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Abstract

Abstrak

ACKGROUND: The potential use of stem
B cell=based therapies for repair and regeneration
of various tissues and organs offers a paradigm
shift that may provide alternative therapeutic solutions
for a number of diseases. Despite these advances, the

availability of stem cells remains a challenge for both
scientists and clinicians in pursuing regenerative medicine.

CONTENT: Subcutancous human adipose tissue is an
abundant and accessible cell source for applications in
tissue engineering and regenerative medicine. Routinely,
the adipose tissue is digested with collagenase or related
Iytic enzymes to release a heterogencous population for
stromal vascular fraction (SVF) cells. The SVF cells can
be used directly or can be cultured in plastic ware for
selection and expansion of an adherent population known
as adipose-derived stromal/stem cells (ASCs). Their
potential in the ability to differentiate into adipogenic,
osteogenic, chondrogenic and other mesenchymal
lineages, as well in their other clinically useful properties,
includes stimulation of angiogenesis and suppression of
inflammation.

ATAR BELAKANG: Potensi penggunaan

I terapi berbasis stem cell untuk memperbaiki
dan regenerasi berbagai jaringan dan organ
memberikan paradigma baru dalam penyediaan alternatif
terapi berbagai jenis penyakit. Akan tetapi di balik semua
itu, ketersediaan stem cell tetap menjadi tantangan bagi
ilmuwan maupun klinisi di dalam regenerative medicine.

ISI: Jaringan adiposa subkutan meruapakn sumber sel yang
berlimpah untuk diaplikasikan dalam tissue engineering
dan regenerative medicine. Jaringan adipose ditambahkan
collagenase atau Iytic enzymes untuk melepaskan populasi
stromal vascular fraction (SVF) cells. SVF cells dapat
digunakan langsung atau dapat dikultur untuk selanjutnya
dilakukan seleksi dan ekspansi dari adherent population
yang diketahui sebagai adipose-derived stromal/stem
cells (ASCs). ASC memiliki potensi untuk berdiferensiasi
menjadi lineage adipogenic, osteogenic, chondrogenic
dan lineage mesenchymal lainnya, serta penggunaannya
secara klinis, meliputi stimulasi angiogenesis dan menekan
inflamasi.
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SUMMARY: Adipose tissue is now recognized as an
accessible, abundant and reliable site for the isolation
of adult stem cells suitable for the application of tissue
engineering and regenerative medicine applications. The
past decade has witnessed an explosion of preclinical data
relating to the isolation, characterization, cryopreservation,
differentiation, and transplantation of freshly isolated
stromal vascular fraction cells and adherent, culture-
expanded, adipose-derived stromal/stem cells in vitro and
in animal models.
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RINGKASAN: Jaringan adiposa dikenal sebagai
jaringan yang mudah diakses, berlimpah dan terpercaya
untuk isolasi adult stem cell yang cocok untuk aplikasi
tissue engineering dan regenerative medicine. Studi
terdahulu telah menunjukkan data preklinis terkait dengan
isolasi, karakterisasi, cryopreservation, diferensiasi dan
transplantasi freshly isolated stromal vascular fraction
cells dan adherent, culture-expanded, adipose-derived
stromal/stem cells baik in vitro maupun pada animal
models.
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Introduction

The therapeutic potential of multilineage stem cells
is enormous for their possible applications in tissue
engineering and gene therapy (1). Essentially, there are
only two types of stem cells: the embryonic stem cell (ES
cell) and adult stem cell. The ES cell, as its name implies,
is derived from embryo, or more specifically, from the
blastocyst’s inner cell mass. In contrast, the adult stem
cell is derived from postnatal tissues and can include fetal-
derived stem cells and umbilical cord blood stem cells. Over
the last 10 years, giant strides have been made worldwide
in the field of adult stem cell. In 2002, researchers at
UCLA published a manuscript in Molecular Biology of
the Cell describing a novel adult stem cell population
isolated from adipose tissue — the adipose-derived stem
cell (ASC). Since that time, the ASC has become to be one
of the most popular adult stem cell populations currently
being used in the stem cell field (2).

