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B
ACKGROUND: MicroRNAs (miRNAs) are 

~22-nucleotide noncoding RNAs with critical 
functions in multiple physiological and pathological 

processes. An explosion of reports on the discovery and 
characterization of different miRNA species and their 

involvement in almost every aspect of cardiac biology 

and diseases has established an exciting new dimension 
in gene regulation networks for cardiac development and 
pathogenesis.

CONTENT: Alterations in the metabolic control of lipid 

and glucose homeostasis predispose an individual to 

develop cardiometabolic diseases, such as type 2 diabetes 
mellitus and atherosclerosis. Work over the last years has 
suggested that miRNAs play an important role in regulating 

these physiological processes. Besides a cell-specific 
transcription factor profile, cell-specific miRNA-regulated 
gene expression is integral to cell fate and activation 
decisions. Thus, the cell types involved in atherosclerosis, 

vascular disease, and its myocardial sequelae may be 

differentially regulated by distinct miRNAs, thereby 

controlling highly complex processes, for example, smooth 
muscle cell phenotype and inflammatory responses of 
endothelial cells or macrophages. The recent advancements 

in using miRNAs as circulating biomarkers or therapeutic 
modalities, will hopefully be able to provide a strong basis 

for future research to further expand our insights into 
miRNA function in cardiovascular biology.

SUMMARY: MiRNAs are small, noncoding RNAs 

that function as post-transcriptional regulators of gene 

expression. They are potent modulators of diverse 
biological processes and pathologies. Recent findings 
demonstrated the importance of miRNAs in the vasculature 

and the orchestration of lipid metabolism and glucose 

L
ATAR BELAKANG: MicroRNA (miRNA) adalah 

suatu noncoding RNA dengan 22 nukleotida yang 
memiliki fungsi penting dalam berbagai proses 

fisiologi dan patologi. Banyaknya laporan mengenai 
penemuan dan karakterisasi spesies miRNA, serta 
keterlibatan miRNA pada hampir semua aspek biologi dan 
penyakit jantung telah membuka dimensi baru dalam hal 
jaringan regulasi gen pada perkembangan dan patogenesis 
jantung.

ISI: Perubahan kendali metabolisme lemak dan homeostasis 
glukosa pada individu dapat memicu berkembangnya 
penyakit kardiometabolik seperti diabetes melitus tipe 2 dan 
aterosklerosis. Penelitian yang dilakukan pada dasawarsa 
terakhir telah menunjukkan bahwa miRNA memiliki peran 
penting dalam pengaturan proses fisiologi ini. Selain profil 
faktor transkripsi spesifik sel, ekspresi gen yang diregulasi 
oleh miRNA mempengaruhi tujuan akhir perkembangan 
dan keputusan aktivasi sel. Jadi, tipe sel yang terlibat dalam 
aterosklerosis, penyakit vaskular, dan kerusakan miokardial 
mungkin diregulasi secara berbeda oleh miRNA yang 
berlainan, melalui proses pengaturan yang sangat rumit, 

misalnya fenotipe sel otot polos dan respon inflamasi sel 
endotel atau makrofag. Perkembangan terakhir dalam hal 
penggunaan miRNA sebagai biomarker atau modalitas terapi 
diharapkan dapat menjadi dasar yang kuat untuk penelitian 
lebih lanjut, sehingga dapat memperkaya pemahaman kita 
mengenai fungsi miRNA pada biologi kardiovaskular. 

RINGKASAN: MiRNA adalah noncoding RNA yang 

kecil, berfungsi sebagai pengatur post-transkripsi pada 
ekspresi gen. MiRNA merupakan modulator potensial pada 
berbagai proses dan patologi biologi. Penemuan yang ada 

menunjukkan pentingnya peran miRNA pada vaskulatur, 
alur metabolisme lemak, dan homeostasis glukosa. 

Abstract Abstrak

R E V I E W  A R T I C L E
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Recent development of high-throughput genomic analyses 

has revolutionized biomedical research. It is not surprising 
that these cutting-edge technologies start to transform 

microRNA (miRNA/miR) investigation. Both gene-chip 

microarray and the next-generation RNA-sequencing 
technologies have been introduced for miRNA target 

identification.(1)
 In the last few years several groundbreaking studies 
have indicated that in addition to being relevant in cardiac 

remodeling and function, miRNAs exert dominant 
functions in vascular and metabolic disease as well.(2) 
Another discovery in miRNA biology that is developing 

with remarkable pace is the revelation that miRNAs are 
detectable and highly stable in plasma or serum. Circulating 

miRNAs appear to correlate with disease, opening up the 

possibility to use them as novel diagnostic biomarkers. For 
cardiovascular disease, circulating miRNAs so far have 

been shown to be potential biomarkers for acute myocardial 
infarction, heart failure, coronary artery disease (CAD), 
stroke, and type 2 diabetes.(2) 
 An important contribution of miRNAs to the regulation 

or alteration of lipid metabolism and glucose homeostasis 

may determine the predisposition to cardiometabolic 

disease and atherosclerosis. For instance, miR-33 controls 
cellular cholesterol export and fatty acid degradation, which 
are stimulated by its host genes, whereas miR-122 can limit 
cholesterol synthesis and lipoprotein secretion in the liver.

