
 ͳʹ͵

Biomarkers for PCa (Meiliana A, et al.)
Indones  Biomed J.  2014; 6(3): 123-36DOI: 10.18585/inabj.v6i3.26

R E V I E W  A R T I C L E

 Identiication of Biomarkers for Prostate Cancer

Anna Meiliana1,2,, Andi Wijaya2,3

1Postgraduate Program in Clinical Pharmacy, Padjadjaran University, Jl. Eijkman No.38, Bandung, Indonesia
2Prodia Clinical Laboratory, Jl. Cisangkuy No.2, Bandung, Indonesia  

3Postgraduate Program in Clinical Biochemistry, Hasanuddin University, Jl. Perintis Kemerdekaan Km.10, Makassar, Indonesia
Corresponding author. E-mail: anna.meiliana@prodia.co.id

B
ACKGROUND: Prostate cancer (PCa) was the 

second most common type of cancer and the ifth 
leading cause of cancer-related death in men. The 

great challenge for physicians is being able to accurately 

predict PCa prognosis and treatment response in order to 

reduce PCa-speciic mortality while avoiding overtreatment 
by identifying of when to intervene, and in which patients.

CONTENT: Currently, PCa prognosis and treatment 

decision of PCa involved digital rectal examination, 

Prostate-Speciic Antigens (PSA), and subsequent biopsies 
for histopathological staging, known as Gleason score. 

However, each procedure has its shortcomings. Efforts 

to ind a better clinically meaningful and non-invasive 
biomarkers still developed involving proteins, circulating 

tumor cells, nucleic acids, and the ‘omics’ approaches.

SUMMARY: Biomarkers for PCa will most likely be an 

assay employing multiple biomarkers in combination using 

protein and gene microarrays, containing markers that are 

differentially expressed in PCa.
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L
ATAR BELAKANG: Kanker prostat / prostate 

cancer (PCa) merupakan kanker kedua yang 

paling sering ditemukan, dan menduduki urutan 

kelima sebagai penyebab kematian pada pria. Tantangan 

terbesar bagi para dokter adalah bagaimana dapat 

memprediksi dengan akurat prognosis dan respon terapi 

PCa dengan tujuan untuk mengurangi kematian akibat PCa, 
tanpa memberikan terapi yang berlebihan, serta mampu 

mengidentiikasi waktu intervensi yang tepat pada pasien 
yang tepat.

ISI: Saat ini, prognosis dan terapi PCa dilakukan atas 

dasar pemeriksaan rektal digital, Prostate-Speciic 
Antigens (PSA), dan biopsi untuk mengetahui derajat 
histopatologisnya, yang dikenal sebagai skor Gleason.

Bagaimanapun, setiap prosedur memiliki keterbatasannya. 

Usaha untuk menemukan biomarker yang bermanfaat secara 

klinis dan tidak invasif masih terus dilakukan menggunakan 

protein, sel tumor di sirkulasi, asam nukleat, dan pendekatan 

“omics”.

RINGKASAN: Biomarker PCa akan berupa suatu 

kombinasi biomarker, meliputi protein dan microarray gen 

yang berisi banyak marker yang diekspresikan pada PCa.

KATA KUNCI: kanker prostat, PSA, biomarker, 
nomogram, miRNA, proteomic, genomic, metabolomic

Abstract Abstrak

Introduction

Prostate cancer (PCa), also known as carcinoma of the 

prostate, is the development of cancer in the prostate, a 

gland in the male reproductive system. Globally, PCa was 

the second most common type of cancer and the ifth leading 
cause of cancer-related death in men. It was estimated 

about 233,000 new cases and 29,480 deaths from PCa in 

the United States in 2014, and 9,033 annual incidences with 
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would then increase the likelihood of a cell developing 

ensuing mutations (‘multiple hits’) that allow PCa cell to 
grow independently of androgen (androgen-independent 

PCa) (AIPC). There are many proposed mechanisms how 
the PCa can develop into AIPC (see Table 1).
 The primary causes and the molecular mechanisms 

underlying of PCa are poorly understood. This is the reason 

why there are no effective prevention strategies or treatment 

modalities to cure advanced PCa. Several aspects suggested 

involved in PCa development including: [1] higher oxidants 
and electrophiles exposure, both exogenous (environmental 

toxins and dietary) and endogenous (cellular metabolism, 

mitochondrial dysfunction, hypoxia) in individual with PCa. 

