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B
ACKGROUND: Autism spectrum disorder 
(ASD) is a highly heritable neurodevelopmental 
condition, which is typically characterized by a 

triad of symptoms: impaired social communication, social 

reciprocity and repetitive stereotypic behavior. While the 
behavioral phenotype of ASD is well described, the search 
for reliable ‘autism biomarkers’ continues.

CONTENT: Insulin growth factor (IGF) is essential for 
the myelination of developing fetal neurons; this is in 

addition to the well-known links between IGF, maternal 
inlammation, infection and autism supporting IGF as a 
potential marker. Combining IGF data with data regarding 
levels of the known markers, serotonin and anti-myelin basic 

protein, in order to calculate an autism index, could provide 

a new diagnostic method for at-risk neonates. Disruptions 
to multiple pathophysiological systems, including 

redox, folate, methylation, tryptophan metabolism, and 

mitochondrial metabolism, have been well documented 

in autistic patients. Maternal infection and inlammation 
have known links with autism. Autoimmunity has therefore 
been a well-studied area of autism research. The potential 

of using autoantibodies as novel biomarkers for autism, in 

addition to providing insights into the neurodevelopmental 

processes that lead to autism.

SUMMARY: The six proposed causes of autism involve 

both metabolic and immunologic dysfunctions and include: 

increased oxidative stress; decreased methionine metabolism 

and trans-sulfuration: aberrant free and bound metal burden; 

gastrointestinal (GI) disturbances; immune/inlammation 
dysregulation; and autoimmune targeting. A newborn 

L
ATAR BELAKANG: Autism spectrum disorder 

(ASD) merupakan suatu gangguan perkembangan 
neurologis yang dapat diwariskan, ditandai dengan 

tiga ciri: gangguan komunikasi sosial, gangguan interaksi 

timbal balik, dan perilaku khas berulang. Walaupun fenotipe 
perilaku ASD telah banyak dijelaskan, akan tetapi biomarker 
autisme yang dapat diandalkan masih dicari. 

ISI: Selain berperan penting untuk pembentukan myelin 

pada neuron fetus, insulin growth factor (IGF) diketahui 
memiliki kaitan dengan inlamasi maternal, infeksi, dan 
autisme, sehingga IGF merupakan marker yang potensial. 
Kombinasi data IGF dengan data marker lain yang diketahui, 
seperti serotonin dan anti-myelin basic protein, dapat 

digunakan untuk menghitung indeks autisme, sehingga 

dapat menjadi metode diagnostik baru untuk bayi baru lahir 
yang berisiko. Gangguan pada berbagai sistem patoisiologi, 
termasuk redoks, folat, metilasi, metabolisme triptofan, dan 

metabolisme mitokondria, telah terdokumentasi pada pasien 

autisme. Infeksi dan inlamasi maternal diketahui memiliki 
hubungan dengan autisme. Autoimunitas juga sudah 
banyak diteliti pada autisme. Autoantibodi memiliki potensi 
sebagai biomarker baru untuk autisme, selain itu dapat pula 

memberikan pengetahuan mengenai proses perkembangan 

saraf yang mengarah kepada autisme.

RINGKASAN: Enam penyebab autisme yang telah 

dikemukakan, melibatkan baik disfungsi metabolisme 

maupun imunologi, meliputi: peningkatan stress 

oksidatif; penurunan metabolisme metionin dan trans-

sulfurasi; kadar logam bebas dan terikat yang berlebih; 

gangguan gastrointestinal; disregulasi imunitas/inlamasi; 
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Introduction

Autism is a neurodevelopmental disorder characterized 
by impaired communication and social interaction and 

repetitive behaviors. Several lines of evidence indicate that 

genetic, environmental, and immunological factors may play 

a role in its pathogenesis.(1) Some investigators expand the 

nature of autism to that of a multisystem metabolic disease, 

not just a brain disorder.(β) The term autistic spectrum 
disorder (ASD) or pervasive developmental disorders 
(PDDs) represents a group of disorders which includes ive 
diagnostic subtypes including autism, PDD not otherwise 
speciied (PDD-NOS), Rett’s disorder, child disintegrative 
disorder, and Asperger’s disorder.(γ) 
 The incidence of autism is now 1 per 110 in the 

United States, and 1 per 64 in the United Kingdom, with 

similar incidences throughout the world. The gender ratio 

is γ-4 boys : 1 girl.(4) Autism is a lifelong condition for 
most. Historically, 75% of autistic individuals become 

either institutionalized as adults or are unable to live  

independently.(5) Studies of adults with autism suggest 

that the cumulative mortality rate is higher among autistic 

patients than their non-autistic peers.(6)

 Since there are no objective diagnostic tests for 
autism, a clinical diagnosis is based on behavior, using the 

Diagnostic and Statistical Manual of Mental Disorders, 
Fourth Edition, Text Revision (DSM-IV, TR) as the gold 
standard. Using a list of diagnostic criteria, at least six criteria 

must be exhibited with onset of conditions prior to age 

three, including at least two relating to social abnormalities 

and one each regarding impaired communication and range 

of interests and activities.(7) These criteria are not described 

in detail, leaving latitude for clinical judgment.(8) To date, 

screening program for early-onset ASD should be capable 
of utilizing a combination of ASD-associated biomarkers 
representative of the six proposed causes of autism in order 

to identify newborns at risk.  The biomarkers discussed in 

this article are useful to guide the selection, eficacy, and 
suficiency of biomedical interventions, which would likely 
include nutritional supplementation, dietary changes, and 

speciic medications for treating GI pathogens and reducing 
inlammation.

KEYWORDS: ASD, autism, biomarkers, newborn 
screening, diagnosis
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dan timbulnya autoimun. Program skrining pada bayi 

baru lahir untuk onset awal ASD dapat dilakukan 
dengan memanfaatkan kombinasi biomarker yang 

merepresentasikan keenam penyebab autisme tersebut.  

Biomarker yang dibahas pada artikel ini bermanfaat sebagai 

panduan untuk pemilihan intervensi biomedis yang cukup 

efektif, meliputi suplementasi nutrisi, perubahan diet, 

dan pengobatan untuk menatalaksana patogen gangguan 

pencernaan dan mengurangi inlamasi.

