

FO-006 (CAGGAAACAGCTATGACC)TCACAAGCAGCAGCTAGTTC

rpoA a FO-038 (TGTAAAACGACGGCCAGT )GACCTTTTGAGGCAATTATA-
CATCC

FO-040 (CAGGAAAGAGCTATGACC)CCAAATAACTCTCAAGACGGAA

b FO-032 (TGTAAAACGACGGCCAGT)CGAACAGGCATGAATACAGC

FO-034 (CAGGAAACAGCTATGACC)TGGAAGTGTGTTGAATCAAG

Remarks:   - upper primer was forward primers, below primers was reverse primers 
- The sequence in parentheses represents the M13/M13Rev universal primer

Raw data of sequences was analyzed using Sequencer 4.7 (Gene Codes Corporation). 
Both forward and reverse sequences of each samples of each region were assembled 
automatically using the program. Chromatogram of both sequences was used when 
incompatibility was found in order to decide the correct sequence of each sample for 
each region. Finally, all samples for each region were assembled automatically in order 
to recognize insertion-deletion and base substitution between the samples.
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III. RESULTS AND DISCUSSION

A. Intraspecific Variation of the Four Chloroplast Genes

In order to investigate sequence variations within species, four samples from four 
separate populations were used in each species (Table 1).  Of the four Acacia species, A. 
aulacocarpa was thought to have the largest genetic diversity (Widyatmoko et al., 2010).  
The samples of this species from New Guinea Island, North Queensland, and South 
Queensland corresponding to the different subspecies were separated morphologically 
by Thomson (1994).  The length of atpA, petA, rbcL, and rpoA were 1084 bp, 561 bp, 
1309 bp, and 782 bp, respectively, and no sequence variation was found in the four 
genes among the four samples.  Eventhough McDonald and Maslin (2000) divided A. 
aulacocarpa into 6 species, no sequence variation was found among those species. In the 
remaining three species, exactly the same results were shown.  A low rate of cpDNA 
mutation has been reported in Acacia acuminata complex in Western Australia (Byrne et 
al., 2002). the time of divergence between the two main lineages within A. acuminata is 
in the order of 800,000 years ago, in the middle of the Pleistocene. Parfitt and Badeness 
(1997) and Provan et al. (1999) reported a low cpDNA mutation rate for the genus 
Pistacia and Pinus torreyana respectively. Restriction site mapping of chloroplast DNA 
was chosen for phylogenetic analysis because of its ability to provide many information 
characters, even in comparison to DNA sequence from any particular gene ( Jansen et 
al., 1998)

B. Interspecific Variation Among the Four Acacia species 

In the atpA and petA genes, no sequence variation was found among the four Acacia 
species.  All four species possessed identical sequences.  Sequences of the rbcL and rpoA 
genes are shown in Figures 1 and 2.  Although no length variation among species was 
observed in either gene, sequence polymorphisms were revealed among these species.  
Within the four species, A. aulacocarpa and A. crassicarpa shared an identical sequence, 
and A. auriculiformis and A. mangium also showed no sequence variation. 

Number of base substitutions and amino acid changes among species are shown in 
Table 3.  In the rbcL sequence, six transitions and three transversions were found between 
the two groups mentioned above.  In rpoA, two transitions between the two groups 
were identified.  Five amino acid changes were caused by these substitutions between 
the groups.  The amino acid changes were observed only in the rbcL gene. 

An inference concerning the genetic relationship among the four Acacia species 
using RAPD analysis has been reported (Widyatmoko et al., 2010).  We indicated that 
the four species were separated into two clades: A. auriculiformis and A. mangium were 
grouped into one clade, and the other clade contained A. aulacocarpa and A. crassicarpa 
(Figure 3).  In the RAPD study, moreover, genetic variations were observed within and 
among the species, because a RAPD marker is a more effective means of examining the 
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relationship among closely related species.  A. auriculiformis and A. mangium, which 
were grouped into the same clade, were separated into different respective subclades.  In 
the latter clade, however, which contained A. aulacocarpa and A. crassicarpa, each species 
could not clearly form a clade.  As a result, A. crassicarpa is considered a subspecies of A. 
aulacocarpa. McDonald and Maslin (2000) also mentioned closed relationship between 
those species.  A result similar to this has also been reported by Thomson (1994) whose 
study was based on morphological observations. 