It was well-known that oxygen radicals can directly attack 

DNA, promoting chronic oxidative stress which results in 
lipid peroxidation and generation of wide range of other 

reactive products with the potential to damage DNA (18,19), 
[2] Phagocytic inlammatory cells release reactive oxygen 
and nitrogen species in attempts to eradicate infectious 

organisms (or perceived infectious organisms). Repeated 

bouts of this immune-mediated oxidant and nitrogenous 

injury over many years developed chronic inlammation 
and could play a major role in the pathogenesis of cancer 
(20). [3] Focal prostatic gland atrophy occurs primarily in 

Pathophysiology of PCa

6,841 mortality cases in Indonesia until year 2008.(1,2,3)

 PCa is very uncommon in men younger than 45, but 

becomes more common with advancing age. The average 

age at the time of diagnosis is 70.(4) However, many men 

never know they have PCa, this was because early PCa 

usually causes no symptoms, or often have symptoms 

similar to any prostatic diseases such as benign prostatic 

hyperplasia, or prostatitis. These include frequent urination, 

nocturia (increased urination at night), dificulty starting 
and maintaining a steady stream of urine, hematuria (blood 

in the urine), and dysuria (painful urination).(5,6)

 The great challenge for physicians is being able to 

accurately predict PCa prognosis and treatment response 

in order to reduce PCa-speciic mortality while avoiding 
overtreatment by identifying of when to intervene, and 

in which patients.(7) Although risk stratiication using 
Prostate-Speciic Antigens (PSA), Gleason grading and T 
stage have helped tremendously in determining if active 

surveillance is an appropriate option and in deining the 
optimal treatment for localized PCa (8), recent data suggest 

that many men with localized PCa, even of higher grade, do 

not enjoy a survival beneit from treatment (9). Thus, a large 
number of men are subjected to toxicities of treatment such 
as radiation or surgery with resulting decrement in quality 

of life with no potential beneit. The ability to predict with 
biomarkers which local therapy could provide the best 

chance of disease control and the patients susceptibility 

to toxicities of certain treatments would provide another 

chance to improve disease control outcomes and predict for 

toxicity from radiation.(10,11)

Prostate is a part of the male reproductive system that helps 

make and store seminal luid, about 3 centimeters long and 
weighs about 20 grams in adult men contains many small 

glands which make about 20 percent of the luid constituting 
semen. The prostate located in the pelvis, under the urinary 

bladder and in front of the rectum. It surrounds part of the 

urethra, the tube that carries urine from the bladder during 

urination and semen during ejaculation. That’s why prostate 
diseases often affect urination, ejaculation, and rarely 
defecation.(12-14)

 PCa happened when the cells of these prostate glands 

mutate into cancer cells. The growth of PCa depends on 

the ratio of cells proliferating to those dying. Androgen are 
the main regulator of this ratio between cell proliferation 

stimulating and apoptosis. This called androgen-dependent 

PCa (16). Somehow, a general increase in the mutation rate 

Figure 1.  Anatomy of prostate. (15) (Adapted with permission 
from Wikipedia).
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Table 1. Mechanisms of development of AIPC.(17) (adapted with permission from Nature Publishing Group).

the outer part of the gland, referred to as the peripheral zone, 

the preferred site for carcinoma, because most focal prostate 

lessions appear to be proliferative rather than quiescent. The 

proliferation is increased, while apoptosis is not (21-23). [4] 
The telomere shortening contribute in genetic instability and 

develop PCa (24). These understanding of PCa developing 

mechanisms was expected to be the foundation for researcher 

and clinicians to ind better biomarkers for diagnosing PCa 
in early stage, can accurately predict and monitor the tumor 

progression, and the response to treatments.

