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Abstract

Abstrak

ACKGROUND: The mechanisms that are
Bresponsib]e for energy management in cells

in an organism require a complex network of
transcription of factors and cofactors.

CONTENT: All living systems must maintain a tight
equilibrium between energy intake, storage and expenditure
for optimal performance. This tight equilibrium must be
both robust and flexible to allow for adaptation to every
situation such as exercise or rest and famine or feast.
Organisms rely on finely tuned and complex signaling
network to confront with all the possibilities. Metabolic
imbalance can cause dysfunction and perturbation of these
networks, which if uncorrected will induce disease such as
obesity and diabetes mellitus.

SUMMARY: During the last decades the understanding
of the transcriptional regulation of diverse metabolic
pathways has contributed to the elucidation of mechanisms
of metabolic control and to a better knowledge of the
pathogenesis of metabolic diseases.
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tanggung jawab untuk mengatur energi dalam sel
di seluruh organisme membutuhkan jaringan yang
kompleks dari faktor transkripsi dan kofaktor.

LATAR BELAKANG: Mekanisme yang ber-

ISI: Semua sistem yang hidup harus menjaga ke-
seimbangan yang ketat antara asupan, penyimpanan
dan pengeluaran energi untuk kinerja yang optimal.
Keseimbangan yang ketat ini harus baik, kuat serta
fleksibel untuk memungkinkan adaptasi dalam setiap
situasi, seperti keadaan olahraga atau istirahat dan kondisi
lapar atau kenyang. Organisme mengandalkan sinyal dari
sistem jaringan yang ada dan kompleks untuk menghadapi
segala kemungkinan. Ketidakseimbangan metabolisme
dapat menyebabkan disfungsi dan gangguan jaringan ini,
yang apabila tidak dikoreksi akan menyebabkan penyakit
seperti obesitas dan diabetes mellitus.

KESIMPULAN: Selama dekade terakhir pemahaman
tentang regulasi transkripsi beragam jalur metabolisme
telah berkontribusi pada penjelasan mekanisme kontrol
metabolik dan untuk pengetahuan yang lebih baik tentang
patogenesis penyakit metabolik.

KATA KUNCI:
mTORCI

AMPK, SIRT1, PGC-la, FGF2l,
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Introduction

Metabolism is broadly defined as the sum of biochemical
processes in a living organism that either produce or
consume energy. More than 8,700 reactions and 16,000
metabolites are now annotated in The Kyoto Encyclopedia
Genes and Genome. Core metabolism is the pathway
involving metabolism of carbohydrates, fatty acids and
amino acids, which are essential for energy homeostasis
and macromolecular synthesis in human. This metabolism
can be classified into three classes: anabolism, catabolism,
and waste disposal. Anabolism is the set of metabolic
pathways that construct more complex macromolecules
from smaller units or simple molecules, this process need
some energy. Catabolism is the set of metabolic pathways
that degrade molecules into smaller units and release
energy. Waste disposal is that mechanism that helps
eliminate the toxic wastes produced (1).

Metabolism can not be viewed only as a self-
regulating network that operates independently on other
biological systems. Rather, metabolism impacts or is
impacted by virtually every other cellular process, so there
is no space in biological research that is totally free from
the influence of metabolism. Recent work has identified
numerous regulatory mechanisms, which either link cell
signaling to the orchestration of metabolic pathways or
enable cells to sense fuel availability and transmit the
information through signaling networks (1).

AMP-activated Protein Kinase (AMPK) and Silent
Information Regulator T1 (SIRT1) are metabolic sensor
and gatekeeper for activity of the master regulator
of mitochondria. PGC-1a plays an important role in
regulatory network for metabolic homeostasis (2).
Fibroblast growth factor 21 (FGF21) has been identified
as a potent metabolic regulator that regulates energy
homeostasis in adipocyte through activation of AMPK
and SIRT1, resulting in enhanced mitochondrial oxidative
function (3).

Dynamic mechanisms also sense cellular energy
status and regulate the balance between anabolism
and catabolism. PI3K/Akt/mTOR pathway promotes
anabolism and suppresses catabolism, AMPK does the
reverse. Serin-threonin kinase is a “fuel sensor” activated
during compromised bioenergetic states such as acute
nutrition deprivation and hypoxia (4). By phosphorylating
a number of key targets AMPK inactivates energy-
consuming, growth promoting pathways like protein and
lipid synthesis, and activates catabolism of fatty acids
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and other fuels. This enables the cell to rebalance energy
supply with demand (1).