With the increased incidence of obesity worldwide,
subcutaneous adipose tissue is abundant and readily
accessible. Approximately 400,000 liposuction surgeries
are performed in the United States each year. One
procedure of the surgery may yield from 100 mL to >3 L
of lipoaspirate tissue; this material is routinely discarded
(3.4).

Similar to other rapidly developing fields, a variety of
names have been used to refer to the plastic adherent cell
populations isolated from collagenase digests of adipose

tissue: adipose-derived stem/stromal cells (ASCs),
adipose-derived adult stem (ADAS) cells, adipose-
derived adult stromal cells, adipose-derived stromal
cells (ADSCs), adipose stromal cells (ASCs), adipose
mesenchymal stem cells (AdMSCs), lipoblast, pericyte,
preadipocyte, and processed lipoaspirate (PLA) cells. To
prevent confusion that may arise from the several different
names, the International Fat Applied Technology Society
has reached to a globally-agreed consensus to adopt the
term “adipose-derived stem cells (ASCs)” to refer to the
isolated, plastic=adherent, multipotent cell population (5).
The possible feature of ASC being pluripotent cells
may obviously lead to a turning point in the stem cell
field. Today, the strongly proposed uses of ASCs in tissue
repair/regeneration are quite impressive. Hot areas of
research in this field include ischemia revascularization,
cardiovascular tissue regeneration, bone/cartilage repair,
and urinary tract reconstruction (2). Liver injury repair
may also be possible by transplantation of rat ASCs,
decreasing key liver enzyme levels and increasing serum
albumin (6). Even diabetes may be a target for ASC
therapy with murine ASCs that can reduce hyperglycemia
in diabetic mice (7). Most recently, researchers have begun
to explore the potential uses of ‘reprogrammed” ASCs as
1PS (induced pluripotent stem) cells and suggested that the
ASC may be easier to reprogram than the fibroblast (8).
There is a growing body of experimental evidence
from both in vitro and in vivo studies demonstrating the
multipotentiality of ASCs from adipose tissue isolated
from human and other species. These include the
adipocyte, the chondrocyte, hematopoietic supporting,
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hepatocyte, neuronal-like, osteoblast, pancreatic, and
skeletal myocyte pathways (5,9-30). There is no other
human tissue as expendable as the adipose tissue, making
it relatively easy to isolate adequate number of ASCs for
possible human therapies. With this fact, together with the
early clinical uses of ASCs with no adverse effects being
reported, it seems only a matter of time before more and
more clinical applications of ASCs are reported (2).

Adipose Tissue, Its Cellular
Components

Historically, adipose tissue (AT) has been thought to
play a passive metabolic role, acting solely as an energy
storage reservoir (31). This view has changed, and now
adipose tissue is considered an important endocrine organ
that provides plastic properties (32,33). Recently, adipose
tissue has been also reported as an important reservoir of
stem cells with possible practical uses in medicine (34).

Three functionally different types of adipose tissues
are classically described in mammals, namely Brown
Adipose Tissue (BAT), White Adipose Tissue (WAT) and
Bone Marrow Adipose Tissue (BMAT) (35-37). Brown
and white adipocytes display both lipolytic and lipogenic
activities, but the main role of white adipocytes is to
store and mobilize energy as triglycerides, while brown
adipocytes are specialized in energy dissipation as heat.
Bone marrow adipocytes can contribute to haematopoiesis
and osteoblastogenesis by acting as metabolic stores but
also via their paracrine activities (38).