(3) miRNAs regulate multiple aspects and functions of 
the vascular endothelial growth factor (VEGF) signaling 
pathway in vasculogenesis and angiogenesis, in particular 

providing insights into the role of miRNAs and downstream 

effectors in modulating VEGF output during development.
(4)

homeostasis. MiRNA networks represent an additional layer 
of regulation for gene expression that absorbs perturbations 
and ensures the robustness of biological systems. A detailed 

understanding of the molecular and cellular mechanisms 

of miRNA-mediated effects on metabolism and vascular 

pathophysiology could pave the way for the development of 

novel diagnostic markers and therapeutic approaches.

KEYWORDS: microRNA, lipid metabolism, glucose 

homeostasis, vascular endothelium, vascular smooth 

muscle, atherosclerosis
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Jaringan miRNA mencerminkan sebuah lapisan ekstra 
yang menyerap gangguan pada ekspresi gen dan menjamin 
kekokohan sistim biologi. Pemahaman yang lebih rinci 
tentang mekanisme selular dan molekular pengaruh mediasi 
miRNA pada metabolisme dan patofisiologi vaskular dapat 
membuka jalan untuk pengembangan marker diagnostik 
dan pendekatan terapi baru.

KATA KUNCI: microRNA, metabolisme lemak 
homeostasis glukosa, endotelium vaskular, otot polos 
vaskular, aterosklerosis

Introduction

Disturbances in gene expression as a result of perturbed 
transcription or post-transcriptional regulation is one of the 

main causes of cellular dysfunction that underlies different 

disease states. The discovery of miRNAs in mammalian cells 

has renewed our focus on post-transcriptional regulatory 

mechanisms during pathogenesis.(7)

 Usually described as inhibitory factors, they act by 

enhancing degradation(8), or inhibiting translation(9) 
of their target mRNAs. The human miRNA panel could 

regulate several thousands of genes.(10) Several miRNAs 
could regulate the same gene. Conversely, one miRNA could 

regulate several targets, involved in different physiological 

pathways.(11) As a consequence, gene regulation by 
miRNAs could occur in all physiological situations. Today, 

more than 1,000 human and 600 mouse miRNAs are listed 
in the miRBase database (http://www.mirbase.org).(12) A 

miRNAs

 Myocardial infarction as a common and severe 

manifestation of advanced atherosclerosis is characterized 

by altered gene expression and dysregulation of underlying 
signaling pathways, which may involve an induction or 

repression of miRNAs affecting cell-specific downstream 
effects on cardiac function.(5)
 The differential roles of distinct miRNAs during 

the pathogenesis of atherosclerosis, which encompass 

downregulation of miR-145 controlling smooth muscle 
cell differentiation, delivery of miR-126 in endothelial 
cell (EC)-derived microparticles to signal the need for 

endothelial repair, or an upregulation of miR-155 relevant 
in proinflammatory macrophage polarization. The 
identification of this miRNA triad sheds light on the current 
concepts of atherogenesis and establishes novel treatment 

options.(6)
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nomenclature system to classify miRNAs was established 

in 2003.(13)
 MiRNAs act as rheostats that fine tune protein output.
(14,15) Despite having a modest effect on individual targets, 
miRNAs can exert potent biological effects. A single 
miRNA is able to regulate the expression of multiple targets 
often within the same biological pathway. Recent evidence 

suggests that miRNAs function by generating thresholds in 

target gene expression.(16) Alternatively, miRNAs may act 
as both positive and negative regulators of cellular processes 

to ensure the precision and robustness of biological systems 

against perturbations.(17-19)
 The effect of a particular miRNA on gene expression 
is likely to be dictated by the relative expression of the 
miRNA and its target genes, which can compete for the 

binding in their 3′-untranslated regions. Of note, one 
miRNA often regulates multiple genes that are involved 

in a specific signaling cascade or cellular mechanism, thus 
making miRNAs potent biological regulators.(20,21)
 Long primary miRNAs (pri-miRNAs) transcripts 
are often several thousand nucleotides long and undergo a 

first cleavage within the nucleus by the RNase III enzyme 
Drosha.(22) After processing of pri-miRNAs by the Drosha/
DiGeorge syndrome critical region gene 8 (DGCR8) 
complex, resulted pre-miRNAs are transported via exportin  
into the cytoplasm awaiting further modifications.(23)  
 Recently, several studies have highlighted the presence 

of miRNAs in the plasma. Plasma miRNAs are packaged 
in microvesicles (including exosomes) that protect them 
from degradation.(24) Moreover, recent reports have also 
identified these small RNAs associated with proteins, 
including the RNA-binding protein Argonaute 2.(25)
 Extracellular miRNAs are also transported by 
lipoproteins, namely high-density lipoproteins (HDL) 
and low-density lipoproteins (LDL), both of which are 
highly abundant in plasma. Whereas exosomes and 
microparticles are composed of a bilayer-phospholipid shell 

and hydrophilic core, lipoproteins consist of a single layer 

of lipids, a hydrophobic core, and are defined by specific 
structure–function apolipoproteins.(26) Some miRNAs 
are enriched in the plasma under pathological conditions, 

including myocardial infarction (miR-208, miR-1, miR-
133a and miR-21)(27), hepatic steatosis and hepatic injury 
(miR-122)(28), and hypertension (Let-7e)(29) or reduced, 
such as miR-126 in type 2 diabetes mellitus(30); therefore 
they can be used as disease biomarkers. Finally, Vickers, 
et al.(26) have also recently found miRNAs associated 
with lipoproteins. Interestingly, the HDL miRNA profile 
of normal subjects is significantly different from that of 
familial hypercholesterolemia subjects.(26)