Deacylation reactions also regulate metabolism. A
class of deacetylases, the situins, comprises nicotinamide
adenine dinucleotide (NAD)-dependent deacetylases
whose targets include histone and metabolic enzymens.
The sirtuins are key evolutionary conserved factors
linking caloric restriction to longevity. Over expression
of sirtuins in model systems ameliorates a variety of
age-related phenotypes, including cancer, diabetes and
neurodegeneration (5). AMPK was found to enhance NAD*
-dependent type III deacylase sirtuin 1 (SIRT1) activity by
increasing cellular NAD" levels, resulting in modulation
of the activity of downstream SIRT1 targets (6). AMPK
has been shown to play important role in the therapeutic
benefits of metformin (7.8), thiazolidinediones (9) and
exercise (10,11), all corner stones in the management
of type 2 diabetes and metabolic syndrome. Activation
of AMPK maintains energy balance by switching on
catabolic pathways, enhancing oxidative metabolism, and
mitochondrial biogenesis (3).

These players explain many of the beneficial effects
of physical activity and dietary intervention against
type 2 diabetes and other metabolic disorder. Therefore
understanding on the mechanism by which they act
can guide us to identify and improve preventive and
therapeutic strategies for metabolic disease (2).

AMP-activated Protein Kinase
(AMPK)

Living cells use ATP and ADP in a manner similar to
the chemicals in a rechargeable battery. Most cellular
processes require energy and are driven (directly or
indirectly) by the hydrolysis of ATP to ADP and phosphate
(or, less frequently, to AMP and pyrophosphate), thus
“flattening the battery.” In heterotrophic organisms, the
battery is recharged by catabolism; i.e. the oxidation
of reduced carbon compounds of organic origin, such
as glucose. In most cells (especially quiescent cells),
oxidation of glucose usually proceeds completely to carbon
dioxide via the process of oxidative phosphorylation.
Under these conditions, most ATP synthesis occurs at the
inner mitochondrial membrane (4). This means any rise in
the ADP/ATP ratio, which signifies falling energy status,
causes the adenylate kinase reaction to be displaced
toward ATP and AMP production. Thus, falling cellular
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energy is associated with increases not only of ADP but
also of AMP. It seems logical that protein sensing cellular
energy status should monitor either the ADP/ATP or AMP/
ATP ratio or both (12).

In most of eukaryotic cells, the principal energy sensor
seems to be AMPK (7). In support of this, increasing
ADP/ATP and AMP/ATP ratio during stresses such as
muscle contraction (13), ischemia in cardiac muscle (14)
or treatment of hepatocytes with metformin (15) are larger
in cells or tissue which AMPK or its essential activating
up stream kinase liver kinase B1 (LKB1 also known as
STK (11) have been knocked out (12).

AMPK exist as an obligate heterotrimer, containing a
catalytic subunit (o), and two regulatory subunits (3 and
v). AMPK is hypothesized to be activated by two-pronged
mechanism (16). Under lowered intracellular ATP levels,
AMP or ADP can directly bind to the vy regulatory
subunits of AMPK, leading to conformational change that
promote AMPK phosphorylation and also protect AMPK
from dephosphorylation to ensure it remains activated.
For AMPK activation, phosphorylation is required of Thr
172 in the activation loop of AMPK and serin/threonine
kinase LKBI directly mediates this event (17).
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AMPXK is crucial cellular energy sensor that regulates
metabolic energy balance at the whole-body level. Once
activated by falling energy status, it promotes ATP
production by increasing the activity or expression of
protein involved in catabolism while conserving ATP by
switching off biosynthetic pathways (12).