Accurate and timely assessment of PCa prognosis remains 
as one of the most challenges in PCa management. Rapid 

advances in molecular technology, and overwhelming 

number of proposed biomarkers nowadays still can not 

prevent many over-diagnosed of PCa and many patients 

are treated in an unnecessarily aggressive manner. Possible 

reasons are the complex nature of this disease.(25) 

Currently, PCa prognosis and treatment decision involved 

digital rectal examination,  PSA, and subsequent biopsies 
for histopathological staging, known as Gleason score.(26) 

However, each procedure has its shortcomings, and here, we 

will summarize some promising biomarkers for PCa.

 A biomarker is a measurable biological indicator that 
can provide information about the presence or progression 

of a disease or the effects of a given treatment. A clinically 
useful biomarker should be safely obtainable from the 

Identification of Biomarkers for PCa

patient by non-invasive means, have high sensitivity and 

speciicity, high positive and negative predictive values, 
and facilitate clinical decisions that allow optimal care to be 

administered.(27) 

PSA
PSA or human kallikrein-related peptidase 3 (hKLK3) is a 
33 kDa glycoprotein of the kallikrein family, encoded by 
the hKLK3 gene located in the long arm of chromosome 

19 within the region spanning q13.2–q13.4. In normal 
prostate, PSA is secreted from the prostatic epithelium into 
the secretory ducts to contribute to the seminal luid. In PCa, 
disruption of the basal-cell layer allows PSA to “leak” into 
the circulation resulting in elevated serum levels of PSA. 
Therefore, it is organ speciic and not disease speciic.(28-
30) PSA also can be elevated in other benign conditions of 
the prostate. This makes PSA not speciic to PCa though 
it has been regarded as the best cancer biomarker due to 

its high sensitivity.(31) This high false - positive rates 

increasing the risk of patients’ overdiagnosed and having 
unnecessary treatment or surgery, while insigniicantly 
decreasing the mortality due to PCa.(32) Positive predictive 

values for PSA have shown it to operate at 37%, with 25% 
of men in the ‘gray zone’ (4–10 ng/ml) having PCa (33) 
and 15% of individuals with PSA concentrations ≤4 ng/ml 
having PCa (34).

 To increase its accuracy, several methods of measuring 

PSA have been developed that include: monitoring personal 
PSA changes over time (PSA velocity); the ratio of PSA to 
prostate volume (PSA density) determined by transrectal 
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ultrasound; and PSA ranges that are speciic to age, measuring 
the splice isoforms and complexed forms of PSA (free PSA 
(fPSA) versus total PSA (tPSA)) which shown to have a 
predictive value for late-stage PCa, and help discriminate 

between PCa and Benign Prostatic Hypertrophy (BPH) 

for men with “gray zone” PSA.(35,36) PSA in circulation 
has also been found to be complexed to other binding 

proteins and this measurement has shown to add clinical 

utility. These include PSA bound to a2-macroglobulin, a1-
antichymotrypsin and a1-protease inhibitor. In addition, 

there are several post-translationally modiied cleavage 
isoforms of PSA that have been measured speciically.(37)

Gleason Score

Currently, Gleason grading is considered to be the best 

predictor of outcome. The Gleason score is a number 

derived from the biopsy specimen a pathologist sees under a 

microscope, based on the degree of loss of normal glandular 

tissue.(38) Pathologist will look for the most prominent cell 

type, (the primary Gleason grade), then the second most 

prominent cell type (the secondary Gleason grade). The 

numerical grade range from 1 to 5. The sum of the primary 

grade plus the secondary grade equals the Gleason score. 

Patients with Gleason scores 7 or higher are at increased 

risk of extraprostatic extension and recurrence after therapy.

(8,39).