Excessive AT development is thought to be the result
of both adipocyte hypertrophy and apparent hyperplasia
(39-43). As adipocytes are terminally differentiated
cells, and as such are considered incapable of division
(44,45), the apparent increase in adipocyte number is
thought to originate from adipogenesis (the proliferation/
differentiation of adipocyte progenitor cells named
preadipocytes). Thus, the expansion of adipose mass
requires the presence of adipocyte precursor cells located
in the stroma vascular fraction of AT and the presence of
which could also contribute to AT normal cell turnover
during adulthood as recently suggested (46). The search
for the origin of adipocyte progenitors revealed that
AT hosts a population of multipotent progenitors called
adipose-derived stromal cells (ASCs) (5,7). These
progenitors can give rise to osteoblasts, chondrocytes and
adipocytes (5). They also participate in and/or support

61

Print ISSN: 2085-3297, Online ISSN: 2355-9179

angiogenesis or vascular repair in ischemic limbs (47-49)
and have immuno-modulatory properties both in vitro and
in vivo (50-51).

AT is composed mainly of fat cells organized into
lobules (52). It is a highly complex tissue consisting of
mature adipocytes, which constitutes more than 90% of the
tissue volume, and a SVF, which includes preadipocytes,
fibroblasts, vascular smooth muscle cells, endothelial
cells, resident monocytes/macrophages, lymphocytes, and
ASCs (53,54). ASCs harvested from superficial abdominal
regions are significantly more resistant to apoptosis
than ASC harvested from the upper arm, medial thigh,
trochanteric part, and superficial deep abdominal depots
(55). The density of stem cell reserves varies within adipose
tissue and is a function of location, type and species (e.g.
human vs murine). In white adipose tissue, for example,
ASC yields are greater in subcutaneous depots than in
visceral fat, with the highest concentrations being in arm
adipose tissue depots and the greatest plasticity in ASCs
isolated from inguinal adipose tissue depots (56).

Isolated from the SVF of AT, ASCs bear a strong
resemblance to bone marrow stem cells (BMSC) as
demonstrated by their expression of common cell surface
markers, their similar gene expression profiles, and their
similar differentiation potentials (5,57,58). Unlike BMSC,
however, ASC can be obtained in large quantities at low
risks (59). In addition to being more abundant and easily
accessible, the adipose tissue yields far more stem cells
than bone marrow on a per gram basis (5,000 vs 100-
1,000) (60). Therefore, it is reasonable to expect that ASC
will become the preferred choice of adult stem cells for
future clinical applications.

ASCs and Stromal Vascular Fraction

Subcutaneous fat is an abundant and accessible source of
both uncultured/heterogeneous SVF cells and cultured/
relatively homogeneous ASCs (61). The molecular
phenotype of ASC has only recently been clarified (62),
following many years of referring to any cultured SVF
cells as ASC. Freshly isolated SVF contains a mixture
of cells, which not only includes ASC but also contains
endothelial cells, smooth muscle cells, pericytes,
fibroblasts, and circulating cell types such as leukocytes,
hematopoietic stem cells, or endothelial progenitor cells
(63,64). Through collagenase digestion, a heterogencous
cell mixture containing all cell types, except adipocytes,
can be extracted from adipose tissue (or liposuction
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aspirates) as a cell pellet. Adipocytes are disrupted into
oil during the process and discarded as floating tissue and
oil after centrifugation. The sedimented cell fraction is
called the stromal vascular fraction (SVF) and is basically
stromal cells along with vascular endothelial and mural
cells (52). Study identified freshly isolated ASCs as CD31"
CD34+CD45-CD90*CD105-CD146-cells, but they become
CD105" when plated (65). Nucleate cells contained in the
SVF obtained from lipoaspirates are composed of 37%
leukocytes (CD45*), 35% ASCs (CD31CD34*CD45Y),
15% endothelial cells (CD31*CD34*CD45) and other cells
(CD31-CD34-CD45-), although the percentage of blood-
derived cells strongly depends on individual hemorrhage
volume (66). ASCs can be extracted from both the floating
fatty portion and fluid portion of liposuction aspirates;
however, the fluid portion contains much fewer adipose-
derived cells and may more blood-derived cells. ASCs
can be used clinically without cell expansion if harvested
from a large volume of lipoaspirates because a sufficient
number of cells can be obtained; 0.1-1 billion nucleate
cells can be obtained from 200 mL of aspirated fat tissue
and at least 10% of these are ASCs. The use of freshly
isolated cells likely leads to higher safety and efficacy in
treatments compared with cells expanded by culture (52).