HDL play a central role in systemic cholesterol homeostasis 
by stimulating the efflux of excess cellular cholesterol and 
transporting it to the liver for biliary excretion. HDL has 
long been touted as the “good cholesterol” because of the 

strong inverse correlation of plasma HDL cholesterol levels 
with coronary heart disease.(33)
 Reverse cholesterol transport (RCT), is a multistep 

process, beginning with the hydrolysis of cytoplasmic lipid 

droplet-associated cholesteryl esters by neutral cholesteryl 

ester hydrolases and/or autophagy mediated lysosomal acid 

lipase.(34) The resulting free cholesterol is then effluxed 
from the cell by passive diffusion of cholesterol, as well 

as active cholesterol transfer onto lipid-poor apoA-I and 
HDL by the adenosine triphosphate (ATP) binding cassette 
transporters A1 (ABCA1) and G1 (ABCG1), respectively. 
Not only are the ABC transporters required for active 

macrophage cholesterol efflux, but ABCA1 is essential for 
HDL biogenesis in the liver, while ABCA1 and ABCG1 
have discrete and important roles in the maintenance of 

mature HDL in the plasma.(35)
 Each of the steps noted above represent points of 

control of the HDL pathway. At the transcriptional level, the 
liver X receptors (LXRs) coordinate the cellular response 
to excess cholesterol by upregulating the expression of 
several genes in this pathway (e.g., ABCA1, ABCG1).(36) 
Therapeutic strategies to harness HDL’s protective effects 
have to date focused on enhancing (e.g., LXR, ABCA1) or 

 A multi-biomarkers panel consisting of biomarkers 
capturing different levels of information (e.g., miRNAs 

to assess endothelial and platelet activation, molecular 

lipid species to profile metabolic status, and proteolytic 
degradation products to assess vascular integrity) could 

outperform inflammatory biomarkers without vascular 
specificity in their ability of predicting cardiovascular 
risk. As atherosclerosis develops over decades, different 
biomarkers may be required for different stages of disease. 
Thus far, there is no simple blood test to directly assess the 

health of blood vessels or identify vulnerable patients.(31)
 Given the ever-expanding number of noncoding 
RNAs, understanding their function represents a formidable 

task. Technologies, such as metabolomics and proteomics, 
allow a more comprehensive assessment of miRNA effects 

and provide exciting opportunities for new pathogenetic 
insights into cardiovascular diseases.(30) Novel therapeutic 
strategies will face the major challenge of developing 

standardized methods for miRNA inhibition that combine 

high transfection efficiency with targeted delivery.(32)

miRNAs in Lipid Metabolism
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inhibiting (e.g., Cholesteryl ester transfer protein (CETP)) 

these factors.(37)
 Multiple genes in the HDL pathway have now been 
shown to be under control of these miRNAs, including 

those affecting HDL biogenesis, cellular cholesterol efflux, 
selective cholesterol uptake from HDL, and bile transport 
(Figure 1). These studies have revealed how single 
miRNA (e.g., miR-33) can target multiple components of 
this pathway, and also identified key genes that are under 
control of multiple miRNAs (e.g., ABCA1). Adding to this 
complexity, HDL particles have also been shown to transport 
extracellular miRNAs, raising the possibility that HDL’s 
miRNA cargo may influence its many functions, including 
its ability to promote RCT and enhance vascular function, 

as well as its anti-inflammatory and anti-thrombotic effects.
(33) miR-122 was the first miRNA to be identified as 
having a role in lipid metabolism. Nearly a decade ago, it 

was reported that miR-122 was abundantly expressed in 
the liver and was highly conserved across species, hinting 

at an important role for this miRNA in hepatic function.

(38) 
 miR-122 plays important roles in a wide variety of 
liver functions, ranging from cholesterol metabolism, liver 

cancer, stress responses, and viral infection to circadian 

Figure 1.  Regulation of HDL homeostasis by miRNAs.(33) (Adapted with permission from the American Society for Biochemistry and 
Biomolecular Biology, Inc.).

regulation of hepatic genes.(39-44) Two pioneering studies 
have shown that antisense targeting of miR-122 results in 
a significant reduction of plasma cholesterol levels.(39,45) 
The first study shows that the effect on plasma cholesterol 
results most likely from decreased expression of many 
cholesterol biosynthetic genes, including 3-hydroxy-3-
methylglutarylcoenzyme A reductase (HMGCR), the rate-

limiting enzyme in the cholesterol biosynthesis pathway.