 The multifocal nature of PCa, whereby different 

genetic alterations may exist in different tumor foci of a 

prostate, however, increases the likelihood of missing a 

high-grade focus. Furthermore, the risks associated with 
biopsies, such as bleeding and increased risk of infections 

potentially leading to sepsis, underscore the need for 

alternative approaches for accurate prognosis.(40)

hKLK2
hKLK2 is a serine protease enzyme from the kallikrein 
family of serine proteases, the same gene family as PSA, 
and shows 80% sequence homology with PSA, although 
its enzymatic activities differ.(41,42) Tissue expression of 

KLK2 has been shown to correlate well with PCa progression 
and tumor volume and has been studied as a peripheral 

marker in serum in combination with PSA and fPSA.(43-
45) KLK2 has also been shown to have independent clinical 
utility as a prognostic indicator for biochemical recurrence 

in men with PSA ≤10 ng/ml.(46)

Prostate Cancer Antigen 3 (PCA3)
PCA3, also known as Differential Display Code 3 (DD3), is 
a noncoding RNA that speciically expressed in the prostate 
and highly expressed in over 90% of PCa tumors compared 

with BPH specimens.(47-49) PCA3 can be detected in 
urine and prostatic luid.(50) A ratio of the PCA3:PSA 
RNA, known as the PCA3 score, is used, in combination 
with other clinical information, to guide decisions on repeat 

biopsy in men who are 50 years of age or older and who 

have previously had at least one negative prostate biopsy 

(PBX).(51)

Nomograms for Predicting PCa
According to current European Association of Urology  
(EAU) guidelines, the need for PBX should be further 
determined on consideration of patient’s biological 
age, potential comorbidities (American Society of 
Anesthesiologists [ASA] Index and Charlson Comorbidity 
Index), and the therapeutic consequences (risk stratiication), 
to prevent a signiicant proportion of men from being 
exposed to unnecessary procedures and associated 

psychological distress.(52)

 To improve prediction of PBX outcome and better 
counsel patients either to undergo or forgo PBX, statistical 
models have been developed that combine the strengths 

of several clinical variables. There are different forms 

of prediction models, for example, nomograms or risk 

calculators. Risk calculators are based on logistic regression, 

resulting in a risk score to support clinical decision-making 

for PBX.(53-55) Ideally, a nomogram should be capable of 
identifying PCa at PBX without missing men with high-
grade PCa, and preventing a signiicant proportion of men 
without, or with insigniicant, PCa from undergoing PBX. 
The intention is to reduce disease morbidity and mortality by 

detecting signiicant PCa at an early stage, and at the same 
time to avoid overdiagnosis as well as overintervention.(56)

 Nomogram prediction can never be perfect, which 

is shared with all prognostic models and is mainly due to 

lack of consideration of all predictive risk factors and the 

inability to assemble all known prognostic factors optimally.

(57) Some tests that may have the potential to hold up to 

their promise when it comes to prediction of PCa risk are the 

Prostate Health Index (PHI), PCA3 and a human kallikrein 
panel.(56) 

 The PHI is a new formula that combines all three 

PSA isoforms (tPSA, fPSA and [-2]proPSA or p2PSA) into 
a single score that can be used to aid in clinical decision-

making.(58) PHI is calculated using the following formula: 

(p2PSA/fPSA) × √PSA. Intuitively, this formula makes 
sense, men with a higher tPSA and p2PSA with a lower 
fPSA are more likely to have clinically signiicant PCa.(59) 
Combined serum hKLK2 to three other kallikreins (tPSA, 
fPSA and intact PSA) called as the ‘four kallikrein panel’ 
demonstrated improved predictive accuracy of PBX outcome 
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in men with elevated tPSA levels. Predictive accuracy 
increased from 72 to 84% in an external validation cohort, 

leading to a reduction of unnecessary biopsies (60). Only 

four urinary PCA3-based nomograms have been previously 
published, mostly combining patients’ age, Digital Rectal 
Examination (DRE), PSA, fPSA, sampling density and PCA-
3. Two are proposed to all patients, whatever the medical 

history of previous biopsies, and were externally validated: 

the updated version of the PCa Prevention Trial (PCPT) 

risk calculator  and the graphically available nomogram 

published by Chun et al.(61-63) Another is speciically 
dedicated to patients scheduled for repeat biopsy (64), while 

the last one, very recently published by Hansen et al. (65), 

has been developed for guiding the initial biopsy decision. 