The fact that stem cells yields are greater from AT
than from other stem cell reservoirs is another significant
factor in their suitability for use in regenerative medicine.
Routinely, 1x107 adipose stromal/stem cells have been
isolated from 300 mL of lipoaspirate, with greater than
95% purity (67). In other words, the average frequency
of ASC in processed lipoaspirate is 2% of nucleated cells,
and the yield of ASCs is approximately 5.000 fibroblast
colony-forming units (CFU-F) per gram of adipose tissue,
compared with estimates of approximately 100-1,000
CFU-F per milliliter of bone marrow (60). Several groups
have demonstrated that mesenchymal cells within the
SVF of subcutaneous adipose tissue display multilineage
developmental plasticity. These cells have alternatively
been referred to as processed lipoaspirate cells (PLA),
adipose-derived stem cells, and adipose-derived
mesenchymal progenitor cells. It is also likely that cells
previously considered preadipocytes are essentially the
same population (9,68).

Mesenchymal stem cells seem to be anideal population
of stem cells for practical regenerative medicine, because
they are not subjected to the same restrictions. In particular,
large number of ASCs can be easily harvested from adipose
tissue. Furthermore, recent basic research and preclinical
studies have revealed that the use of ASCs in regenerative
medicine is not limited to mesodermal tissue but extends
to both ectodermal and endodermal tissues and organs
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although ASCs originate from mesodermal lineages (69).
The proliferation capacity of ASCs seems to be greater
than that of bone marrow-derived mesenchymal stem
cells. Previous reports have shown that the doubling times
of ASC during the logarithmic phase of growth range
from 40 to 120 hours (14,70,71) are influenced by donor
age, type (white or brown adipose tissue), the harvesting
procedure, culture conditions, plating density and media
formulations (63,72). The younger the donor, the greater
the proliferation and cell adhesion of the ASCs, while cells
gradually lose their proliferative capacity with passaging
(71). Based on [-galactosidase activity, senescence in
ASCs is similar to that in bone marrow-derived MSCs
(70).

The proliferation of ASCs can be stimulated by a
single growth factor such as fibroblast growth factor
(FGF)-2, endothelial growth factor (EGF), insulin-like
growth factor (IGF)-1 or TNF-a (72,73). FGF-2, in
particular, is an effective growth-stimulating factor and is
required for the long-term propagation and self-renewal
of ASCs via the extracellular signal-related kinase (ERK)
1/2 signaling pathway (74). The proliferation of ASCs
can also be stimulated by platelet-derived growth factor
(PDGF) via Jun amino-terminal kinase (JNK) activation
(75) and by oncostatin M via activation of the microtubule-
associated protein kinase/ERK and the JAK3/STAT1
pathways (76). ASCs proliferation is also reported to be
enhanced by multiple growth factors, which can include
any of the single factors mentioned above supplemented
by thrombin-activated platelet-rich plasma (77), human
platelet lysate (78) and human thrombin (79).