KATA KUNCI: ASD, autisme, biomarker, skrining bayi 
baru lahir, diagnosa

Figure 1.  Epidemiologic Study on Autism. (10) (Adapted with permission from Nature Publishing Group).
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no biological markers have been found to reliably diagnose 

autism in an individual patient.(9)

 Therefore, there is a strong need for inding 
biologically deined autistic phenotypes that can guide 
further investigations into the biological and genetic 

underpinnings of ASD. The lack of existing biomarkers is 
ultimately due to the complexity of the condition, as ASDs 
are known to have multiple causes, co-morbid conditions, 

and vary in the type and severity of symptoms expressed 

by different individuals. Therefore, it is unlikely that ASD 
can be linked to a single biomarker (i.e., a single gene or 

brain region). Instead, autism biomarkers are most likely 

to be multivariate and complex, encompassing data from 

different aspects of biology as well as genetics.(11)

 Therefore, while the search for autism biomarkers 

is still in its infancy, the availability of new analytical 

techniques with high exploratory power and predictive value 

offers promising new ventures into inding a biomarker (or a 
set of biomarkers) whose complexity equals the etiological 

complexity of the condition. If successful, such a biomarker 

may one day prove invaluable in diagnosing, treating and 

characterizing ASD (11).

Autism has increased to epidemic proportions, affecting 
four times as many males and females. With a prevalence 
of 1/110 in the United States, 1/64 in the United Kingdom, 
and similar ratios in many other countries, a very signiicant 
threat to future generations is evident.(12) 

 Autism is a disability that can make daily activities 
dificult. One out of ten autistics cannot speak, nine out 
of ten have no regular job, and four out of ive autistics 
adults are still dependent on their parents. Most face the 
harst consequences of living in a world that has not been 

constructed around their priorities and interests.(13)  

Autism is a heterogeneous disorder with multiple causes 
and courses, a great range in the severity of symptoms, 

and several associated co-morbid disorders. Increasingly, 

researchers refer to ‘the autisms’ rather than a single autism 
phenotype.(14) It would be surprising, therefore, if the 

neuropathology of autism was identical across all affected 

individuals.(15)

 As initially described by Kanner (16), individuals with 
autism have three core features: (i) impairments in reciprocal 

social interactions; (ii) an abnormal development and use of 

language; and (iii) repetitive and ritualized behaviors and a 

narrow range of interests. In addition to the core features of 

autism, there are common co-morbid  neurological disorders.

ASD

(17) The prevalence of mental retardation in idiopathic 

autism is ~60% although, when the autism spectrum is taken 

as a whole, the number is closer to 30%.(18) Epilepsy has 

long been associated with autism although estimates of the 

occurrence of seizure disorder vary 5-44%.(19) Anxiety and 
mood disorders are also very common in autism.(20) There 

is also substantial heterogeneity in the onset of autism. 

Some children have signs of developmental delays within 

the irst 18 months of life. However, β5-40% of children 
with autism initially demonstrate near normal development 

until 18-24 months, when they regress into an autism that 

is generally indistinguishable from early-onset autism.(21) 

The possibility that there is early-onset versus regressive 

phenotypes of autism might have important implications for 

the types and time courses of neuropathology that one might 

expect to encounter.(15)

 The mechanisms that lead to autism are at best poorly 

understood, however they do center around the disruption of 

normal cerebral development and its subsequent implications 

on the functional brain unit (although the exact link to the 

classic triad of core symptoms remains unascertained). 

Numerous neuropsychiatry papers attribute the pathogenesis 

of autism speciically to ‘localised’ anomalies (i.e. of neural 

migration or connectivity), which have the potential to 

detrimentally effect central nervous system (CNS) structure 

and function.(22-24) The stereotypic behaviors and marked 

delay or disruption of communication and social behavior 

trajectories that characterize ASD indicate that crucial 
neuroanatomic structures and neurodevelopmental pathways 

may be affected during intra-uterine and/or early postnatal 
brain development. Several lines of research indicate 

that ASD are associated with disarrangement of neuronal 
organization, cortical connectivity and neurotransmitter 

pathways.(β5) While the causes of these abnormalities are 
still being identiied, it is generally believed that genetic 
as well as environmental factors are involved in the 

pathogenesis of ASD.(βγ,β6,β7)
 One consistent inding in ASD is altered brain growth, 
which has been extensively documented by Courchesne et 

al.(28) The clinical onset of autism appears to be preceded 

by two phases of brain growth abnormalities: a reduced head 

size at birth, then a sudden and excessive increase between 

1–β months and 6–14 months of age.(β9,γ0) Furthermore, 
recent neuroimaging studies have shown an abnormal pattern 

of brain overgrowth also occurs in areas of the frontal lobe, 

cerebellum and limbic structures between 2 and 4 years of 

age, a pattern that is followed by abnormal slowness in brain 

growth.(28-31) These brain regions are intimately involved 

in the development of social, communication and motor 

abilities that are impaired in ASD (β5).
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 Several studies have proposed that autism might be 

caused by an imbalance between excitation and inhibition 

in key neural systems including the cortex.(32) Three 

main types of defects have been revealed in autism: the 

brainstem and cerebellum, the limbic system (amygdala and 

hippocampus), and the cortex.(γγ-γ5) Abnormal regulation 
of brain growth in autism results in early overgrowth 

followed by abnormally slowed growth.(35) The strongest 

evidence implicates the glutamatergic and Ȗ-aminobutyric 
acid (GABA)ergic and serotonergic systems, with weaker 
evidence for catecholaminergic,  peptidergic,  and  

cholinergic systems.(32) The serotonergic system may be 

dysregulated in autism; serotonin levels are initially lower 

than normal but gradually increase to a greater extent than 

adult levels by 2-15 years of age.

 Autism has been documented to be caused by genetic 
defects and/or inlammation of the brain. The inlammation 
could be caused by a wide variety of environmental toxicants, 

infections, and co-morbidities in individuals genetically 

prone to the developmental disorder. Some patients with 

autistic phenotypes clearly have genetic-based primary 

mitochondrial disease.(36) The lowered cellular energetics 

and deicient reserve mitochondrial energy capacity could 
lead to cognitive impairment and language deicits, both 
common in autistic individuals. It has been determined that 

autism can be caused by an underlying predisposition to 

mitochondrial dysfunction.(γ7) These data support Jepson’s 
assessment that autism is a multi-organ metabolic disease 

caused by the environment or a virus in individuals who 

are genetically prone to the disorder. Whatever its cause(s), 
autism affects critical parts of metabolism, with symptoms 

in the immunological, gastrointestinal (GI), toxicological, 

and neurological systems.(38) Therefore, other causes of 

autism must be considered, such as viral, bacterial, and/or 
environmental.

 In the urgent search to elucidate the etiology of autism, 

care must be taken to distinguish between correlation and 

causation. Many hypotheses have been proposed to explain 
the origin of this disease, but none has been insightful 

enough to resolve this enigma convincingly. Given 

this shortcoming, diagnostic medicine is consequently 

dependent on identiiable biomarkers, most or all of which 
are comorbid but questionably causative with autism (39).