Both Hansen’s and Chun’s nomograms proved to provide 
signiicant clinical beneit without missing a too important 
proportion of high-grade PCa (HGPCa).(62,65)

Homeobox-containing Transcription Factor Engrailed-2 
(EN2)
The Homeobox gene family incorporates over 100 members, 

which each encode a homeo-domain-containing protein, 

this domain itself being a 61 amino acid protein. This 

speciic domain acts as a binding site for other proteins to 
enable activation or repression of downstream target genes. 

EN2 is a homeobox-containing transcription factor secreted 

speciically by PCA into urine, where it can be detected by 
a simple ELISA assay.(66)
 EN2 was originally identiied as a potential oncogene in 
breast cancer, as forced overexpression of the gene promoted 

malignant characteristics in mammary cell lines (67), but 

then hypermethylation of EN2 has also been identiied in 
several cancers, including lung and astrocytoma, although 

its speciic role is yet to be characterized.(68,69) EN2 
protein expression irst conirmed in PCa tissue (and the 
absence of EN2 in normal prostate or non-cancer prostatic 

disorders) in 2011.(70)  Secretion and deposition of EN2 

protein into urine by men with PCa was hypothesized and 

subsequently conirmed by western blot analysis of urinary 
supernatant. An ELISA test has been developed for the 
accurate quantitation of urinary EN2, and a point of  care 

test has been developed and is being evaluated.(70)

 Many studies showed the potential utility of urinary 
EN2 not only as a diagnostic biomarker for PCa, but also as 

an accurate indicator of PCa volume. Noninvasive measures 

of cancer volume will be extremely useful in aiding the 

urologist to offer radical treatment versus advising an 

active surveillance approach. The EN2 test is a robust, 

simple, low-cost urine-based test. EN2 protein in urine 

is stable for at least 4 days at room temperature allowing 

patients samples to be collected and transported routinely 

at low cost. However, there are a number of remaining 

unresolved issues. These include the need to understand 

the EN2 expression regulation and secretion by cancer 

cells, determining whether the cut-off level of 42 ng/ml is 
optimal, the correlation of EN2 with tumor grade, deining 
the role of EN2 in monitoring patients after radiotherapy or 

hormonal therapy and, probably most immediately, whether 

EN2 secretion in some way can be used in conjunction with 
serum PSA to improve diagnostic eficacy (71). 

ETS-related Gene (ERG)

Transmembrane protease, serine 2 (TMPRSS2) and E26 
transformation-speciic (ETS) transcription factors fusions 
in PCa were initially discovered by cancer proile outlier 
analysis to be present in 80% of prostate tumors studied.(43) 

Since this initial discovery, many other similar gene fusions 

have been discovered associated to PCa.(72) Tomlins et al. 

(73) irst reported the occurrence of a recurrent TMPRSS2-
ERG fusion transcript in those with prostate tumors. These 

fusions were detectable in 42% of urinary expressed 

prostatic secretion samples from men with prostate cancer, 

and less in prostatic intraepithelial neoplasia (PIN) and BPH 

tissues (74). Another area in which the clinical utility of the 
cancer-speciic TMPRSS2–ERG fusion product is currently 
being extensively investigated is urine-based detection 

in a preoperative setting for early diagnosis of PCa and, 

potentially, to distinguish indolent versus aggressive disease 

(75-78). The urine assay measures TMPRSS2–ERG mRNA 
relative to PSA mRNA (TMPRSS2–ERG score) in post-
digital rectal exam urine.(75,76)

 Two important limitations of ERG was critical to be 

aware are: irst, the intertumoral (between different cancer 
foci) heterogeneity of ERG expression might limit its use 

in a preoperative (biopsy) setting; second, the molecular 

heterogeneity of PCa arising from different zones of the 

gland impacts on the prevalence of ERG rearrangement 

status. Then, the combination of TMPRSS2-ERG score 
with another multiple urine biomarker may increase the 

diagnostic and prognostic value of single assays and may 

reduce the number of prostate biopsies performed in the 

future.(79)