(45)
 The second study implements a similar antisense 

technology (2ʹ-O-methoxyethyl phosphorothioate antisense 
oligonucleotides) against miR-122 in mice and not only 
confirms the effect on plasma cholesterol, but also reports 
a significant decrease in plasma triglycerides (TGs), as well 
as decreased hepatic steatosis, in high-fat diet-fed mice.(39) 
Altogether, these results demonstrate that miR-122 plays 
an important role in regulating serum cholesterol and TG 

levels by controlling cholesterol biosynthesis and very-low-

density lipoprotein secretion in the liver.(3)
 In 2010, several groups independently identified 
miR-33, an evolutionarily conserved miRNA, as a key 
regulator of cholesterol and fatty acid homeostasis.(46-
48) miR-33 consists of 2 intronic miRNAs, miR-33a and 
miR-33b, which are encoded within the introns of the Sterol 
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miRNAs in Glucose Homeostasis

Regulatory Element-Binding Protein  (Srebp) 1 and Srebp2  

genes, respectively.(46-50) Although miR-33a and miR-33b 
share their target activities, they differ in their patterns of 

evolutionary conservation.

 Specifically, miR-33a has been shown to target 
genes involved in cholesterol export, such as the ABC 
transporters ABCA1 and ABCG1 (46-48) and the 
endolysosomal transport protein Niemann-Pick C1 (Npc1).
(48) In agreement with the regulation of ABCA1 by miR-
33, modulation of miR-33a levels results in encompassing 
effects in cholesterol efflux in macrophages, thus suggesting 
that miR-33 may participate in the regulation of HDL levels 
in vivo. Importantly, miR-33a and miR-33b contribute 
to the regulation of fatty acid metabolism by controlling 

the expression of carnitine O-octanyl transferase (Crot), 
carnitine palmitoyltransferase 1A (Cpt1a), and hydroxyacyl- 
coenzyme A dehydrogenase/3-ketoacyl-coenzyme A 
thiolase/enoyl-coenzyme A hydratase (trifunctional protein) 

β-subunit.(49,50)
 In addition to the regulation of fatty acid oxidation, 
miR-33a and miR-33b have also been shown to control the 
expression of adenosine monophosphate (AMP)-activated 
kinase (AMPKα1) and sirtuin 6 (Sirt6), which are involved 
in the regulation of lipid and glucose metabolism.(49) 
AMPKα1 regulates key lipogenic enzymes, including 
HMGCR and acetyl-CoA carboxilase (ACC). Thus, 
inhibition of AMPKα1 by miR-33 may increase HMGCR 
and ACC to boost intracellular levels of cholesterol and fatty 

acids. Altogether, these results suggest a paradigm in which 

miR-33a and miR-33b act in concert with their host genes, 
Srebp1 and Srebp2, to increase intracellular cholesterol and 

fatty acid levels by balancing transcriptional induction and 

post-transcriptional repression of lipid metabolism genes.

(3)
 Finally, insulin receptor substrate 2 (Irs2), an 
adaptor protein that controls insulin signaling in the 

liver, has also been shown to be a miR-33 target, thereby 
affecting the signaling of a complex downstream network 
of proteins, including protein kinase B (also known as 
Akt) phosphorylation and forkhead box O1 cytoplasmic 
localization.(49) Collectively, these data indicate that both 
isoforms of miR-33 participate in the regulation of relevant 
pathways that impact 3 of the primary risk factors of 
metabolic syndrome, namely insulin resistance, low HDL, 
and high very-low-density lipoprotein, and suggest that 

anti–miR-33 therapies may be an an attractive approach for 
treating metabolic diseases.(3,32,51)
 Additional miRNAs (miR-106, miR-758, miR-26, 
miR- 370, miR-378/378*, let-7, miR-27, miR34a, and miR- 
335) have been described to participate in the regulation 
of lipid metabolism. Among them, miR-758, miR-26, and 

miR-106b have been shown to regulate cellular cholesterol 
efflux by targeting ABCA1 in macrophages, hepatocytes, 
and neuronal cell lines, therefore indicating that the post-

transcriptional regulation of ABCA1 expression is mediated 
by multiple miRNAs.(52-54) miR-370 has been shown to 
reduce fatty acid β-oxidation via its targeting activity toward 
Cpt1a.(55) In addition, miR-370 appears to participate in 
the regulation of miR-122 by increasing the expression 
of lipogenic genes, including Srebp1 and diacylglycerol 

acyltransferase (Dgat) 2.(55)
 HDL research is rapidly evolving. The decades old 
therapeutic endeavor of raising HDL-cholesterol to confer 
cardioprotection has shifted focus toward increasing HDL 
flux and functionality. The recently discovered, prevailing 
effects of miRNAs on HDL homeostasis have opened new 
avenues to achieve this.(33)

In addition to hormones, miRNAs have emerged as critical 
regulators of glucose metabolism by regulating insulin 

production and secretion, as well as insulin sensitivity. 