Environmental toxicants exposure has been implicated in 

a wide variety of disorders (40). Toxicants, such as heavy 

ASD Risk Factors

metals, pesticides and chemicals, can damage cells by 

converging on similar biochemical pathways to produce 

adverse effects, such as increasing oxidative stress, depleting 

glutathione and impairing cellular signaling.(41) Exposures 

to environmental toxicants, such as mercury (Hg), lead 

(Pb), arsenic, polychlorinated biphenyls and toluene, are 

known to cause neurodevelopmental disorders (42), such 

as attention deicit hyperactivity disorder (ADHD) (4γ-45), 
depression (46) and schizophrenia (47) as well as ASD (48-
50). In considering potential environmental contributors to 

ASDs, some studies have reported that exposure to Hg can 
cause immune, sensory, neurological, motor, and behavioral 

dysfunctions similar to traits deining or associated with 
autistic disorders, and that these similarities extend to 

neuroanatomy, neurotransmitters, and biochemistry.(51-54) 

Though certain essential trace elements are required in trace 

amounts for various physiological processes, but at higher 

concentrations, these micronutrients tend to be toxic and 

derange various physiological processes, leading thereby 

to diseases.(55) Similarly, deiciency of essential elements 
may also lead to signiicant health concerns.(56) Therefore, 
it is important to determine the metal concentrations in 

humans to monitor and assess their impact on health.(55) 

Recent evidences reveal that many children with autism 

have multiple medical problems including increase in toxic 

metal burden.(57)

 It is well known that copper (Cu) is one of many metal 

ions that are required for essential body functions but are 

toxic in excess quantity.(58) Potential neurotoxic effects 

of this metal include depression, irritability, nervousness 

(59), and learning behavioral disorders in children (60). 

Increased concentration of Cu in hair and nail is likely 

to be a valid indication of the body burden. The reported 

level of zinc (Zn) indicates the Cu/Zn imbalance. As 
Cu and Zn are antagonists in function, the reported level 
of Zn indicates its insuficiency to excrete excess Cu 
which results in Cu toxicity. Protein intolerance which is 

observed in autistic children is a result of high Cu and low 

Zn.(61) Physically, the Cu build-up interferes with proper 
conversion of thyroid hormone at the cellular level. It is 

very interesting to correlate the report by Adams et al. (62) 

who have also stated that low iodine levels and abnormal 

thyroid functions to be the likely contributors of defective 

speech and cognitive skills in autistic children. Magnesium 
(Mg) is essential to the body’s utilization of vitamin B6 and 
numerous recent studies have demonstrated that autistic 

children showed marked improvement when given a large 

daily supplement of vitamin B6 and Mg.(6γ) Because of the 
beneicial ‘calming’ effect of Mg, symptoms resulting from 
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a deiciency in the mineral may include anxiety, depression, 
hyperactivity (64), agitation, hallucination, irritability, 

nervousness (59), aggression, chronic stress (65), learning 

disability, and memory impairment (66). There is also 

evidence suggesting signiicant lower level of Mg in the hair 
of autistic children when compared to normal controls.(67) 

There is also evidence showing that children with regressive 

autism have consistently elevated levels of oxidative stress 

as compared to normal children. Individuals with Mg and 
selenium (Se) deiciency resulting to reduced glutathione 
antioxidant capacity will be under oxidative stress and will 

be more vulnerable to toxic compounds that act primarily 

through oxidative damage.(68)

 Hg is known to accumulate in endocrine organs such 

as the pituitary gland, thyroid, and hypothalamus and to 

alter hormone levels and endocrine system development 

during crucial periods of development.(69) Such effects 

are usually permanent and affect the individual throughout 

their life. Some of the documented effects of exposure to 

toxic metals include signiicant learning and behavioral 
disabilities, mental retardation, autism, etc. It is also stated 

that the incidence of neurological conditions in children 

such as autism has increased over 200% in the last decade 

(70) and Hg has been found to be a factor in most of those 

tested.(71) High Pb levels have been found to be associated 

with attention deicit hyperactivity disorder, impulsivity, 
and inability to inhibit inappropriate responding.(72) 

 There is also evidence offering relationship between 

the severity of autism and a biomarker related to heavy 

metal toxicity, which found that elevations in urinary 

porphyrins (associated with Hg or Pb and Hg toxicity) were 

signiicantly associated with Childhood Autism Rating 
Scale (CARS). The present investigation also supports the 
evidence by providing data that shows increasing order (low 

functioning autism  (LFA) > medium functioning autism  
(MFA) > high functioning autism  (HFA)) of toxic metals 
(Pb and Hg) concentration in the hair and nail samples and 

their correlation with degree of severity. Also, it is notably 
important that the level of essential trace elements like Mg 
and Se are decreased in the order of severity which indicates 

that the lower the level of Mg and Se, the higher is the risk 
of metal burden and severe is the autism (73). The hair and 

nails in which trace minerals are sequestered and/or stored 
can be used to effectively monitor the highest priority toxic 

trace metals (74). Hair and nails are recording ilaments 
that can relect metabolic changes of many elements over 
long periods of time. The advantages of hair and nail tissue 

analysis over other diagnostic samples is that trace metal 

concentrations are not subjected to rapid luctuation due to 

diet, air, and water; hence, there is long-term stability over 

nutritional status.(75)

 There is considerable evidence about the important role 

of iron on cognitive, behavioral, and motor development.

(76) It is a component of many enzymes involved in 

neurotransmitter synthesis, and in iron deiciency, due to 
decreased activity of associated enzymes, monoamine 

neurotransmitter systems may be affected.(77) A decrease 
in brain iron concentration is accompanied by changes in 

serotonergic and dopaminergic systems, in cortical iber 
conduction, and myelogenesis.(78) Prenatal/maternal 
factors linked to increased autism risk include valproic acid, 

thalidomide, alcohol, rubella, cytomegalovirus, depression, 

schizophrenia, obsessive-compulsive disorder, autoimmune 

disease, stress, allergic reaction, and hypo-thyroidism. It 

will be shown how each of these risk factors may initiate 

expression of genes which are sensitive to retinoic acid 

(RA) and/or estradiol, whether by direct promotion or 
by reducing production of alpha-fetoprotein (79). The 

RA/estradiol theory of autism causation put forth in this 
paper potentially explains a great deal of observational 

data regarding the autism spectrum, and links together 12 

seemingly unconnected risk factors for autism. The folic 

acid theory of epidemic causation potentially explains the 

root cause of increasing autism rates within the framework of 

the RA/estradiol model, and provides possible explanations 
for regression in autism and changes over time in autism 

symptomatology. These hypotheses are unique, in that they 

assert that autism is a disorder of genetic expression rather 

than a genetic disorder (79).