The present study clarified a phylogenetic relationship among the four species.  The 
four Acacia species were classified into two groups.  One group contained A. auriculiformis 
and A. mangium, and the other consisted of the remaining two species.  Within each 
group, two species had exactly the same sequences in the four cpDNA genes.  Between 
the two groups, 11 substitutions were found in the rbcL and rpoA genes.  Putative natural 
hybrids of A. aulacocarpa and A. auriculiformis have been found (Thomson, 1994).  
However, our results suggested that A. aulacocarpa and A. auriculiformis were distantly 
related. Therefore, natural hybridization between these two species might be further 
verified using molecular markers.

Interspecific variation among Acacia species have been reported by and Clarke et 
al. (2000) and Byrne et al. (2002). Byrne et al. (2002) reported a significant association 
between phylogenetic position of many haplotypes and their geographical distribution. 
The cpDNA analysis clearly identified A. oldfieldii as distinct from the rest of the A. 
acuminata complex. Clarke et al. (2000) reported the phylogenetic relationship between 
4 Acacia sub genus Acacia in Caribbean, Africa, South America and North America. A 
group of Carribean species was found to be ancestral in Acacia subgenus Acacia, and 
African and South American species were found to relatively derive with respect to 
North American species. 

1 60

TAAAGATTAT AAATTGACTT ATTATACTCC TGACTATGAA ACCAAAGATG GTGATATCTT

.......... .......... .......... .......... .........A ..........

61 120

GGCAGCATTC CGAGTAACTC CTCAACAGTT CCGAATCTGG GAAGAAGCAG GTGCCGCGGT

.......... .......... .......... .......... .......... ..........

121 180

AGCTGCTGAA TCTTCTACTG GTACATGGAC AACTGTGTGG ACCGATGGGC TTACCAGTGT

.......... .......... .......... .......... .......... ..........

181 240

GATCGTTACA AAGGACGATT GCTACCACAT CGAGTCCGTT GCTGGAGAAG AAAATCAATA

.......... .......... .......... .......... .......... ..........

Notes: Upper row: A. aulacocarpa-A. crassicarpa 
Under row: A. mangium-A. auriculiformis

Figure 1. Sequences of rbcL of the four Acacia species
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241 300

TATTGCTTAT GTAGCTTATC CCTTAGACCT TTTTGAAGAA GGTTCTGTTA CTAACATGGT

.......... .......... .......... .......... .......... ..........

301 360

TACTTCGATT GTGGGTAATG TATTTGGGTT CAAGGCCCTG CGCGCTCTAC GTCTGGAAGA

.......... .......... .......... .......... .......... ..........

361 420

TTTGCGAATC CCTCCTTCTT ATTCTAAAAC TTTCCAAGGT CCGCCTCACG GCATCCAAGT

.......... .......... .......... .......... .......... ..........

421 480

TGAGAGAGAT AAATTGAACA AGTACGGCCG TCCCCTATTG GGATGTACTA TTAAACCAAA

.......... .......... .......... .......... .......... ..........

481 540

ATTGGGGTTA TCCGCGAAGA ATTACGGTAG AGCGGTTTAT GAATGTCTCC GTGGTGGACT

.......... .......... .......... .......... .......... ..........

541 600

TGATTTTACC AAAGATGATG AGAATGTGAA TTCCCAACCA TTTATGCGTT GGAGAGACCG

.......... .......... .......... .......... .......... ..........

601 660

TTTCTTATTT TGTGCCGAAG CAGTTTTTAA AGCACAGGCC GAAACAGGTG AAATCAAAGG

.....GC... .......... .......... .......... .......... ..........

661 720

GCATTACTTG AATGCTACTG CAGGTACATG CGAAGAAATG ATCAAAAGAG CTGTATTTGC

.......... .......... .G........ .......... .......... ..........

721 780

CCGAGAATTA GGCGTTCCTA TCGTAATGCA TGACTACTTA ACAGGGGGAT TCACTGCAAA

.........G ...AC..... .......... .......... .......... ..........

781 840

TCATAGCTTG GCTCATTATT GCCGAGATAA TGGTCTACTT CTTCATATCC ATCGTGCAAT

.......... .......... .......... .......... .......... ..........

841 900

GCATGCAGTT ATCGATAGAC ACAAGAATCA TGGTATGCAC TTTCGTGTAC TAGCTAAAGC

.......... .......... .......... .......... .......... ..........

901 960

GTTACGTATG TCTGGTGGAG ATCATATTCA CGCTGGTACC GTAGTAGGTA AACTTGAAGG

.......T.. .......... .......... .......... .......... ..........

961 1020

TGAAAGAGAA ATCACTTTAG GTTTTGTTGT TTACTACGTA GATGATTATA TTGAGAAAGA

.......... .......... .......... .......... .......... ..........