As befits its role in maintaining energy homeostasis,
AMPK switches on catabolic pathways that generate ATP,
while switching off anabolic pathways that consume ATP.
Examples of catabolic pathways that are up-regulated
include glucose uptake (via activation of both GLUTI1
(18), and GLUT4 (19,20), glycolysis (via phosphorylation
and activation of two of four isoforms of 6-phosphofructo-
2-kinase, which synthesizes the glycolytic activator
fructose-2,6-bisphosphate) (21,22), fatty acid uptake (via
translocation of the fatty acid transporter FAT/CD36)
(23), and fatty acid oxidation (via phosphorylation of the
ACC2 isoform of acetyl-CoA carboxylase, thus lowering
malonyl-CoA, an inhibitor of fatty acid uptake into
mitochondria (4).

AMPK activation also inhibits many anabolic
pathways acutely wvia direct phosphorylation of key
metabolic enzymes. Thus, it inhibits fatty acid synthesis
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Figure 1. Effects of activation of AMPK on cellular metabolism (Adapted with permission from Hardie DG,

et al. Ref # 12 Nature Publishing Group 2012)
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by phosphorylation of ACCI, isoprenoid synthesis by
phosphorylation of HMG-CoA reductase, triglyceride
and phospholipid synthesis by inactivation of glycerol
phosphate acyl transferase (7.,24). AMPK down-
regulates expression of enzymes of fatty acid synthesis
at the transcriptional level by a mechanism involving
phosphorylation of the transcription factor SREBP-1c,
inhibiting its proteolytic processing to the active, nuclear
form (8,25). It also represses transcription of mRNAs
encoding enzymes involved in gluconeogenesis, such
as glucose-6-phosphatase and phosphoenolpyruvate
carboxykinase, apparently via multiple mechanisms (4).

In addition, a particularly important target of AMPK
is mTOR complex-1 (TORC1), which is switched off by
direct phosphorylation of both its upstream regulator,
TSC2, and the TORC1 subunit Raptor (26). TORC1 is
stimulated by amino acids and by growth factors that
activate the Akt and Raf-MEK-Erk pathways, and it
promotes both the initiation and elongation of translation
via phosphorylation of 4EBP1 and p70 S6 kinase (27).

Mitochondrial biogenesis is another crucial process
activated by AMPK, which in the longer term generates
increased capacity for oxidative catabolism of both
glucose and fatty acids (12). The ‘master regulator of
mitochondrial biogenesis is peroxisome proliferator-
activated receptor=y co-activator la (PGCla), a co-
activator that enhance the activity of several transcription
factors acting on nuclear-encoded mitochondrial genes.
AMPK directly phosphorylates PGC1la, which has been
proposed to cause activation of its own transcription via a
positive feedback loop (28,29).

During fasting and after exercise, skeletal muscle
cfficiently switches from carbohydrate to lipid as the
main energy source to preserve glycogen stores and blood
glucose levels for glucose-dependent tissues such as brain
orred blood cells. Skeletal muscle cells sense this limitation
in glucose availability and transform this information into
transcriptional and metabolic adaptations. AMPK acts as
the prime initial sensor that translates this information
into SIRT1-dependent deacetylation of the transcriptional
regulators PGC-la and FOXOI1, culminating in the
transcriptional modulation of mitochondrial and lipid
utilization genes (30).

In general, activation of AMPK acts to maintain
cellular energy stores, switching on catabolic pathways that
produce ATP, mostly by enhancing oxidative metabolism
and mitochondrial biogenesis, while switching off
anabolic pathways that consume ATP (31).
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Sirtuins Family

Sirtuins belong to the class III protein deacetylase
family, which are the only histone deactyalses (HDACsS)
that require NAD for their enzymatic activity. NAD is
involved in many enzymatic reactions and an important
co-factor for the electron transport chain. Owing to the
characteristic NAD requirement for their enzymatic
reaction, the activity of sirtuins is directly linked to the
metabolic state in the cell (32).

Of the mammalian sirtuins, SIRT1, 2, 3,4, 5, and 6
have been shown to have this activity (33). Some SIRT
family members (e.g., SIRT4 and SIRT®6) also have ADP-
ribosyltransferase activity (33-35). In mammals, the Sir2
orthologue SIRT1 is primarily a nuclear protein in most
cell types and has evolved to deacetylate transcription
factors and cofactors that govern many central metabolic
pathways. Targets of SIRT1 include transcriptional proteins
that are important in energy metabolism such as nuclear
receptors, peroxisome proliferator-activated receptor-y
coactivator la. (PGC-la), and forkhead box subgroup
O (FOXO) (36-39). SIRT1 also regulates components of
the circadian clock, such as BMALI and PER2, which
underscores the interconnectedness of protein acetylation,
metabolism, circadian rhythm, and aging (40 41). SIRT1 is
also closely coupled to AMP-kinase activity in a mutually
enforcing mechanism that adjusts cellular physiology for
conditions of energy limitation (6)