 Viral infections, such as herpes simplex, rubella, or 

cytomegalovirus, during pregnancy increase the incidence 

of juvenile autism.(80) The most common maternal virus 
during the irst trimester of pregnancy that results in 
autistic children is inluenza, although most mothers of 
neurologically impaired children have no reported signs/
symptoms of a viral infection during pregnancy.(81) Also, 
maternal immune activation (MIA) in the infected mother 
but without apparent contagion in the developing fetus is the 

form most commonly associated with autism in the newborn. 

This would make MIA an environmental risk factor for the 
fetus, not necessarily due to a direct infection in the baby.

(82) Thinning of the myelin layer in the CNS or an overall 

reduction of neuronal size correlates with the occurrence of 

autism.(8γ-85) In insulin growth factor 1 (IGF-1) null mice, 
myelin thickness and neurologic stem cell proliferation/
differentiation are reduced.(86,87)

 Dietary factors are also under consideration as 
environmental contributors to ASD.(88) A several-fold 
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reduction in the proportion of v-3 fatty acids in lipid intake 

over the past few generations, and potential exacerbation 

of the impact of this deiciency by GI disturbances in 
ASD (89), may contribute to abnormal fatty acid proiles 
in ASD (90) that could affect neuronal processing (91), 
though rigorous evidence for the eficacy of essential fatty 
acid supplementation in ASD is still weak (9β). Nutritional 
insuficiencies that may reduce the availability of substrates 
for neuronal metabolism and increase vulnerability to 

oxidative stress (93) may result from self-restriction of 

intake common in ASD (94), and this may be further 
complicated by ingestion of toxicants and heavy metals as 

food contaminants.(93)

 Environmental exposure to the organic aromatic 

compound p-cresol (4-methylphenol) is relatively common 

and occurs through the skin, as well as the GI and respiratory 

systems. However, the largest and most widespread source 

of this compound is represented by some gut bacteria which 

express p-cresol synthesizing enzymes not found in human 

cells. Potential sources of p-cresol excess in ASD, such as 
gut infection, chronic constipation, antibiotics, abnormal 

intestinal permeability, and environmental exposure, are 

being investigated. p-cresol may contribute to worsen 

autism severity and gut dysfunction, often present in 

autistic children. It may also contribute to a multibiomarker 

diagnostic panel useful in small autistic children.(95)

The role of environmental factors in the etiology of ASDs 
is supported by extensive literatures.(88) Exposure to heavy 

metals and xenobiotics is a feature of contemporary life 

and it may also contribute to neurodegenerative disorders, 

including Parkinson and Alzheimer diseases (96,97), 
indicating that the human brain is an especially sensitive 

target. Most of these agents directly or indirectly inluence 
cellular redox status and the associated pathways of sulfur 

metabolism by promoting cellular oxidative stress in 

vulnerable individuals and initiating adaptive responses that 

include reduced methylation activity.(98,99) Methylation 
has an important role in the synthesis of myelin basic 

protein, an essential component that confers compactness 

to myelin. This is a critical step because the correct 

synthesis and assembling of myelin are fundamental in the 

development of the central nervous system.(100,101) In 

addition, decreased DNA methylation increases expression 
of genes under the negative inluence of methylation, 
disrupting epigenetic silencing of chromosomal regions 

linked to ASDs and leading to developmental delay, deicit 
in attention, and neuronal synchronization, which are 

typical hallmarks of autism.(23,99) It may be hypothesized 

that autism results from a combination of genetic and 

biochemical susceptibilities in the form of a reduced ability 

to excrete Hg and/or increased environmental exposure at 
key times in development. This would mean that individuals 

exposed to relatively high Hg could be affected even if their 

bodies were innately eficient eliminators (54).
 In order to clinically examine evidence for the above 

hypothesis, it is important to analyze biomarkers for Hg 

susceptibility and toxicity in patients diagnosed with an 

ASD. Namely, it was previously demonstrated that the 
trans-sulfuration pathway products of glutathione (102) and 

sulfate (103) were related to Hg excretion rates, and that 

the heme synthesis pathway products of urinary porphyrins 

can provide speciic proiles that relect Hg toxicity (104). 
Evidence from studies on blood biomarkers related to 

oxidative stress in ASD patients compared with healthy 
controls shows a consistent alteration of some biomarkers, 

i.e., an increase in the glutathione disulide (GSSG) (45%) 
and a decrease in glutathione (GSH) (27%), glutathione 

peroxidase (GPX) (18%), methionine (1γ%), and cysteine 
(14%) (105).

 Genetic polymorphisms adversely affecting sulfur 

metabolism, methylation, detoxiication, dopamine 
signaling and the formation of neuronal networks occur 

more frequently in autistic subjects. On the basis of 
these observations, a ‘‘redox/methylation hypothesis of 
autism’’ is described, in which oxidative stress, initiated by 
environment factors in genetically vulnerable individuals, 

leads to impaired methylation and neurological deicits 
secondary to reductions in the capacity for synchronizing 

neural networks.(99)

Figure 2.  Synthesis of p-cresol from tyrosine by gut bacteria 
expressing pHPA decarboxylase (hyphenated arrow). Artiicial 
sources of exposure: disinfectants and preservatives, stabilizers in 

washing and cleaning products , paints, illers, solvents, adhesives 
for surface treatments, corrosion inhibitors, impregnation 

materials, perfumes and cosmetics, combustion from incinerators 

and cigarette smoke. (95) (Adapted with permission from Elsevier).

Redox / Methylation Hypothesis of ASD
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 While individual xenobiotics and heavy metals each 
produce a unique constellation of pathological insults 

relecting their individual chemical reactivity, almost all 
such agents directly or indirectly impact cellular redox status 

and associated pathways of sulfur metabolism.(98) Indeed, 

sulfur metabolism can be considered a ‘‘inal common 
pathway’’ of toxicity, relecting the summed inluence of 
diverse environmental insults. This role is no great surprise, 

since sulfur metabolism has evolved as a primary defense 

system against stressful insults, orchestrating a large 

number of processes to maintain normal cellular function 

Figure 3. Adaptations of sulfur metabolism to oxidative stress. (99)(Adapted with permission from Elsevier).

and survival.(106)

 Recent studies of sulfur metabolism in children with 

autism reveal a pattern of abnormalities indicative of the 

presence of oxidative stress and impaired methylation.(107) 

We previously described the shared ability of a number of 
neurodevelopmental toxins, including Pb, Hg, thimerosal 

and alcohol, to potently inhibit activity of methionine 

synthase (MS), the ubiquitous vitamin B1β and folate-
dependent enzyme that converts homocysteine (HCY) to 
methionine.(108) As described below, MS activity is highly 
sensitive to oxidative stress. MS activity is also required 
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for dopamine-stimulated phospholipid methylation (PLM), 
a unique signaling activity of the D4 subtype dopamine 
receptor, that appears to be critical for synchronization 

of brain activity during attention.(109,110) Impaired 

synchronization is a feature of autism, and a large body of 

literature links D4 dopamine receptors to ADHD (111,11β), 
suggesting that impaired methylation activity of MS could 
limit dopamine-stimulated PLM in autism and ADHD.
 Based upon the above, a redox/methylation hypothesis 
of autism is advanced, proposing that environmental insults 

initiate autism in genetically sensitive individuals by 

promoting cellular oxidative stress and initiating adaptive 

responses that include reduced methylation activity. 