Urinary Biomarkers: α-Hepatocyte Growth Factor 
(αHGF), Insulin-like growth factor-binding protein 3 
(IGFBP3), and Osteopontin (OPN)
Protein urinary markers have more potential for functionally 

interrogating the tumor, as prostatic products are directly 

secreted into the urinary tract, theoretically increasing the 

possibility of detection developed by ELISA, and do not 
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require exfoliated cancer cells to be present for detection. A 
combination of markers may provide improved diagnostic 

and prognostic accuracy, thus alleviating unnecessary 

procedures, cost and morbidity.(80)

 Three speciic proteins as biomarkers for PCa are: 
αHGF, IGFBP3 and OPN. These proteins have yet to be 
identiied as urinary biomarkers in PCa, but have been 
shown to play key roles in PCa initiation and progression. 

HGF is a pleiotropic cytokine that has been implicated in 
angiogenesis, adhesion, migration, invasion and proliferation 

of PCa cells.(81) Elevated quantities of activated HGF have 
been detected in serum of PCa patients.(82) Similarly, 

elevated levels of c-Met, the tyrosine kinase receptor for 

Figure 2. (a) PCA3 nomogram predicting 
cancer on prostate biopsy; (b) local 

regression nonparametric smoothing 

plots showing the calibration of the 

PCA3 nomogram; (c) local regression 
nonparametric smoothing plots showing 

the calibration of the base nomogram. 

Instructions for physicians: To obtain 

nomogram-predicted probability of 

prostate cancer, locate patient values 

at each axis. Draw a vertical line to the 
‘‘Point’’ axis to determine how many 
points are attributed for each variable 

value. Sum the points for all variables. 

Locate the sum on the ‘‘Total Points’’ 
line to be able to assess the individual 

probability of cancer on prostate biopsy 

on the ‘‘Probability of prostate cancer 

at biopsy’’ line. Instructions for readers: 
Perfect predictions correspond to the 

458 line. Points estimated below the 458 line correspond to 

nomogram overprediction, whereas points situated above the 458 

line correspond to nomogram underprediction. A nonparametric, 
smoothed curve indicates the relationship between predicted 

probability and observed frequency of prostate cancer on initial 

biopsy. Vertical lines indicate the frequency distribution of predicted 

probabilities.(62) (Adapted with permission from Elsevier).

HGF, have been detected in the urine of PCa patients. 
(83,84) Current inding shown a signiicant overexpression 
of αHGF in PCa urine samples as compared with controls, 
supported by evidence of similar indings in serum and 
plasma HGF biomarker studies.(83,85) In particular, the 
mechanism of elevating αHGF can be associated with 
the pathway involving its receptor, c-met, and proteolytic 

enzymes, HGFA and matriptase, which cleave HGF to form 
a biologically active heterodimer.(82) This suggests that 

aHGF levels increase to initiate the cancer phenotype, but 
αHGF cannot discriminate between localized and metastatic 
disease.(86)

 IGFBP3, a component of the IGF system, has been 
reported to be involved with cellular differentiation, survival 

and proliferation; recent studies have shown higher levels 

of plasma IGFBP3 to correlate with an increased likelihood 
of harboring PCa.(87) Urinary αHGF and IGFBP3 can be 
used to differentiate between individuals with and without 

cancer, while OPN levels can be used to identify those with 

more aggressive disease.

 OPN, also known as secreted phosphoprotein 1 (SPP1), 

is an extracellular matrix protein with a number of diverse 

roles, including blood vessel formation and tumorigenesis.