The global impact of miRNAs in glucose production and 

pancreatic β-cell functions was defined with the generation 
of pancreas-specific dicer knock-out mice.(56)
 Dicer-deficient β-cells show a significant decrease in 
insulin synthesis and secretion, which is associated with 

the upregulation of basic helix-loop-helix family member 
e22 (Bhlhe22) and Sox6, 2 transcriptional repressors of 
the insulin gene. Interestingly, 4 miRNAs, including miR-
24, miR-26, miR-182, and miR-148, regulate Bhlhe22 and 

Sox6 expression at the post-transcriptional level and are 
significantly down-regulated in dicer-deficient pancreatic 
β-cells.(57) miR-375 is one of the most abundant miRNAs 
in the pancreas and regulates insulin secretion independently 

of changes in plasma glucose levels.(58) Overexpression 
of miR-375 suppressed glucose-induced insulin secretion, 
and conversely, inhibition of endogenous miR-375 
function enhanced insulin secretion suggesting that miR-

375 is a negative regulator of β-cell exocytosis.(32) miR-
375 also regulates the expression of a cluster of genes 
controlling cellular growth and proliferation, including 

caveolin-1 (Cav1), inhibitor of DNA binding 3 (Id3), Ras-

dexometasone-induced-1 (Rasd1), and the human antigen 

D/embryonic lethal abnormal vision-like 4 (HuD/Elavl4).

(59)
 In addition to miR-375, other miRNAs have been 
shown to regulate insulin release, including miR-124a, 
miR-9, miR- 96a, and miR-33.(60-63) miR-124a regulates 
insulin secretion by controlling the expression of Ras 
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Figure 2. MiRNAs involved in glucose homeostasis. (32) (Adapted with permission from American Heart Association).

associated protein (Rab) 27a which is involved together 
with its effector, granuphilin/synaptotagmin-like protein 
4-a (Slp4), in the exocytosis of insulin-containing secretory 
granules in pancreatic β-cells.(60) miR-9 is mandatory for 
maintaining appropriate granuphilin levels and optimal 

secretory capacity in β-cells. Onecut-2 (OC2) (Figure 2), 
the granuphilin repressor, is a direct target of miR-9.(61)
Likewise, miR-96 increases granuphilin, but independently 
of OC2. Additionally, miR-96 decreases Noc2, a Rab 
effector and positive regulator of insulin secretion.(60) 

Rabphilins (Rab proteins) represent a family of small 

guanosine triphosphate (GTP)-binding proteins that 

facilitate exocytosis. 
 miR-34a and miR-146a are elevated in pancreatic 
islets from diabetic obese mice and significantly affect the 
survival of β-cells and insulin exocytosis. Activation of p53 
upregulated miR-34a. The latter was proposed to mediate 
β-cell apoptosis and to impair nutrient-induced insulin 
secretion.(64) Inhibition of miR-34a and miR-146 could 
partially rescue the apoptotic response but failed to restore 

normal insulin secretion. 

 Changes in cellular cholesterol content affect insulin 

secretion. In this regard, the ABCA1 transporter plays an 
important role in regulating cholesterol homeostasis in 

pancreatic β-cells. Indeed, β-cell–specific deletion or loss 
of function mutations in ABCA1 result in impaired glucose 

tolerance, insulin secretion, and β-cell dysfunction.(65) 
Altogether, these results suggest that miR-33 also plays an 
important role in regulating insulin secretion and glucose 

homeostasis.(3)
 Other miRNAs regulate insulin sensitivity in the liver 

and peripheral tissues by controlling the expression of many 
components of the insulin signaling pathway, including 

insulin-like growth factor receptor 1, insulin receptor, 
Irs2, phosphatidylinositol 3-kinase regulatory subunit-α 
(PIK3IP1), Akt2, tuberous sclerosis protein 1, caveolin-1, 
and rapamycin-insensitive companion of mTOR (RICTOR). 
Two independent groups have recently shown that the 

Let-7 family of miRNAs regulates glucose homeostasis 
and insulin sensitivity.(66,67) In addition to Let-7, other 
miRNAs, including miR-33, miR-103, miR-107, and miR-
29a/b, also regulate the insulin signaling pathway.(49,68-
70)

 Overexpression of miR-107 results in an increase in 
fasting glucose and insulin levels.(70) Conversely, silencing 

of miR-103/miR-107 enhances insulin sensitivity in the liver 
and in the adipose tissue. Mechanistically, miR-103/107 
inhibition increases the expression of caveolin-1, a scaffold 
protein required for caveolae formation, and enhances 

insulin signaling by increasing insulin receptor stability in 

the cell membrane.(70)

  In summary, multiple miRNAs are able to control 
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Figure 3. Pathways by which activated miR-33 may contribute to regulation of cholesterol, fatty acid and glucose metabolism, cell 

proliferation, and transcription.(71) (Adapted with permission from American Heart Association).

glucose metabolism by regulating a network of genes in the 
liver and peripheral tissues. The contribution of specific 
miRNAs will be determined by the tissue and metabolic 

state.

 The therapeutic manipulation of miRNA-regulated 

pathways is emerging as a promising avenue for the treatment 

of dyslipidemia and other metabolic disorders. Given the 

role of miR-33a/b in repressing cholesterol efflux, fatty acid 
oxidation, and insulin signaling (Figure 3), pharmacological 
targeting of miR-33a/b may be a promising strategy to treat 
metabolic syndrome.(71) Major goals in the pursuit of novel 
therapies to target this residual risk have focused on raising 
levels of HDL to exploit its atheroprotective functions, 
lowering TGs, and improving insulin signaling. Whether 

miR-33 could be such a panacea awaits future studies.

phenotype state. Deregulation of phenotype switching is 
associated with vascular disorders such as atherosclerosis, 

restenosis after angioplasty, and pulmonary hypertension.