One early indication that SIRT1 might be important
in diseases of metabolism was the finding that the protein
could influence differentiation and fat accumulation in the
3T3-L1 adipose-cell line and in primary preadipocytes in
rats (42). In a second case, calorie restriction triggered
a SIRT1-PGC-la—dependent increase in muscle mito-
chondrial biogenesis (43) and the activation of fatty
acid oxidation by SIRT1 and peroxisome-proliferator—
activated receptor o (PPAR-at) (44), which together favor
insulin sensitivity and evidently a slower rate of aging-
related decline. In liver, SIRT1 has been found to govern
two pathways with opposing effects on gluconeogenesis.
On the one hand, the activation of PGC-1a and FOXO1
appears to favor glucose production (37), whereas the
deacetylation and destabilization of the cyclic AMP
response-clement—binding (CREB) coactivator CRCT2
would suppress it (45). The relative importance of each
pathway may switch as a function of the duration of
fasting to fine-tune the magnitude of glucose production
over time (5).
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Figure 2, Sirtuin mediated metabolic responses in several tissues during different physiological challenges
(Adapted with permission from Houtkooper RH, ef al. Ref # 46 Nature Publishing Group 2012)

Deacetylation of PGC-la by SIRT1 not only
controls gluconeogenesis, but also fatty acid oxidation
in coordination with peroxisome proliferator-activated
receptor alpha (PPARa) (44). Recent studies have
shown SIRT! to regulate fatty acid oxidation in the
liver, sense nutrient availability in the hypothalamus,
influence obesity-induced inflammation in macrophages,
and modulate the activity of circadian clock in metabolic
tissues. The activity of SIRT1 also appears to be under
control of AMPK and adiponectin (47).

Mitochondria play critical roles in energy production,
metabolism, apoptosis, and intracellular signaling (48-
50). These highly dynamic organelles have the ability
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to change their function, morphology and number in
response to physiological conditions and stressors such
as diet, exercise, temperature, and hormones (51). Proper
mitochondrial function is crucial for maintenance of
metabolic homeostasis and activation of appropriate stress
responses. Not surprisingly, changes in mitochondrial
number and activity are implicated in aging and age-
related diseases, including diabetes, neurodegenerative
diseases, and cancer (48). One of the principal bioenergetic
functions of mitochondria is to generate ATP through the
process of oxidative phosphorylation (OXPHOS), which
occurs in the inner-mitochondrial membrane (52).
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Three sirtuins, SIRT3, SIRT4 and SIRTS, are located
in the mitochondria, dynamic organelles that function as
the primary site of oxidative metabolism and play crucial
roles in apoptosis and intracellular signaling. Recent
findings have shed light on how the mitochondrial sirtuins
function in the control of basic mitochondrial biology,
including energy production, metabolism, apoptosis and
intracellular signaling (52).

Several lines of evidence suggest a strong interplay
between metabolism and the circadian clock (53-55). The
dominance of feeding cycles as a Zeitgeber for peripheral
clocks implies that the circadian clock plays an important
role in nutrient processing and energy homeostasis (41).
NAD biosynthesis is linked to the circadian clock cycle
because nicotinamide phosphoribosyl transferase (Nampt)
is regulated by a complex consisting of the circadian
locomotor output cycle kaput (CLOCK), brain and
muscle aryl hydrocarbon receptor nuclear translocator-
like 1 (BMALI1) and SIRT1 and in turn regulates SIRT1
activity through NAD (56). Thus SIRT1 functions as
an enzymatic rheostat of circadian function, transduces
signals originated by cellular metabolites to the circadian
clock (40).

Anumber of studies have revealed that SIRT 1 mediates
different stress responses including inflammation,
hypoxic stress, heat shock and genotoxic stress, and
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inflammation in particular is a highly important cause of
aging and aging related diseases (57). During hypoxia,
NAD level gradually decreases and subsequently SIRT1 is
deactivated. Therefore, it has been speculated that SIRT1
triggers a switch from HIF2a to HIFla activation to
coordinate metabolism, vascular formation, and hypoxic
stress responses (58).