1021 1080

TCGAAGCCGC GGTATTTATT TCACTCAGGA TTGGGTCTCT ATGCCGGGTG TTCTGCCCTG

.......... .......... .......... .......... ..A....... ..........

1081 1140

CTTCGGGGGG TATTCACGGT TTTGGCATAT GCCTGCTCTT ACCGAGATCT TTGGAGATGA

.......... .......... .......... .......... .......... ..........

1141 1200

TTCCGTACTA CAATTCGGGG GGGGAACTTT AGGGCACCCT TGGGGAAATG CACCCGGTGC

.......... .......... .......... .......... .......... ..........

1201 1260

CGTAGCTAAC CGAGTAGCTC TAGAAGCATG TGTACAGGCT CGTAATGAGG GACGTGATCT

.......... .......... .......... .......... .......... ..........

1261

TGCTCGTGAG GGTAATGAAA TTATTCGTCA GGCTAGCAAA TGGAGTCCT

.......... .......... .......... .......... .........

Notes: Upper row: A. aulacocarpa-A. crassicarpa  
Under row: A. mangium-A. auriculiformis

Figure 1. (continued)
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661 720

GCATTACTTG AATGCTACTG CAGGTACATG CGAAGAAATG ATCAAAAGAG CTGTATTTGC

.......... .......... .G........ .......... .......... ..........

721 780

CCGAGAATTA GGCGTTCCTA TCGTAATGCA TGACTACTTA ACAGGGGGAT TCACTGCAAA

.........G ...AC..... .......... .......... .......... ..........

781 840

TCATAGCTTG GCTCATTATT GCCGAGATAA TGGTCTACTT CTTCATATCC ATCGTGCAAT

.......... .......... .......... .......... .......... ..........

841 900

GCATGCAGTT ATCGATAGAC ACAAGAATCA TGGTATGCAC TTTCGTGTAC TAGCTAAAGC

.......... .......... .......... .......... .......... ..........

901 960

GTTACGTATG TCTGGTGGAG ATCATATTCA CGCTGGTACC GTAGTAGGTA AACTTGAAGG

.......T.. .......... .......... .......... .......... ..........

961 1020

TGAAAGAGAA ATCACTTTAG GTTTTGTTGT TTACTACGTA GATGATTATA TTGAGAAAGA

.......... .......... .......... .......... .......... ..........

1021 1080

TCGAAGCCGC GGTATTTATT TCACTCAGGA TTGGGTCTCT ATGCCGGGTG TTCTGCCCTG

.......... .......... .......... .......... ..A....... ..........

1081 1140

CTTCGGGGGG TATTCACGGT TTTGGCATAT GCCTGCTCTT ACCGAGATCT TTGGAGATGA 

.......... .......... .......... .......... .......... ..........

1141 1200

TTCCGTACTA CAATTCGGGG GGGGAACTTT AGGGCACCCT TGGGGAAATG CACCCGGTGC

.......... .......... .......... .......... .......... ..........

1201 1260

CGTAGCTAAC CGAGTAGCTC TAGAAGCATG TGTACAGGCT CGTAATGAGG GACGTGATCT

.......... .......... .......... .......... .......... ..........

1261

TGCTCGTGAG GGTAATGAAA TTATTCGTCA GGCTAGCAAA TGGAGTCCT

.......... .......... .......... .......... .........

Notes: Upper row: A. aulacocarpa-A. crassicarpa 
Under row: A. mangium-A. auriculiformis

Figure 2. Sequences of rpoA of the four Acacia species

Table 3. Number of substitutions and amino acid changes in the four cpDNA 
genes of A. aulacocarpa-A. crassicarpa and A. auriculiformis-A. mangium

Gene Length (bp)
Substitution

Amino acid change
Transition Transversion Total

atpA 1084 0 0 0 0

petA 561 0 0 0 0

rbcL 1309 6 3 9 5

rpoA 782 2 0 2 0

Total 3746 8 3 11 5
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Figure 3. The relationships between four Acacia species (Widyatmoko et al., 2010) 

IV. CONCLUSION

Sequence polymorphisms were revealed among these species for rbcL and rpoA 
genes.  No sequence variation was found for Acacia aulacocarpa and A. crassicarpa, and 
also for A. auriculiformis and A. mangium.  Both groups were differentiated by 11 bases.

The phylogenic results of this and previous studies may be useful in planning, 
especially in breeding programs.  For A. mangium and A. auriculiformis, which are 
extremely closely related, it might be necessary that interspecific hybridization breeding 
be carried out on a larger scale in the breeding programs.  A similar breeding strategy is 
also worth discussing for A. aulacocarpa and A. crassicarpa.  
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