(73)
 Vascular injury results in the activation of several 

mediators of VSMC phenotype, including growth factors and 

transcription factors, which act together to phenotypically 

alter VSMCs from a contractile to a synthetic state. The 

result is vessel remodeling mediated through multiple 

mechanisms including VSMCs proliferation and migration 

accompanied by inflammation and extracellular matrix 
deposition.(74,75)
 Recently, miRNAs have been implicated in the 

regulation of VSMC phenotype through the modulation of 

transcription factors and other signaling molecules involved 

in proliferation and migration.(76-81) miR-143 and miR-145 
are bicistronic miRNAs clustered on human chromosome 

5. These miRNAs are enriched in VSMCs and implicated 
in the maintenance of a contractile VSMC phenotype.

(76-78,82,83) Earlier studies demonstrated a reduction in 
the expression of miR-143 and miR-145 following acute 
vascular injury and the observation that inhibition of 

neointimal formation and promotion of contractile gene 

expression could be achieved by elevating the expression of 
these miRNAs.(76,77,82) Furthermore, miR-143 and miR-
145 knockout mice are hypotensive and display abnormally 

miRNAs in Vascular Smooth Muscle Cells 

(VSMCs)

Recently, the function of miRNAs in the setting of vascular 

disease has gained increasing interest at both the basic 

science and translational levels.(72) The phenotype of 
VSMCs is dynamically regulated in response to various 

stimuli. In a cellular process known as phenotype switching, 
VSMCs alternate between a contractile and synthetic 
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thin vessel walls and low actin stress fibre expression, 
indicating the importance of these miRNAs in fundamental 

smooth muscle cell (SMC) maintenance in vivo.(78,82-84)
 Hergenreider, et al.(85) presented a novel mechanism 
of VSMCs maintenance by miR-143 and miR-145. This 
was via miRNA-mediated cell–cell communication 

between VSMCs and the endothelium. Kruppel-like factor 
2 (Klf2), a transcription factor induced in ECs in response to 

shear stress, was shown to directly bind to a putative Klf2-

binding site in the miR-143/miR-145 promoter, activating 
transcription in human umbilical vein ECs (HUVECs).

 Serum response factor (SRF), along with its cofactors 
myocardin and myocardin-related transcription factors 

(MRTFs), is a major regulator of VSMC biology through 

binding to CArG box elements in the promoter regions of 
contractile genes and promoting gene expression.(86) SRF 
myocardin association has previously been shown to activate 

miR-143/miR-145 transcription by binding to the CArG 
box located approximately 5 kb upstream of the miR-143/
miR-145 cluster.(76,78) More recently, signaling molecules 
such as transforming growth factor-b (TGFb) and bone 

morphogenetic protein 4 (BMP4) were shown in pulmonary 
artery smooth muscle cells (PASMCs) to promote the 

expression of miR-143/miR-145 by independent signaling 
mechanisms involving alteration of expression of SRF 
cofactors myocardin and MRTFs.(87)

 miR-143 was recently shown to be an important factor 
in the signaling pathway which promotes the expression of 
phosphatase and tensin homolog (PTEN).(88) Loss of PTEN 
expression in SMCs in vivo has previously been associated 
with an increase in inflammation and proliferation, resulting 
in a larger neointimal formation in response to vascular 

injury.(89) Taken together, these studies reveal that several 
of the major regulators of VSMC phenotype, that is, TGFb, 

BMP4 and SRF-myocardin/MRTF, all regulate contractile 

gene expression through diverse signaling pathways which 
are dependent, at least in part, on the promotion of miR-143/
miR-145 expression.
 The role of miR-21 in the vasculature appears to be 
dependent on cell type with several studies reporting miR-21 
to have prosynthetic and procontractile qualities depending 

on the context of the expression.(90-93) Recently, miR-21 
expression was reported to be upregulated approximately 
8-fold in human arteries presenting with arteriosclerosis.

(91) Platelet-derived growth factor (PDGF)-induced human 
artery SMC proliferation and migration was shown to be 

significantly attenuated by miR-21 inhibition.
 It is clear from these studies that miR-21 is important 
in the maintenance of VSMC phenotype both in health 

and disease. However, the exact role of miR-21 appears 
to depend on the microenvironment and cells responsible 

Many miRNAs have been described to play a key role in 
the cardiovascular system, controlling virtually all cellular 

processes.(95,96) The regulated response of ECs to signals 
in their environment is not only critical for the de novo 

formation of primordial vascular networks during early 
development (i.e., vasculogenesis), but is also required for 

the subsequent growth and remodeling of new blood vessels 

from preexisting ones (i.e., angiogenesis). VEGFs and their 
EC-specific receptors play a crucial role in nearly all aspects 
of blood vessel growth.(97)
 Angiogenesis is a very tightly controlled process, in 

which ECs need to migrate and proliferate toward ischemic 

tissue. A long-known factor that provides a gradient for ECs 
to migrate toward is VEGF (98). Binding of VEGF to VEGF 
receptor 1 (fms-related tyrosine kinase 1 (FLT1)) does not 
result in proangiogenic signaling, which raised the concept 

that FLT1 acts as a trap or decoy for VEGF. Thus, FLT1 can 
negatively regulate VEGF signaling, and this is of crucial 
importance, for instance, to keep the cornea avascular(99), 
but also aids in controlling the fine balance between pro- 
and anti-angiogenic factors.(100)
 More recently, specific miRNAs with a role in 
angiogenesis have been identified, including miR-126, 
members of the miR-17-miR-92 cluster(101,102), and 
members of the miR-23-miR-27-miR-24 cluster(103-105). 
The current study by the Srivastava laboratory identifies 
that miR-10 is capable of modulating FLT1 levels, thereby 
affecting VEGF signaling and angiogenesis. Nitric oxide 
(NO) generated and released by endothelial NO synthase 