The anti inflammatory effect of sirtuins may be much
broader, since both SIRT1 and SIRT6 repress the activity
of the major proinflammatory transcription factor, nuclear
factor #B (57,59). SIRT1 appears to possess cardiovascular
protective properties beyond those deriving solely from
metabolic fitness (5). The earliest connection between
SIRT1 and endothelial cells was the finding that SIRT1
deacetylates and activates endothelial nitric oxide synthase
(eNOS) (60). The activation of eNOS and repression of
AT1 suggest that SIRT1 activity ought to curb high blood
pressure (5).

Interestingly, calorie restriction is known to protect
against atherosclerosis (61), and many of the physiological
effects of calorie restriction are blunted in eNOS —/— mice.
These findings indicate that SIRT1 helps facilitate the
favorable effect of calorie restriction on cardiovascular
function by its effects on eNOS, AT1, and perhaps other
targets (5). SIRT1 deacetylates and activates the nuclear
receptor liver X receptor (LXR), which up-regulates

Arrino aclds

Figure 3. Network of mitochondrial sirtuins (SIRT3-5) (Adapted with permission from Haigis MC,

et al. Ref# 35 Annual Reviews Inc 2012).
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the ATP-binding cassette transporter Al to facilitate
reverse cholesterol transport from peripheral tissues (36).
LXR and FXR activation by SIRT1 has the potential to
increase the production of high-density lipoprotein (HDL)
cholesterol and protection against atherosclerosis by
facilitating cholesterol removal (5).

In conclusion, sirtuins are a unique class of proteins
that link protein acetylation to metabolism and exert
profound effects on mammalian physiology and diseases
of aging. The development of drugs that target sirtuins to
treat these diseases is ongoing (5).

Peroxisome Proliferator-activated
Receptor y coactivator 1a (PGC-1a)

Metabolic equilibrium is maintained in the cell by an
intricate regulatory circuitry, which is controlled to a
large extent by transcriptional mechanisms (62,63).
These pathways imply many transcription factors that
directly contact DNA and execute major changes in
gene expression and transcriptional co-regulators, which
are responsible for the fine-tuning of the transcriptional
response (64).

The role of co-regulators in metabolic control is
perhaps nowhere better shown than with peroxisome
proliferator-activated receptor vy coactivator 1o (PGC-1a)
(65), the master regulator of mitochondrial biogenesis
and energy expenditure. Several metabolic functions
have been attributed to PGC-1a. In brown adipose tissue
(BAT), PGC-1o. acts as a cold-inducible protein that
controls adaptive thermogenesis. Fasting induces hepatic
PGC-1a expression, thereby increasing gluconeogenesis,
whereas in skeletal and cardiac muscle exercise increases
PGC-lo—mediated mitochondrial biogenesis  and
respiration (64). Thus, PGC-1a expression seems finely
tuned to reflect cellular energy needs, with conditions of
increased energy demands inducing its expression. PGC-
la performs all these tasks by regulating the activity
of a large number of transcription factors, including,
among others peroxisome proliferator-activated receptor
(PPAR) v (65), PPARo. (66), estrogen receptor—related o
(ERRa) (67), FoxO1 (68), hepatocyte nuclear factor 4a
(HNF4a) (69), and nuclear respiratory factor 1 (NRF1)
(70). By regulating the transcriptional activities of these
proteins, PGC-1o modulates a number of genes involved
in metabolic pathways as gluconeogenesis and fatty acid
synthesis and oxidation or glycolysis (64).
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Posttranslational mechanisms, equally important as
the transcriptional mechanisms, also extensively regulate
PGC-1a. To date, phosphorylation, ubiquitination,
methylation, acetylation, and GleNAcylation or PGC-1a
have all been described. The discovery of PGC-1a and
the pleiotropic and the robust effects it has on metabolic
homeostasis unveiled how the PGC-1a cofactor network
is central to the regulation of mitochondrial biogenesis and
function, thereby having an effect on whole-body energy
expenditure. Dysfunction of these pathways through
abnormal PGC-la activity has a profound effect on
general metabolism and, if uncorrected, could predispose
and contribute to metabolic diseases such as obesity, the
metabolic syndrome, and type 2 diabetes (64).