As far as the differentiation into cells of the
mesodermal lineages and regeneration of mesodermal
tissues are concerned, ASCs can differentiate into
adipogenic (80-82), osteogenic (83), chondrogenic (83-
85), myogenic (30), cardiomyogenic (86-87), angiogenic
(48,88), tenogenic (89), and periodontogenic lineages (90),
and tissue regeneration studies with suitable scaffolds and
growth factors in appropriate external environment have
been carried out (91,92). It has been shown that ASCs
can differentiate into endoderm lineage cells. Several
reports have shown that ASCs have the potential to
differentiate into hepatocytes as indicated by the presence
of hepatocyte growth factor (HGF) and FGF-1 (93,94). In
theory, ASCs could be used to reduce liver inflammation
and treat liver fibrosis by differentiating directly into
hepatocytes or by secreting factors such as angiogenic,
anti-apoptotic, anti-inflammatory, and anti-fibrotic
factors. In addition to hepatic differentiation, the exposure
of ASCs to nicotinamide, activin-A, exendin-4, HGF,
and pentagastrin resuted in the production of pancreatic-
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Figure 1.The Process of ASC Clinical Usage (adapted with permission from John Wiley and Sons 2012)

like ASCs capable of insulin, glucagon and somatostatin
secretion (28.95). The recent International Federation of
Adipose Therapeutics and Science meeting in Dallas,
Texas (October 22-24, 2010) demonstrated some of the
many novel uses of lipoaspirate, SVF and ASC that are
currently being investigated to solve clinical problems
(96).

Cytokine Profile and
Immunogenicity of ASCs

Adipose tissue serves as source of adipokines and
cytokines with both local and systemic actions in health
and disease (97). It has been shown that the beneficial
impact on different organ/tissues within the human body
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may be due to soluble factors produced by ASCs rather
than their differentiation capability toward different
mature lineages (98). Analysis of the soluble factors
released from human ASCs have revealed that cultured
ASCs, at relatively early passages, secrete hepatocyte
growth factor (HGF), vascular endothelial growth factor
(VEGF), transforming growth factor-f} (TGF-f3), insulin-
like growth factor (IGF)-1, basic fibroblast growth factor
(bFGF), granulocyte-macrophage colony stimulating
factor, TNF-a, interleukin (IL)-6, IL-7, IL-8 and IL-
11, adiponectin, angiotensin, cathepsin D, pentraxin,
pregnancy zone protein, retinol-binding protein, and
CXCL12 (48,97,99). Thus, it may be that when ASCs are
transplanted into inflammatory or ischemic regions, they
actively secrete these growth factors, thereby significantly
promoting wound healing and tissue repair (69). Thus,
ASCs display cytokine secretory properties similar to
those reported for bone marrow-derived mesenchymal
stem cells (MSCs) (97).
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Multiple independent groups have examined the
surface immunophenotype of ASCs isolated from human
and other species (9,10,65,100-107). The expression
profile changes as a function of time in passage and plastic
adherence (63.106). After 2 or more successive passages
in culture, the ASCs express characteristic adhesion and
receptor molecules, surface enzymes, extracellular matrix
and cytoskeletal proteins, and proteins associated with
the stromal cell phenotype. Despite any differences in the
isolation and culture procedures, the immunophenotype
is relatively consistent between laboratories. Indeed,
the surface immunophenotype of ASCs resembles that
of bone marrow-derived mesenchymal stem or stromal
cells (MSCs) (108) and skeletal muscle-derived cells
(109). Direct comparison between human ASC and MSC
immunophenotypes are > 90% identical (9). Analyses of
the ASC and adipocyte proteome by mass spectrometry
and other approaches have documented the identity of
> 200 proteins in both the undifferentiated and adipose
differentiated cells (110-116). The human ASC proteome
shares features in common to that reported for fibroblasts,
MSCs, and other lineages (111,117,118).