(eNOS) exerts multiple beneficial functions in vessels 
and plays a critical role in maintaining cardiovascular 

homeostasis.(106) Dysregulation of NO synthesis 
attributable to the abnormal activity or eNOS expression or 
both has been considered to be a major contributor to the 

pathogenesis of vascular diseases, such as hypertension and 

atherosclerosis.(107,108)
 Because miRNAs inhibit gene expression through 
binding to the 3′ untranslated regions of their target mRNAs,  
miRNAs may be the important post-transcriptional 

modulators of eNOS expression. eNOS is a direct target of 
miR-155. Overexpression of miR-155 decreased, whereas 
inhibition of miR-155 increased. Inflammatory cytokines 

for the disease pathology. Targeting the diverse pathways 

involved in the modulation of VSMC phenotype is therefore 

a possibility to treat a number of diseases including 

atherosclerosis, vein graft failure and in-stent restenosis.

(94)

miRNAs in Vascular ECs
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including tumor necrosis factor (TNF)α increased miR-155 
expression. Inhibition of miR-155 reversed TNFα-induced 
downregulation of eNOS expression and impairment of 
endothelium-dependent vasorelaxation. Thus, Inhibition 
of miR-155 may be a new therapeutic approach to improve 
endothelial dysfunction during the development of 

cardiovascular diseases.(109)
 Inflammation plays an essential role in vascular 
pathologies, including those associated with sepsis and 

atherosclerosis. In ECs, miR-18 1b plays a vital role 
in controlling inflammation by targeting importinα3, a 
regulator of NFκB nuclear import. These findings provide 
compelling evidence that modulation of miRNAs may be 

a useful therapeutic approach for inflammatory vascular 
diseases.(110)
 Grundmann, et al. demonstrate that miR-100 has an 
anti-angiogenic function and represses mTOR signaling 

in endothelial and VSMCs. Inhibition of miR-100 could 
be a novel approach for the modulation of blood vessel 

growth and other mTOR-dependent processes.(111) The 
adaptive growth of blood vessels is an important protective 

mechanism in patients with chronic vascular occlusive 

disease. The progressive occlusion of a major artery results 

in hemodynamic changes and downstream tissue ischemia, 

which induce both the proliferation of small preexisting 
collateral arteries and capillary sprouting in ischemic tissue.

(112)

Figure 4. MiRNAs involved in EC function.(32) (Adapted with permission from American Heart Association).

Atherosclerosis is a multifactorial disease driven, in 

part, by chronic inflammation in response to cholesterol 
accumulation in the arterial wall.(74) The first major event 
in the progression of the early atheroma is the loss of 

endothelial integrity. Endothelium dysfunction facilitates 

the subendothelial accumulation of cholesterol-bearing 

lipoproteins, compromises vasodilation, and is both 

proinflammatory and prothrombotic.(113,114) Circulating 
endothelial progenitor cells have been demonstrated to 

play an integral role in endothelial integrity due to their 

ability to reinforce the endothelium with new healthy ECs 

to replace damaged or apoptotic cells.(115,116) In a recent 
study, individuals with atherosclerosis, as defined by CAD, 
showed significantly higher expression of miR-221 and 
miR-222 in endothelial progenitor cells (EPC) compared 
with non-CAD individuals.(117)
 Statins, inhibitors of 3-hydroxy-3-methylglutaryl-
coenzyme A reductase, have previously been shown to 

increase circulating EPC numbers in individuals with CAD.
(118,119) Consistent with these observations, atorvastatin 
was shown to decrease miR-221 and miR-222 expression in 
EPCs (117). The implications of this study are of significant 
merit as they illuminate miRNAs as possible mediators of 

statins’ observed pleiotropic beneficial effects. Collectively, 

miRNAs in Atherosclerosis
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these studies suggest that miRNAs may have numerous roles 

in angiogenesis and endothelium integrity, both of which 

significantly contribute to the development and maturation 
of the atherosclerotic plaque.(120)
 Atherosclerosis is a condition caused by lipid-induced 

inflammation of the vessel wall orchestrated by a complex 
interplay of various cell types, such as ECs, SMCs and 

macrophages. Downregulation of miR-145, which controls 
differentiation of SMCs, promotes lesion formation, 

whereas the EC-specific miR-126 signals the need for 
endothelial repair through its transfer from apoptotic ECs in 