Fibroblast Growth Factor
(FGF) Family

The Fibroblast Growth Factor (FGF) family comprises
at least 22 members that involve in development,
differentiation, cell survival and growth, wound healing
and tumor formation (71,72). Recent data shows that
they may play important roles in defining and regulating
functions of some endocrine-relevant tissues and organs,
as well as modulating various metabolic processes. For
example, FGF-10 is implicated in the differentiation
processes in white adipose tissue (73) and pancreas
(74,75), while FGF-16 (76) is considered to be a
specific factor for brown adipocytes. Another recently
characterized molecule, FGF=19 (77,78), has been shown
to cause resistance to diet-induced obesity and insulin
desensitization and to improve insulin, glucose, and lipid
profiles in diabetic rodents. FGF-19 can be considered as
a regulator of energy expenditure (79,80).

FGF21 is expressed predominantly in white adipose
tissue, liver, and pancreas (81), with most circulating
FGF21 originating from the liver. Because its production
is induced in murine livers by starvation (82,83), and
because many of its actions, induction of gluconeogenesis,
fat oxidation, and ketogenesis, coupled to a state of torpor
(82-84), mimic the effects of fasting, FGF21 has been
considered a possible starvation signal. Recent studies
have shown that feeding can promote FGF21 synthesis in
white adipose tissue (85,86). Most likely, the activation of
the transcription factor peroxisome proliferator—activated
receptor-y (PPARY) accounts for this up-regulation, as
PPARYy agonists [thiazolidinediones (TZDs)] induce



Molecular Regulators of Metabolism and Cardiometabolic Disease (Sukmawati IR, et al.)

DOI: 10.18585 /inabj.v4i3.173

FGF21 expression in white fat. Interestingly, FGF21
controls the sumoylation of PPARY, thereby preventing
its inhibition (81,85,87).

Therapeutic administration of FGF-21 reduced
plasma glucose and triglycerides to near normal levels in
both ob/ob and db/db mice. These effects persisted for at
least 24 hours after cessation of FGF-21 administration.
Importantly, FGF-21 did not
hypoglycemia, or weight gain at any dose tested in
diabetic or healthy animals or when overexpressed in
transgenic mice (88). Another twist in the unfolding roles
of FGF21 is in browning of white fat in response to cold
or adrenergic stimulation (89). FGF21 is linked with
increased thermogenic activity (90).

It is now clear that there are two distinct types of
brown adipose cells. One is the classical brown fat that
arises from a myf5, muscle-like cell lineage (92.93). The
other, UCP1-positive, brown fat-like cells can emerge
in most white fat white adipose tissue [WAT]) depots
upon prolonged cold exposure or b-adrenergic receptor
activation (94-96). These brown fat cells, which are not
derived from a myfS-positive lineage, are designated
beige or brown-in-white (brite) cells (97,98).

To promote browning of white fat, FGF21 enhances
PGC-la activity, potentially through inducing its post
translational modification (89). The pathways through
which FGF21 activates PGC-1a and browning has not
yet been known, but the signaling pathway involving the
enzymes AMPK and SIRT1 warrant scrutiny. Activation

induce mitogenicity,
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of AMPK and deacetylation of PGC-1a by SIRT1 are
essential for FGF21 to trigger PGC-1a activity to enhance
mitochondrial function (3). The action of FGF21 on
hepatic lipid metabolism also requires PGC-la (84),
further suggesting that activation of the AMPK-SIRT1
signaling axis may be a general downstream feature
linking FGF21 and PGC-1a activity (91).

Human data have establish FGF21 as a starvation
hormone; the amount of circulating FGF21 display no
apparent circadian variation or a feeding fasting cycle,
and prolonged fasting (7 days) increase plasma FGF21
concentration (99). But circulating FGF21 concentration
also increases in overweight patients with various features
of the metabolic syndrome (100), potential hinting at the
existence of an obesity induce FGF21 resistance state
(101), although this is debated (102).