Freshly isolated SVF cells are a heterogeneous cell
population that includes putative ASCs (CD31-, CD347/,
CD45, CD90*, CDI105, and CDI146), endothelial
(progenitor) cells (CD31*, CD34*, CD45, CD90*,
CD105, and CD146%), vascular smooth muscle cells or
pericytes (CD31-, CD 34'/-, CD45", CD90*, CD105", and
CD146%), and hematopoietic cells (CD45+) in uncultured
conditions (119). Additionally, compared with ASCs
from later passages, freshly isolated SVF cells and early
passages ASCs express higher levels of CD117 (c-kit),
human leukocyte antigen-DR (HLA-DR), and stem cell-
associated markers such as CD34, along with lower
levels of stromal cell markers such as CD13, CD29 (p1
integrin), CD44, CD63, CD73, CD90, CD105, and CD116
(63,65,68,103,119-132). While the consequences of the
decrease in CD34 expression in later passage ASCs are not
clear, there is al least one study demonstrating that CD34
expression can be maintained during 20 weeks of culture
(65). As indicated, ASCs share many cell surface markers
with pericytes and bone marrow-MSCs. Except for those
mentioned above, the pericyte markers expressed by ASCs
include smooth muscle (-actin, platelet-derived growth
factor (PDGF) receptor-f§, and neuro-glial proteoglycan
2 (121), while the markers shared by ASCs and MSCs
include CD13, CD29, CD44, CD58 and CD166. Finally,
Puissant et al. (50) have reported on the lack of HLA-
DR expression and the immunosuppressive properties of
human ASCs. Based on such findings, Fang et al published
preliminary data showing that severe steroid-refractory
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acute graft-versus-host disease (GVHD) could be treated
with human ASCs from HLA-mismatched donors (133).

Clinical Translation of ASCs

Adipose tissue is a source of freshly isolated,
heterogeneous stromal vascular fraction cells and culture-
expanded, adherent, and relatively homogeneous adipose
stromal/stem cells. Both population display regenerative
capcity in soft and hard tissue repair, ischemic insults
and autoimmune diseases. While their major mechanism
of action has been attributed to both direct lineage
differentiation and/or paracrine factor release, current
evidence favors a paracrine mechanism. Over 40 clinical
trials using adipose-derived cells conducted in 15 countries
have been registered with the NIH, the majority of which
are Phase I or Phase I/IT safety studies. Explorations into
the regenerative potential of adipose-derived cells occur
throughout the world (134). In Asia and Europe, regulatory
approval has been granted for closed mechanical devices
for adipose tissue processing and SVF cell isolation
using collagenase digestion (135). The avaibility of these
machines in operating rooms has facilitated the point-of-
care delivery of SVF cells for investigators and clinicians
in Asia and Europe. Clinical applications using adipose-
derived cells are underway throughout Asia, Europe and
North and South America. Some of these can be found on
the NIH’s website (136), where 55 studies are listed under
the search term “adipose stem cell’ (as of 22 October 2011).
Of these, 44 studies actually employ adipose-derived cells
or tissues for regenerative applications (134).

There remains some dispute over the criteria defining
an SVF cell or an ASC. While there is a general consensus
that the SVF cells are a heterogeneous population, no
specific ranges for each subpopulation have been agreed
upon formally. The International Society for Stem Cell
Therapy (ISCT) has provided guidelines for the definition
of mesenchymal stromal cells (MSCs) based on their
plastic adherent properties, immunophenotype (CD73*
CD90* CD105* CD11b/14- CD19/CD73b- CD34- CD45-
HLA-DR-), and multipotent differentiation potential
(adipogenic, chrondrogenic and osteogenic) (137). While
some have attempted to apply these criteria to ASC, there
is a reason to doubt their applicability because early
passage ASCs are routinely CD34* (106,119). Some
have used the protein Prefl, first identified on murine
3T3-L1 preadipocytes, as a putative ASC marker (138).
Others have reported the use of pericytic markers such as

64



The Indonesian Biomedical Journal, Vol.4, No.2, August 2012, p.59-72

platelet-derived growth factor receptor  and 3G5 (119,
139-142). The use of USP-based assays for each step in
the ASC and SVF cell manufacturing process ensures the
reproducibility and reliability of the final product. To date,
most laboratories use several common steps to process
cells from adipose tissue (84). These are : (a) washing; (b)
enzymatic digestion/mechanical disruption; (c) centrifugal
separation for isolation of SVF cells which can be used
directly, cryopreserved, or (d) culture expanded for the
generation of ASCs (5). Long-term storage will be critical
to ensure a reliable supply and delivery of ASCs and SVF
cells to point of care providers. The majority of published
ASC and SVF cell cryopreservation procedures rely on
the use of dimethyl sulfoxide (DMSO) as a cryoprotectant
agent (CPA), often in combination with serum protein
components (61). Both ASC and SVF cells have been used
in preclinical models to treat acute and chronic diseases
afflicting a range of tissues and organs (143).