microvesicles. Elevated miR-155 levels are characteristic of 
proinflammatory macrophages and atherosclerotic lesions.
(121) Patients with CAD have reduced levels of miR-126, 
miR-145, and miR-155 in the circulation.(122) Moreover, 
decreased levels of miR-126 in patients with diabetes 
mellitus or insulin resistance have been reported.(30) These 
studies indicate that circulating levels of miR-126, miR-
145, and miR-155 may indicate the presence or absence 
of atherosclerosis or endothelial dysfunction and thus may 

play a role as novel biomarkers.(123)
 A therapeutic strategy based on the functional role 

of miR-126, miR-145 and miR-155 in atherosclerosis 
would need to increase the levels of miR-126 and miR-
145, and to inhibit miR-155 in macrophages at least in 
advanced stages of atherosclerosis. miRNAs mimics need 

to be packaged in liposomes or nanoparticles for therapeutic 
delivery.(124) Alternatively, the endogenous packaging of 
miR-126 in apoptotic bodies and of miR-143/miR-145 in 
shear stress-induced microvesicles may provide a template 

for bioengineered vesicles for the therapeutic delivery 

of miRNAs.(6,85) Accordingly, treatment with Klf2-

induced endothelial microvesicles containing miR-143/145 
effectively reduced atherosclerosis.(85)

signaling pathways, and crucial participation of several 

miRNAs in this context. Mechanistically, miRNA induction 
or repression after myocardial infarction triggers downstream 

events in a cell-type–specific manner, and interference with 
endogenous miRNA expression might regulate overall 
cardiac function.(5) In addition, several studies indicated a 
crucial role for miRNA – dependent regulation of cardiac 

angiogenesis, fibrosis, and cardiomyocyte hypertrophy 
upon MI.(101,105,128,129) These observations clearly 
link cardiac ischemic disease to altered miR expression. 
However, miRNA deregulation also offers a new therapeutic 

entry point to counteract MI-induced cardiac dysfunction.
(5)
 Cardiac injury as it occurs after acute myocardial 

infarction increases the circulating levels of several 

myocardial-derived miRNAs (eg, miR-1, miR-133, miR-
499, miR-208), whereas patients with CAD or diabetes 
showed reduced levels of endothelial-enriched miRNAs, 

such as miR-126.(123) Several groups have studied the 
hypothesis that heart-specific miRNAs leak into the 
circulation during an acute myocardial infarction (AMI) 
and can be used to detect and monitor myocardial injury. 

Four cardiac miRNAs (miR-208a, miR-499, miR-1, and 
miR-133) are found to be consistently elevated in plasma of 
AMI patients within hours after the onset of infarction.(130-
138) Of these 4 miRNAs, miR-208a, which is encoded by 
an intron of the aMHC gene, is to the best of our knowledge 
the only heart-specific miRNA.(139) The other 3 miRNAs 
(miR-499, miR-1, and miR-133), besides being highly 
expressed in the heart, are also expressed in skeletal muscle.
(140,141) Another miRNA downregulated after murine 
ischemia–reperfusion injury and in human myocardial 

infarction is miR-494. Likewise, myocardial infarct size 
was significantly reduced in transgenic hearts on ischemia–
reperfusion injury when compared with wild-type hearts. 

Thus miR-494 might constitute an interesting target for the 
treatment of ischemic heart disease.(142)
 Overexpression of miR-320 enhanced cardiomyocyte 
death and apoptosis, whereas its knockdown was 
cytoprotective.(143) In line, transgenic mice with cardiac-
specific overexpression of miR-320 showed an increased 
extent of apoptosis and infarction size on ischemia–
reperfusion injury, whereas in vivo treatment with an 

antagomir against miR-320 reduced infarct size.(143) The 
miR-21 is also highly expressed in cardiac fibroblasts, 
where it improves cell survival, leading to enhanced 

– cardiac fibrosis. During chronic cardiac remodeling, 
inhibition of miR-21 via specific antagomirs attenuated 
fibrosis development and improved cardiac function.(23)
 Treatment of MI and its consequences is an enormous 
task and needs careful consideration. Besides the use of 

miRNAs in Myocardial Infarction

Acute myocardial damage attributable to ischemia is a result 

of cellular hypoxia and the subsequent cascade of cellular 
events, such as an increase in reactive oxygen species 
during early reperfusion,  EC activation, and production of 

proinflammatory chemokines and cytokines in the damaged 
area, ultimately priming and recruiting neutrophils and 

other inflammatory cells to the infarcted region.(125,126) 
The cascade of maladaptive signaling triggers further 

release of oxidants and proteolytic enzymes(127), leading to 
infarct size extension, cardiomyocyte death, and endothelial 
capillary impairment.

 Myocardial infarction (MI) is characterized by 
strongly altered gene expression, deregulation of underlying 
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standard pharmacological approaches, miRNA-based 

therapies offer new challenging avenues. The identification 
of MI-associated miRNAs is of great interest to develop 
miRNA therapeutics, and herein discussed miRNAs offer 

certain therapeutic value.

In summary, miRNA profiling and functional testing will 
certainly play a significant role in future cardiovascular 
science discovery expedited by the rapid development of 
novel strategies and tools for working with miRNAs. The 
extensive impact of miRNA – mediated gene regulation and 
the relative ease of in-vivo applicable modifications highlight 
the enormous potential of miRNA-based therapeutics in 

cardiometabolic diseases.
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