(88) OPN has been found to have signiicantly increased 
expression at the mRNA and protein levels in patients 
with aggressive PCa.(89) Thalmann et al. found levels of 

urinary OPN to be signiicantly higher in metastatic samples 
compared with localized disease and normal samples, 
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such, a surrogate marker of angiogenesis. CEP irst isolated 
in peripheral blood by Asahara and colleagues in 1997.(101) 
Unlike CECs, CEPs are mobilized from bone marrow (BM). 
A population of CEPs have clonogenic and proliferative 
potential (endothelial colony   forming cell).(102) CEPs are 

relatively rare in healthy individuals. Within the vessel wall, 
BM -derived CEPs are thought to merge and differentiate 
into endothelial cells.(103)

 Many factors contribute to the conlicting body of 
evidence regarding CEC and CEP levels as biomarkers in 

cancer. Among these, the most signiicant is the differences 
in enumeration methodology. No one marker can uniquely 

identify CECs and CEPs, and there is no agreement on 

which combination of markers can identify them reliably, 

although it is reasonable to hypothesize that these cells 

have the potential to be valuable biomarkers, given the 

importance of angiogenesis in cancer. The lack of research 

in this area probably relects the methodological challenges 
of enumeration of these cells rather than a lack of scientiic 
interest.(104)

 Platelets play a number of signiicant roles in metastatic 
disease.(105-107) One role is the facilitation of certain 

steps of hematogenous metastasis.(108) Platelets actively 

signal to tumor cells via the transforming growth factor β 
(TGFβ) and nuclear factor kB (NF kB) pathways. Inhibition 

of these pathways protects against lung metastasis in vivo.

(109) Metastasis can be signiicantly reduced through 
depletion of platelets or inhibition of tumor cell  induced 

platelet aggregation.(107) Platelets are also able to protect 

tumor cells from attack by the immune system, by limiting 

the ability of natural killer cells to lyze tumor cells in vitro 

and in vivo.(107) Further investigation showed there was 
no difference in total platelet count between patients who 

did and did not recur (110), but a subset of platelets showed 

signiicantly correlated with early biochemical recurrence 
in PCa after prostatectomy. Although platelets have a well  
established role in cancer, some large investigation in 

exploratory studies and further evaluation in prospective 

trials should be established before recommendations can be 

made regarding their use in routine PCa care.(104).

Circulating Tumor Cells (CTCs)

As a tumor progresses, it sheds its cells into the bloodstream 
and these cells may form distant metastases. Detecting 
and measuring CTCs by isolating them and performing 

reverse transcriptase polymerase chain reaction (PCR) of 

PCa - speciic genes has shown promise in the diagnosis 
and prognosis of PCa. Changes in CTC levels may be more 

accurate than PSA in predicting outcomes for castration-
resistant prostate cancer (CRPC).(111) Patients with 

which conirm previous indings that have linked OPN to a 
malignant phenotype.(90)

Tumor Vascularity in PCa
Tumors require an increased blood supply for growth. 

Inducing angiogenesis is one of the hallmarks of cancer (91) 

and a critical mechanism behind tumor dormancy (92). The 

transition from dormancy to outgrowing vascularized tumor 

occurs when the balance tips in favor of angiogenesis. This 

is referred to as the ‘angiogenic switch’ and is controlled 
by both anti-angiogenic and pro-angiogenic regulators 

(93). Neovasculature can arise from the sprouting of new 

vessels from existing ones (angiogenesis), or de novo vessel 

formation from circulating endothelial precursor cells 

(vasculogenesis).(91) Tumor vessels are characteristically 

heterogeneous, in contrast to normal mature blood vessels.

(94)

 Tumor vascularity in PCa has been linked to disease 

aggressiveness, where highly vascularized tumors are more 

responsive.(95)  Microvessel density (MVD) has been used 
as a histological marker of cancer vasculature. MVD can 
be calculated using analysis of vascular ‘hot spots’, random 
area selection, larger representative areas of the specimen 

or even whole  specimen analysis, and automated analysis 

was used to reduce bias.(96-98) Aggressive prostate tumors 
are seen to form vessels primitive in morphology and 

function. Poorly differentiated tumors have greater MVD, 
irregularity of vessel lumen and smaller vessels. In addition, 

tumors exhibiting the smallest vessel diameter or the most 

irregularly shaped vessels have been associated with the 

development of lethal disease.(99) However, MVD is not 
consistent across all studies.(96) By contrast, transition 

zone tumors display a large variability in microvascular 

parameters. They can be both hypo - or hyper- vascularized 

compared with normal transition zone tissue.(98) MVD 
failed to provide an independent prognostic factor when 

combined with standard predictors in a multivariable 

analysis.(100) Therefore, MVD has a limited application in 
the clinical setting.