Impaired methylation in turn leads to developmental delay 

and deicits in attention and neuronal synchronization that 
are hallmarks of autism.(99)

 Thus increased exposure to environmental stressors 

places an entire population at risk, but genetically vulnerable 

subpopulations are most likely to manifest a particular 

disorder, such as autism. In this regard, increased oxidative 

stress can be viewed as a condition where certain genetic 

variations prove useful or harmful.(99) The ability of heavy 

metals to bind to thiol groups and to disrupt pathways of 

sulfur metabolism is well established. Indeed, the traditional 

name for thiols is mercaptans, recognizing their afinity for 
Hg. Sulfur metabolism is important for the excretion of 

xenobiotics (e.g. sulfation and formation of mercapturic 

acid derivatives) and their oxidized metabolites contribute 

to oxidative stress. Since many pesticides and preservatives 

function by disrupting redox events, it is not surprising they 

should exert similar effects in humans.

 Currently, the diagnosis of ASD is based solely on the 
presence of a complex phenotype as assessed by a qualiied 
professional. Several biomarkers-hyperserotoninemia (113), 

oxidative metabolism biomarker (114) and a tryptophan: 

large neutral amino acid ratio (115), have been shown to be 

associated with autistic traits. However, none of these have 

proven to be useful as a screening test, let alone for clinical 

diagnosis. The Phenotype MicroArray platform (Biolog, 
CA, USA) was used to proile multiple metabolic pathways 
in individuals with various neurodevelopmental disorders, it 

showed a signiicant decrease in the utilization of tryptophan 
as an energy source in cell lines from individuals with ASD, 
as measured by reduced generation of NADH.(116)
 ASD studies suggests an impairment of tryptophan 
metabolism. Its metabolism involves two pathways which 

result in the production of NADH, especially via the 
kynurenine pathway, way, which leads to the synthesis of 

NAD+, the precursor of NADH. The observed decreased 

Immune Dysfunction in ASD

level of NADH generation when tryptophan is the sole energy 
source therefore might relect a dysregulation of various 
reactions along these pathways, particularly the kynurenine 

pathway, as it is the major route of tryptophan metabolism 
(117). Although only a small fraction of tryptophan is 
metabolized along the serotonin–melatonin pathway, it 
is important for the generation of serotonin in the brain. 

Serotonin is an important neurotransmitter because of its 

involvement in multiple brain functions (118). Recent work 

found placental cells are capable of synthesizing serotonin 

by utilizing tryptophan provided via the maternal blood 

supply.(119) This source of serotonin is probably important 

for the development of the forebrain, whose disrupted 

organization has been one of the most consistent anatomical 

indings in ASD patients.(ββ) Last, the measurement of 
serotonin levels has been the most consistent biomarker 

for ASD.(119) Tryptophan metabolism can affect brain 
development and function via a multitude of avenues, either 

by affecting neurotransmitters, neuronal receptor function 

or neuronal mitochondrial function.(120)

 ASD could arise from multiple subpathological 
alterations, which, in total, lead to a behavioral phenotype. 

Thus, it is quite possible that impairment of the metabolism 

of tryptophan, by any one of numerous means, provides 

the unifying model that explains the heterogeneity of ASD 
and the past dificulty in identifying a universal biomarker. 
Perhaps measurement of the decrease in tryptophan 

metabolism in cells from patients will provide a reliable 

screening test for ASDs (1β0).

Substantial evidence suggests that the immune system plays 

an important role in the pathogenesis of autism.(121-123) 

While the exact mechanism of immune dysfunction in 
autistic patients remains undeined, two general possibilities 
have been outlined. First, there might be a defect in immune 
regulation that causes hyper- or hypo-activation of the 

cellular components of the nervous system. This causes 

a homeostatic imbalance among the immunoregulatory 

factors in the brain and/or other aVected organs such as 
the GI tract. Second, an alternative mechanism of autistic 

development has been viewed as autoimmune reaction 

directed toward a speciic target molecule in the brain.(1β4)
 Maternal infection is a risk factor for many 
neurodevelopmental disorders, including autism.(125-

127) It was reported that 43% of mothers with an autistic 

child experienced upper respiratory tract, inluenza-like, 
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urinary, or vaginal infections during pregnancy compared 

to only 26% of control mothers.(128) Studies show that, in 

rats, maternal exposure to infection alters proinlammatory 
cytokine levels in the fetal environment, including the 

brain. It has been proposed that these changes may have 

a signiicant impact on the developing brain.(1β9,1γ0) 
These observations suggest certain cases of autism may 

be a sequela of pathogenic infections, especially those 

of a viral origin.(125,127,131) Individuals with autism 

show increased pro-inlammatory cytokines in the brain, 
as well as activation of resident immune cells known as 

microglia. Additionally, antibodies that target brain tissues 
have been described in both children with autism and their 

mothers. These immunological phenomena may interfere 

with normal brain development and function; potentially 

contributing to the development and/or symptoms of 
ASD (1γβ). This inlammation-based mechanism details 
how pro-inlammatory cytokines such as tumor necrosis 
factor (TNF)- α, interleukin (IL)-1ȕ, and IL-6 arising from 
maternal inlammation, infection, allergy, and, possibly, 
autoimmunity, pass through the placenta, enter the fetal 

circulation, cross the blood-brain barrier (BBB), cause 

aberrant neuronal growth and plasticity within the fetal 

CNS, and facilitate development of chronic inlammatory 
environments within the fetus that predispose it to life-

long co-morbid psychiatric and systemic pathologies. 

Such a mechanism could account for many of the observed 

symptoms observed in autistic individuals such as hyper-

sensitivity to environmental stimuli, object ixation, 
echolalia, repetitive behaviors, chronic enterocolitis and, at 

the extreme, savantism (133).

 First, a hyper-inlammatory state in the mother causes 
pro-inlammatory cytokines to cross the placenta into the 
fetus. Next, the maternal pro-inlammatory cytokines enter 
the fetal circulation and cross BBB at the choroids plexus 

and meninges to activate microglia and stimulate the 

growth of more microglia within the brain to produce an 

excess of pro-inlammatory cytokines, a ‘‘cytokine-storm’’. 
The ‘‘cytokine-storm’’ stimulates excessive neuron growth 
through the up-regulation of nerve growth factor (NGF). 
Finally, the pro-inlammatory cytokines inluence neuron 
plasticity within the hippocampus and cerebellum to create 

the symptoms of autism. Chronic hypothalamic-pituitary-

adrenal (HPA)-axis and sympathetic nervous system (SNS) 
activation create life-long peripheral systemic pathologies 

(i.e., enterocolitis) sometimes seen in autistic individuals. 