Potential ASCs for
Regenerative Medicine

Adipose depots are ubiquitously accessible in large
quantities with a minimal invasive procedure (liposuction
aspiration) and contain high amounts of ASCs, which is
an essential prerequisite for stem cell-based therapies
(144). It has been described that stem and progenitor cells
in the primary isolates [(the so-called stroma-vascular
fraction (SVF)] usually amount to up to 3%, and this is
2,500-fold more than the frequency of MSCs in bone
marrow (up to 0.002%) (145). The plasticity of ASCs
toward cells of the mesodermal lineage has been shown
by their differentiation into chondrocytes, osteoblasts,
adipocytes, and myocytes. Their potential to differentiate
into lineages with nonmesodermal origin is even more
exciting; ASCs are also able to differentiate into cells of
ecto- and endodermal origin. Various in vitro and in vivo
studies documented the induced differentiation into neural
cells, hepatocytes, pancreatic islet cells, endothelial cells
and epithelial cells (144).

a. Soft and Skeletal Tissue
Soft tissue repair as cosmetic and reconstructive
surgery is a logical application, and theoretically
the simplest application — for adipose-derived cell
therapies since the isolated cells presumably do not
need to display any transdifferentiation potential. Both
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ASCsand SVF cells have been approved and employed
in clinical trials involving soft tissue defects. Breast
reconstruction or augmentation trials have enrolled the
greatest number of patients (143,146-148).

While clinicians have reported the transplant of
SVF cells with autologous fat for cosmetic surgery
(146,148), potential concerns remain for this application
in postmastectomy breast cancer reconstruction (149).
In vitro and in vivo data demonstrate that human
ASCs secrete multiple cytokines that can increase the
proliferation of active breast cancer cells (150).

Human adipose tissue grafting has been found
to reduce cutaneous damage in rodents after burns
or radiation exposure. Implantation of adipose tissue
reduced fibrosis, improved collagen organization
and increased the number of vessels, consistent with
revascularization (151,152).

Adipose-derived cells and adipose tissue continue
tobe employed in preclinical models of soft tissue injury
and are progressing into clinical trials. Cultured ASCs
have been used to treat full-thickness skin wounds in
diabetic rodents (153,154). The human ASC secretion
of HGF, VEGF, and matrix metalloproteinases was
correlated with the accelerated epithelialization and
closure of the diabetic wounds (151,152,154).

Complementary studies using human ASCs
demonstrate that similar mechanisms underlie their
ability to promote repair in skeletal tissues (155-157).
The use of SVF cells and ASCs for bone repair has
been a target issue to many investigators. There are
close developmental links between adipose tissue and
bone, and it has been postulated that an inverse or
reciprocal relationship exists between adipogenesis and
osteogenesis at the cellular level (37,158,159). Their
ability to undergo osteogenic differentiation without
any stimulation when placed on an osteoconductive
scaffold in vive makes ASCs a promising candidate for
skeletal tissue engineering (160). Furthermore, host
dura mater (DM)-derived bone morphogenetic protein
(BMP)-2 paracrine stimulation appears to play a key
role in human adipose-derived stromal cells (hASC)
mediated repair (161).