It seems unlikely that FGF21 resistance has a major
contributory role toward the development of obesity.
Nevertheless, FGF21 resistance likely contributes
significantly toward the complications associated with
weight gain and obesity, such as glucose intolerance
and elevated circulating NEFAs. Nevertheless, FGF21
resistance can be added to the hormone-resistant states
observed in obesity. Understanding the mechanisms of
this process could represent a new target for therapeutic
treatment of obesity and obesity-related diseases (101).
Thus FGF21 has become particularly interesting because
its endocrine actions endow it with potential therapeutic
uses (91).

Fabsa pracastian
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Figure 4, FGF21 Actions (Adapted with permission from Canté C, et al. Ref # 91 The American

Association for the Advancement of Science 2012),
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Mammalian Target of Rapamycin
Comolex 1 (mTORC1)

The mammalian target of rapamycin (mTOR) pathways
is the latest intracellular fuel sensing mechanism to be
implicated in the regulation of energy balance (103-105).
mTOR is actually the catalytic subunit of two distinct
multiprotein  complexes, respectively named mTOR
complex 1 (mTORCI1) and mTOR complex 2 (mTORC?2).
mTORC]1 is included as the main subject of this review
because of its recently established role in the regulation of
energy balance and peripheral metabolism (106),

mTOR is highly conserved serine-threonine kinase,
which in peripheral cells is known to integrate nutrient
signal with hormonal signals to control cell growth and
proliferation (107). Cellular ATP levels increase mTOR
activity, mTOR kinase itself serves as a cellular ATP
sensor (108). mTOR thus work as a critical checkpoint
by which cells sense and decode change in energy status

Print ISSN: 2085-3297, Online ISSN: 2355-9179

(107). Recent studies have demonstrated that within the
central nervous system and in particular the hypothalamus,
mTORC1 represents an essential intracellular target for
the actions of hormones and nutrients on food intake and
body weight regulation (103,106).

Insulin and leptin require an intact PI3K/Akt
signaling in the arcuate nucleus (ARC) to reduce food
intake (109). The fact that mTORC]1 is a downstream
target of the PI3K/Akt pathway leads us to hypothesize
that hypothalamic mTORC]1 signaling might be required
for leptin-induced anorexia. The mTORCI1 pathway is
clearly present in every organ, where it displays tissue
specific functions. Thus, apart from its role in the CNS
and particularly hypothalamus, it would be appropriate at
this point to briefly mention its function in metabolically
relevant tissues, such as the skeletal muscle, the adipose
tissue, the pancreas and the liver (106).

mTORCI1 is arguably one of the most important
nutrient-regulated intracellular signaling pathway in the
muscle. It is responsible for protein synthesis in the muscle
tissue, where it is activated through nutrients, insulin,
growth factors and exercise (110). Available evidence also

Healthy organism Obesity
Hypothalamus Hypothalamus
ﬂ Food Intake Food Im.akeﬂ
Skeletal Muscle l Skeletal Muscle
ﬂ Glucose Uptake Insulin Resistance
Protein Synthesis
Adipose Tissue ‘.f ) mTORCA . Adipose Tissue
I Adipocyte o .,-‘ Adipocyte Mass
Differentiation °“ Insulin Resistanc
Pancreas @;’ - = Pancreas
B-cell Proliferation B-cell Survivali
Liver
Hepatoc)de growth Insulin Resistance
and proliferation Hyperlipidemia
Lipid metabolism
— Activation of the pathway
g Overactivation of the pathway
-===r Downregulation of the pathway

Figure 5. Regulation and function of the mTORC1 pathway in different organs in a healthy organism
and in obese organism (Adapted with permission from Catania C, et al. Nature Publishing Group 2012).
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supports a role of the mTORC1 pathway in the muscle
glucose uptake and insulin sensitivity (111,112). In
particular, mTORC1 may alter insulin action in response
to chronic increase of fatty acid availability (111).

In vitro experiments have demonstrated that
mTORC1 is essential for the differentiation and
maintenance of white adipocytes. Indeed, mTORCI1
activation is necessary for insulin or nutrient (amino
acid) to induce adipogenesis and expression of SREBP1
and PPARy, which are master transcriptional regulators
of adipocyte differentiation and lipid homeostasis. In diet
induced obesity, overactivity of the mTORCI signaling
favors the expansion of the WAT mass, leading to adpocyte
insulin resistance through elevated phosphorylation of
IRS1 (113-115).