 Depression in humans is often associated with elevated 
levels of pro-inlammatory cytokines (1γ4). It has been 
demonstrated that pro-inlammatory cytokines increase 
the activity of HPA axis. Persistently high levels of pro- 
inlammatory cytokines within the CNS could lead to the 
chronic activation of the HPA-axis and cause the depression 
and anxiety often seen as co-morbid with autism. Data from 
the John’s Hopkin’s University Interactive Autism Network 

Figure 4. Schematic presentation of immunopathogenesis of autism. (1β4) (Adapted with permission from Elsevier).
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(JHU IAN) longitudinal study indicate that an abnormally 
high percentage of mothers in their study experienced a 

diagnosed depression (45% vs. the normal depression rate 

of approximately 18%) and anxiety when compared with 

other disorders. A clinically diagnosed depression (and 
possibly anxiety) in mothers is a potential diagnostic marker 

of an elevated systemic pro-inlammatory state, a cytokine-
induced depression, that can be passed to the developing 

fetus.(133) If such a mechanistic pathway can lead to 

autism, then perhaps diagnosed maternal depression could 

serve as an early warning sign for autism. In such cases, 

a preventative strategy of administering anti-inlammatory 
cytokines or drugs to the mother, or potentially directly to 

the fetus, might minimize or even eliminate the chance of 

having an autistic child.(133)

 Systemic immunologic aberrations in ASD have 
been linked with both autoimmunity, describing antibodies 

reactive for central nervous system (CNS) proteins with 

the potential for neuronal tissue destruction, and with 

dysfunctional immunity such as abnormalities or deicits 
of function in immune cell subsets. The plausibility of 

hypotheses concerning immune system alterations in ASD is 
derived from the recognized roles of the immune system in 

early neurodevelopment and the ability of these alterations 

to inluence patterns of behavior.(1γ5)
 In ASD, a number of neuroactive compounds that also 
share immunomodulatory properties have been implicated 

in the disease process, for example, elevated platelet 

serotonin levels are observed in approximately one-third 

of children with autism.(136-138) Similarly, it has been 

hypothesized that autism may be a result of abnormal levels 

or activity of opioid peptides, which can act as cytokines 

conferring their actions through receptors on peripheral 

blood and/or glial cells. In addition, neuropeptides, such as 
oxytocin and vasopressin, have been implicated in social 

recognition, afiliation and attachment behaviors. Moreover, 
neuropeptides may act synergistically with cytokines to 

alter immune or neuronal function. For example vasoactive 
intestinal polypeptiide (VIP) synergizes with TNF-α to 
induce dendritic cell maturation.(139) Various immune 

function abnormalities have been widely reported in autistic 

individuals.(140,141)

 Studies of autistic individuals have found an increased 

frequency of autoantibody production. ASD patients has 
shown that approximately 30-70% of autistic patients have 

circulating anti-brain autoantibodies (141-148) including 

autoantibodies to a serotonin receptor (149), myelin basic 

protein (150) and, most recently, as yet unknown antigens 

from adult brain tissue extract.(151) The indings of 

The Gut - Brain Axis

autoimmunity in families and the plethora of anti-brain 

antibodies suggest that in some patients, autoantibodies 

that target the CNS may be a pathological or exacerbating 

factor in neuronal development in children with ASD.(1γ5) 
Various studies established an association between ASD 
and a family history of autoimmune diseases.(128,152,153) 

This was irst documented in case reports (154) and later 
conirmed in comprehensive epidemiological studies for 
approximately 40% of children with autism.(155,156) In 

particular an association with autoimmune thyroiditis or 

hypothyroidism (157), rheumatic fever (158), rheumatoid 

arthritis, celiac disease, ulcerative colitis, psoriasis, family 

history of type 1 diabetes has been found (156,159). One 

possible hypothesis that would connect the autoimmune 

components elaborated upon above with the clinical indings 
in autism would be an early-life immune insult leading to 

changes in the vulnerable embryonic and infantile brain.

(160)

 In conclusion, various types of immunological 

evidence (brain antibodies, serum cytokines, family history, 

and immunogenetics) point to a relationship between ASD 
and the immune system.

GI disturbances are commonly reported in children with 

autism, complicate clinical management, and may contribute 

to behavioral impairment.(161) Reported functional 

disturbances include increased intestinal permeability 

(16β), deicient enzymatic activity of disaccharidases (16γ), 
increased secretin-induced pancreatico-biliary secretion 

(163), and abnormal fecal Clostridia taxa.(164-166) Some 

children placed on exclusion diets or treated with the 

antibiotic vancomycin are reported to improve in cognitive 

and social function (167,168). Furthermore, a recent study 
found a strong correlation between GI symptoms and autism 

severity.(169) The bidirectional signaling between the GI 

tract and the brain is vital for maintaining homeostasis and 

is regulated at the neural (both central and enteric nervous 

systems), hormonal and immunological levels. Perturbation 

of these systems results in alterations in the stress-response 

and overall behavior.(170)

 Current studies on ASD indicate that genetic and 
environmental factors both contribute to its etiology (171). In 

particular, the existence of various GI  related comorbidities 

in ASD, such as functional GI disorders (16γ), food 
intolerances/allergies (17β) and impaired detoxiication 
processes (107), have been identiied as contributing to 
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its etiology and in some instances have been linked with 

altered gut microbiota. Recent studies have identiied that 
the actions of the microbiota and their metabolites can 

signiicantly alter host health, including modulation of brain 
activity and behavior.(170)

 The enteric nervous system, which contains as many 

as 1 billion neurons, is located within the wall of the GI 

tract.(173-175) Neurological diseases and syndromes are 

widely associated with a variety of GI symptoms (174), 

and abnormal behaviors are frequently reported in patients 

with GI disorders (176). Research using modern brain 

imaging techniques has shown a considerable overlap 

between regions involved in the processing of visceral 

sensation and regions important for emotional regulation 

(177), suggesting that emotional state has an important 

inluence on the function of the GI tract and vice versa.(17γ) 
The human large intestine harbors hundreds of different 

bacterial species and recent international efforts using DNA 
sequencing methods have demonstrated a high degree of 

variation in these populations.(178-180) Alterations in the 
GI microbiota can drive intestinal inlammation (181), 
increase gut permeability (182), cause food allergies (172) 

and change GI pH values, which inluence digestive enzyme 
production and action (183). Of particular interest is the 

growing evidence for a role of intestinal microbiota in 

inluencing activities distant to the gut, including activities 
of the brain.(184)