. Ischemic Injuries

There has been increasing attention paid to the
application of ASCs and SVF cells for the treatment
of ischemic injuries, with particular interest in
myocardial infarction (MI) (162,163). Improved
function was attributed to the human ASC secretion
of VEGF, FGF2 and SDFla, and the subsequent
recruitment of host=derived bone marrow progenitor



DOI: 10.18585 /inabj.v4i2.164

cells to the ischemic injury site (164). While a number
of MI clinical trials are underway, it is too early for
any major reports regarding patient outcomes. Further
preclinical studies to document the paracrine and/
or differentiation mechanism of ASC and SVF cell
cardiac repair and their subsequent efficacy will likely
accelerate the clinical translation process (165,166).
The potential of adipose-derived cells to treat hind
limb ischemia or stroke models has been investigated
in several models as well (167,168).

¢. Immune Disorders

In a manner similar to BMSCs, human ASC are
known to display immunomodulatory and immuno-
supresive function (50,106,169,170). The mechanism
underlying ASC immunomodulatory function remains
on the area of active investigation. Following disease
initiation by immunization with collagen, intravenous
administration of human ASCs reduced the levels
of inflammatory cytokines and autoimmune Thl
cells (171). This was accompanied by an increased
production of CD4*CD25'FoxP3*Tregs (171,172). In
murine models of experimental colitis, intravenous
administration of human ASCs reduced weight loss,
inflammation and mortality. This was associated
with reduced levels of inflammatory cytokines and
increased level of IL-10. Furthermore, autoimmune
Thl cell proliferation decreased while the number
of Tregs increased (173,174). These outcomes are
consistent with multiple clinical trials that documented
the beneficial effects of human ASCs in the treatment
of Crohn’s disease.

Multiple sclerosis is a progressive inflammatory
disease affecting the myelinated cells of the central
nervous system. Over time, this disease leads
to degenerative changes and loss of cognitive,
motor and sensory function; often, these changes
occur in a waxing and waning manner. While the
etiology of the disease remains a great question,
there is compelling evidence supporting a role of an
autoimmune component (143). In vive studies have
evaluated the immunomodulatory effects of ASCs
in autoimmune and immunological disease. Chronic
intravenous administration of human ASCs to a mouse
model of systemic lupus erythematosus improved
the animal’s survival, decreased anti-DNA antibody
level and increased the level of Tregs (175,176).
In a murine model of GVHD, co-transplantation of
ASCs with the hematopoietic stem cells significantly
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reduced mortality, which is consistent with the
immunosuppresive function of the ASCs in vitro. A
single research group in China has reported anecdotal
findings in GVHD patients treated with ASCs
(133,177). Type 1 diabetes has attracted substantial
attention as an autoimmune disease amenable to
adipose-derived cell intervention. Following induction
with a combination of activin, nicotinamide, and
GLP-1, the differentiated ASCs expressed insulin and
were capable of improving glucose sensitivity when
transplanted into streptozotocin-induced diabetic
mice (178). Similar in vitro and in vive outcomes
were obtained by an independent group using a
CD29*CD44*Scal* clonal population derived from
murine epididymal ASCs (95,179).

d. Gene Therapy

Adipose-derived cells can be transduced with viral
vectors and used effectively as gene delivery vehicles
(180). Using an adeno-associated viral vector,
investigators have transplanted ASCs transduced
with al-antitrypsin into the liver of mice (181). This
approach documents the potential utility of ASCs to
treat inborn metabolic errors involving the liver.

The application of ASCs and SVF cells is still in
its infancy and the field has made progressive advances
towards clinical applications (143).

Conclusions

ASCs are classified as adult multipotent stem cells and,
as such, their multipotency is limited compared with
ESCs and iPSCs. From a practical standpoint, however,
numerous investigators have examined the practicalities
of using ASCs for overcoming the limitations currently
being faced in the various fields of regenerative medicine.
ASCs have practical advantages in clinical medicine
and their use has become more realistic because AT,
the primary source of ASCs, is abundant and easy to
obtain with less donor site morbidity. Only with reliable,
standardized basic science research can real clinical
progression be achieved. We look forward to seeing ASC
in vitro research translated to beneficial clinical outcomes
in the near future.
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