In diet-induced obesity, overactivity of the
mTORC signaling favors the expansion of the WAT mass,
leading to adipocytes insulin resistance through elevated
phosphorylation of IRS1 (116). In vivo overactivity of
mTORCI signaling, due to deletion of either TSC2 (a
negative regulator of mTORCI) or loss of LKBI (a
positive regulator of AMPK) in f3-cell mass and improves
glucose tolerance (117,118). Conversely rapamicyn
treatment leads to inhibition of [-cell proliferation and
apoptosis (119,120), and worsens hyperglycemia in obese
animals by inhibiting glucose-stimulated insulin secretion
(121,122).

As expected, once activated, mTORC]1 signaling has
a positive effect on hepatocyte growth, protein synthesis
and cell cycle and hence contributes to liver regeneration
(123). Furthermore, as already reported for other tissue,
either amino acids or insulin can stimulate hepatic
mTORCI signaling (124). Hence mTORCI1 signaling
is actually a critical mediator of cellular adaptation to
nutrient overload and increased insulin demand during
diet-induced obesity, which is further confirmed by
genetically inducing mTORCI overactivity within B-cells
(117,118,125).

The mechanistic mTOR signaling pathway senses
and integrates a variety of environmental cues to
regulate the organism’s growth and homeostasis. The
pathway regulates many major cellular processes and
is implicated in an increasing number of pathological
conditions, including cancer, obesity, type 2 diabetes, and
neurodegeneration. There are significant ongoing efforts
to pharmacologically target the pathway (113).

Indones Biomed J. 2012; 4(3): 129-42

Calorie Restriction Mimetic:
Resveraltrol (RSV)

Although short=term dietary restriction has metabolic
effects in humans such as lowered metabolic rate (126),
improved insulin sensitivity (127,128) and reduced
cardiovascular risk factors (61), eating less for the sake of
creating a desirable metabolic profile is unlikely to gain
widespread compliance. As such, the focus has been on
the development of calorie restriction mimetics that evoke
some of the benefits of calorie restriction without an
actual reduction in calorie intake. In that respect, sirtuins
are considered an important molecular target (129).
Resveratrol, a natural polyphenolic compound
present in various dietary components such as mulberries,
peanuts, grapes, and red wine, was identified as the most
potent activator of SIRT1 (130). Recently, however,
it was shown that resveratrol may not activate SIRT1
directly (131,132), but rather exerts its effects on SIRT1
through activation of AMPK (6,30,133-136). In muscle,
resveratrol activated AMPK, increased SIRT1 and PGC-1a
protein levels, increased citrate synthase activity without
change in mitochondrial content and improved muscle
mitochondrial respiration on a fatty acid-derived substrate.
Furthermore, resveratrol elevated intramyocellular lipid
levels and decreased intrahepatic lipid content, circulating
glucose, ftriglycerides,
inflammation markers. Systolic blood pressure dropped
and HOMA index improved after resveratrol intake (137).

Treatment of mice with RSV significantly increased
their aerobic capacity as evidenced by their increased
running time and consumption of oxygen in muscle
fibers. RSV’s effects were associated with an induction
of genes for oxidative phosphorylation and mitochondrial
biogenesis and were largely explained by an RSV-
mediated decrease in PGC-1a acetylation and an increase
in PGC-1a activity. This mechanism is consistent with
RSV being a known activator of the protein deacetylase,
SIRT1, and by the lack of effect of RSV in SIRTI-/-
MEFs. Importantly, RSV treatment protected mice against
diet-induced-obesity and insulin resistance (138). Thus
resveratrol is a natural compound that affects energy
metabolism and mitochondrial function and serves as a
calorie restriction mimetic, at least in animal models of
obesity (137).

alanine-aminotransferase, and
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Conclusions

Considering the urgent issue modern societies are facing
about how to efficiently tackle obesity and type 2 diabetes,
intense research is required to elucidate the biological
mechanism underlying the nutrient sensing, regulation
of energy balance, and peripheral metabolism. Thus, it
has become essential to understand the mechanism that
regulates energy balance and the peripheral metabolism
to identify possible therapeutic targets that may help halt
obesity and its disastrous metabolic consequences.
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