 Dietary carbohydrates and proteins that have resisted 
digestion in the small intestine are the main substrates for 

fermentation in the large intestine.(185) Alterations in GI 
bacterial fermentation product proiles could relect changes 
in GI microbiota composition and/or activities, as well as 
be indicative of GI disturbance. Bull et al. were irst to 
suggest microbial metabolites could be used as biomarkers 

in autism identifying that urinary indolyl -3 -acryloylglycine 

(IAG) was higher in individuals with autism compared with 
controls.(186) Of particular interest is propionate which is 

a weak acid that exists in ionized and non-ionized forms 

at physiological pH, allowing it to cross the gut-blood 

barrier and blood-brain barrier to enter CNS (187) and 

induce widespread effects on CNS function, including 

neurotransmitter synthesis and release, calcium inlux, 
intracellular pH maintenance, mitochondrial function, 

immune activation and gene expression (188). 

 A review paper examining propionate’s biological 
effects concluded that propionate is an important link in 

the nutrition, microbiota and physiology triangle.(189) 

Elevated levels of propionate in the CNS, can result in 

neuroinlammation and induce oxidative stress.(190,191) A 

Biomarkers for Diagnosis and 
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recent study investigated the persisting neurotoxic effects 

of propionate via oral administration of propionate to rats 

and found many resulting metabolite changes are consistent 

with changes observed in individuals with ASD and 
suggested propionate could play a role in the etiology of 

autistic biochemical features, particularly oxidative stress.

(187)

 Increased fecal concentrations of other major short-
chain fatty acids (SCFA), namely, acetic and butyric acids as 
well as total SCFA in children with ASD. Similar differences 
in total SCFA and acetic acid concentrations have been 
reported by Tjellstrom et al. (192) in children with celiac 

disease compared with controls. Recent studies suggest 

that SCFA, in particular acetic acid, could have a role in 
gut epithelial barrier function.(193,194) Increased intestinal 

permeability has been reported in ASD (16β,195) and this 
could be related to changes in fecal production of acetic acid 

or other SCFA.(196) Many protein fermentation products, 
such as phenols and ammonia can be detrimental to the GI 

tract. These compounds are absorbed from the colon into 

the systemic circulation, detoxiied by the liver and then 
excreted in the urine or remain unabsorbed and excreted 

in the faeces.(197) Increased p cresol concentrations in the 

intestinal lumen, perhaps in conjunction with excessive 
carbohydrate availability, may inluence the microbiota 
proile.(161) Elevated urinary levels of p cresol have been 
found in children with ASD compared with controls in one 
study (198) whereas lower urinary levels of p cresol sulphate 

in children with ASD were reported in another.
 The use of gut microbiota and fermentation products 

as biomarkers may enable the early identiication of ASD 
children at risk of GI disturbance and thereby earlier 

initiation of interventions.(184) Taken together, these 

indings support a gut-microbiome-brain connection in 
a mouse model of ASD and identify a potential probiotic 
therapy for GI and particular behavioral symptoms in 

human neurodevelopmental disorders.

ASD is dificult to diagnose in the neonate where distinct 
anatomical defects are not apparent other than head size 

and intraocular distance. Hence, clinical diagnoses are 

delayed to later in childhood (2-4 years), a time when nerve 

networking and patterning are already being established. At 
present, diagnosis of this mental disorder is largely by case 

history, family/clinical observations, checklists, interviews, 
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questionnaires and phenotypic traits such as head size, 

lack of eye contact and repetitive, obsessive-compulsive 

behaviors.

 The fetal/infant brain is highly susceptible to oxidative, 
immunologic and environmental stresses during postnatal 

development that could affect gene expression during the 

establishment of neurite outgrowths, circuitry and synaptic 

connections. Thus, ASD encompasses a heterogeneous, 
complex cluster disorder with multiple genes acting in 

various combinations and per-mutations.(200) By the time a 

irm diagnosis is made through conventional psychological 
testing (typically around age 2 or older), the neurologic 

damage, especially dysmyelination, is advanced. If the 

etiology of autism were known, the possibility of designing 

a treatment to mend the defective neuroproliferative process 

early might be feasible.(82)

 In the prior reports, it was proposed that the key 

to comprehending the pathogenesis of autism is IGF 
deiciency.(β01) Among several bioactive functions, 
this agent stimulates oligodendrocytes in the fetus and 

newborn to myelinate developing CNS neurons.(86) IGF 
is a major factor in promoting the myelination process. 
Biological or environmental conditions which reduce the 

availability of free IGF could diminish the production of 
serviceable myelin, thereby inducing malfunction in the 

nervous system. Depressed fetal IGF is a consequence of 
attenuated intrauterine placental processes.(82) The primary 

issues which reduce levels of IGF are gene polymorphisms/
mutations (202), inadequate nutrition (203), advanced 

parental age (204), and immune activation (205). Genetic 

alterations account for only a small percentage of the cases 

of autism (β06). Immunologic reaction in response to MIA in 
the pregnant patient results in large increases of IL-6, among 
a number of cytokines.(β07) In such cases, IL-6 is found 
elevated in the placenta and the amniotic luid in particular. 
(β08) The presence of increased IL-6 alters fetal neural cell 
adhesion, migration, and synaptic formation.(209) Through 

attenuation of intra- and inter-cellular signaling factors, the 

increase of IL6 results in a reduced synthesis and supply 
of IGF to the developing fetus.(β05) Infections occurring 
early in pregnancy elicit greater pathologic effects on the 

development of the fetal CNS than those arising later.(209)

 To account for a postpartum persistence of myelin 

inadequacy in autism, a rational explanation concerns 

myelin basic protein (MBP), one of the major structural 
proteins of CNS myelin. IL6, which can traverse the blood-
brain barrier, is often found in the brains of autistic children 

long after delivery and may represent a subacute, continuing 

process in the CNS (β10,β11). Dysmyelination may also 
result from maternal antibody products from degenerative 

viral attacks on neurons being passed antepartum to the fetus 

or autoimmunity persisting in the neonates after birth. Both 

children and their mothers often exhibit elevated levels of 

anti-MBP. This may explain the lasting postpartum effect of 
MIA on the child. These antibodies are found in at least 58% 
of autistic children in contrast to 9% in normal controls.(38)

 Myelination of the fetal CNS begins in the late second 
trimester, and continues for several months after birth. 

(β1β) Insuficient IGF could disrupt normal neurogenesis 
and maintenance, thereby augmenting the production of 

anti-MBP and apoptosis.(β1γ) In situations where reduced 
IGF may compromise neuronal survival, neurogenesis, 
and brain plasticity, parallel changes in brain-derived 

neurotrophic factor (BDNF) and serotonin are observed.
(213) To maintain proper neural homeostasis, a decrease in 

one factor (e.g., IGF) is counterbalanced by a rise in another 
(e.g., serotonin).(β14) Serotonin inluences neurogenesis, 
neuronal differentiation, and synaptogenesis.(215) Elevated 

serotonin levels are found in at least 30% of autistic children, 

as well as in many of their parents and siblings. On the other 

hand, no signiicant difference with BDNF levels is found 
between groups of autistic and normal people.(216,217)

This elevation appears related to polymorphisms of the 

serotonin transporter gene.(β18) Deviations in serotonin 
stabilization can lead to persistent dysfunctional changes in 

overall behavior patterns.(219,220)

 In order to judge whether or not a newborn might 
develop autism, it is proposed that circulating IGF, 
serotonin, and anti-MBP be measured at birth. If one or more 
of the three parameters are abnormal and the occurrence of 

each with autism is known, an autism index (AI) can be 
calculated. In this way, a more deinitive estimation of the 
prognosis can be derived, rather than depending on just a 
single variable.(82)

Calculation of AI (8β):

AI = [p1n1 + p2n2 + p3n3]/0.1 

AI: autism index; likelihood of later development of autism 

p: weighted probability of depressed/elevated biomarker in 
autism 

n: absolute percent (decimal) depression/elevation of 
biomarker below/above norm in the test case.  
1: IGF; 2: anti-MBP; 3: serotonin
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1) Hypothetical example of an (impending) autistic 

newborn: 

AI = [(0.91)(0.β0) + (0.58)(0.βγ) + (0.β0)(0.15)]/0.1 = γ.46 

β) Hypothetical example of an unaffected newborn: AI ~ 
0.00 

 The three ‘‘insults’’ discussed here, which can alter 
normal neurogenesis, myelination, and neurologic function, 

describe factors that are often associated with autism. They 

can be modiied directly or indirectly by overt or covert 
maternal inlammatory processes during pregnancy. This 
may lead to activation of the immune system and release 

of cytokines. These factors could be viewed as biomarkers 

evident before the psychoneurologic manifestations of 

autism become apparent in neonates.(82) Thus, it would be 

preferable to measure autism potential at or before birth. 

The autism index proposed here is intended to provide this 

early assessment.

 As ASD involves a neurobehavioral phenotype, it can 
likely arise from many different defects. The phenotype 

will be common, but the genotype different, most likely a 

Figure 5. Maternal immunologic activation, secondary to an inlammatory process, promotes the release of IL6. The cytokine 

depresses IGF-1 production and release to the fetus (8β) (Adapted with permission from Elsevier).

complex one. Assessment of the utilization of tryptophan 
may provide a window into the etiology behind the 

heterogenetic nature of ASDs. It may relect the level 
of dysregulation inherent in the metabolic pathways of 

tryptophan and even the proper function of the membrane 

transporters for this essential amino acid. There exist many 

points along the metabolic pathways of tryptophan in which 

pathogenic events could arise that have been associated 

with the phenotype of ASD.(1β0)
 Many children with ASD also have “allergic-like” 
symptoms, but test negative implying mast cell activation 

by non-allergic triggers. Angelidou et al. measured by 

Milliplex arrays serum levels of γ neuropeptides that could 
stimulate mast cells in children with autistic disorder only 

neurotensin (NT) was signiicantly increased from 60.5 ± 6.0 
pg/ml in controls to 105.6 ± 1β.4 pg/ml in autistic disorder 
(p = 0.004). NT could stimulate immune cells, especially 
mast cells, and/or have direct effects on brain inlammation 
and ASD.(ββ1) 
 Decreased trans-sulfuration metabolites/increased 
urinary porphyrin metabolites associated with Hg 

susceptibility/toxicity in a cohort of participants diagnosed 
with an ASD. Furthermore, a signiicant correlation was 
found between the clinical severity of participants diagnosed 

with an ASD, as measured/indicated by the CARS, and 
urinary porphyrins associated with Hg toxicity. Finally, a 
signiicant relationship was observed between increasing 

IGF Anti – MBP Serotonin

p1 = 0.91 p2 = 0.58 p3 = 0.20

n1 = 0.20 n2 = 0.23 n3 = 0.15
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levels of plasma oxidized glutathione and increasing urinary 

porphyrins associated with Hg toxicity.(54)

 A biomarker can be deined as a biological variable 
signiicantly associated with the disease of interest and 
measurable directly on a given patient or more often on 

his/her biological specimens/bodily luids, using sensitive 
and reliable quantitative procedures. Given the phenotypic 

heterogeneity of ASD and the well-recognized existence 
of many “autisms”, each characterized by speciic 
etiopathogenetic underpinnings (222), investigators are 

now striving to deine a panel of autism biomarkers able 
to: (a) foster earlier and more reliable diagnoses, (b) 

predict developmental trajectories and treatment response, 
(c) identify individuals at high-risk, eventually leading to 

the establishment of preventive health care strategies, (d) 

contribute to dissect ASD into more discrete clinical entities, 
and (e) possibly even reveal unknown causes or mechanisms 

of disease. Many autism biomarkers have been proposed to 
date (9,186,ββγ,ββ4), but scientiic, ethical, clinical and 
practical issues still pose a major challenge to their use in 
clinical practice (ββ5). The sensitivity and speciicity of 
each single biomarker in complex disorders like autism is 

generally low. The biological complexity of ASD will likely 
require age- and sex-speciic panels, each including several 
biomarkers belonging to different domains (biochemical, 

brain imaging, dysmorphological, electrophysiological, 

genetic, immunological, etc).(95)

 Biomarkers discussed within this article should be 

particularly useful in understanding the connection between 

genetic predisposition and environmental triggers since 

biomarkers can relect genetic polymorphisms that disrupt 
metabolic pathways as well as environmental exposures. 

Most importantly, biomarkers are potentially useful for 
identifying those individuals who are most vulnerable 

to environmental triggers so they can be protected from 

developing pathology associated with autism.(226) The 

pace of autism research and gained knowledge has increased 

exponentially in the last decade. This is true not only in 

the clinic, but also at the research bench. In the next 5-10 

years, we can expect the autism ield to expand and broaden 
its present base of knowledge in the areas of toxic metals, 

nutrition, GI biochemistry, genetic loci, medical imaging, 

autoimmunity and inlammation of the brain.(ββ7)
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Conclusion

ASD is currently diagnosed using only behavioral criteria. 
This article reviews evidence that ASD is a multifaceted 

biomedical disorder characterized by oxidative stress, 

decreased methylation capacity, limited trans-sulfuration 

production of cysteine and GSH, mitochondrial dysfunction, 
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