 Circulating endothelial cells (CECs) and circulating 

endothelial progenitors (CEPs) comprise subsets of cells 

that are different functionally and phenotypically. Both 

relect angiogenesis and have been heralded as promising 
noninvasive biomarkers for the prediction of prognosis 

and evaluation of treatment response in cancer. CECs are 

mature, terminally differentiated cells that are shed from the 

vessel wall into the circulation in response to injury or as a 
result of endothelial dysfunction. However, the precise role 

of CECs in malignancy is unclear. At this stage, CECs are 
best understood as a product of vascular turnover and, as 
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a CTC count of more than 5 CTCs/7.5 mL blood have a 
signiicantly reduced overall survival compared to patients 
with less than 5 CTCs/7.5 mL blood. (112,113) PCa CTCs 
are reported to relect those mutations present in the primary 
tumor e.g., TMPRSS2-ERG fusions, androgen receptor 
mutations, and Phosphatase and Tensin Homolog (PTEN) 

deletion which, together with PSA, alpha-methylacyl-CoA 
racemase (AMACR) and androgen receptors, can predict 
the response to treatment.(114,115) The number of CTCs 

present in whole blood might allow for determination of 

cancer burden, and provide a more readily accessible source 

of molecular information of the primary tumor. Despite their 
promise and proposed function, CTC detection remains a 

major technical challenge (116) and their clinical relevance 
remains controversial. In addition, the labor-intensive nature 

of isolating CTCs, high cost and the extremely low numbers 

in blood is a technical hurdle, especially in the early stages 

of PCa.(117)

TGFβ-1
TGF-β1 is a ubiquitous growth factor that has been 
implicated in several molecular processes relating to cell 

proliferation and differentiation, cytokine response during 

inlammation and new blood vessel growth. TGF-β1 has 
been shown to be overexpressed in PCa tissue specimens 

and correlates with tumor grade and metastasis.(118) 

TGF-β1 also correlate with prostate tumor extravasation 
and biochemical recurrence.(119) Furthermore, circulating 
TGF-β1 has been shown to be elevated in PCa patients.
(120) In combination with other markers, TGF-β1 could 
prove to have clinical utility for PCa prognosis.

Autoantibodies in PCa
Cancers are known to activate the cellular immune system, 

including the mounting of an autoimmune response 

to antigens presented by the tumor.(121) Detection of 
autoantibodies produced against AMACR in PCa patients 
in the gray zone of 4–10 ng/ml were shown to stratify PCa 
from non-PCa with a sensitivity of 62% and speciicity of 
72%.(122)

AMACR

Immunohistological markers of PCa are also important in 

distinguishing between prostate tumor stages during biopsy 

analysis. AMACR is an enzyme involved in the synthesis 
and metabolism of fatty acids and has been shown to have 

high expression in prostate tissues, about 80-100% in 

PCa tissues (123), detected in blood and urine with a high 

sensitivity and speciicity (122,124,125). AMACR also 
correlates with PCa metastasis and biochemical recurrence 

when levels are lowered, and its inhibitors have potential to 

provide a novel treatment for CRPC. However, AMACR is 
also expressed in many other tissues, thus limiting its utility 

as a tissue marker for PCa.(124)

Cell-free circulating DNA or mRNA are attractive to 
clinicians and scientists because of their potential for 

minimally invasive detection and monitoring of disease 

pathogenesis, but some technical challenges in terms of 

sensitivity, speciicity and/or nucleic acid stability are still 
in considerate currently. In contrast to mRNA, circulating 
DNA-based tumor markers exhibit greater stability 
and enhanced tumor speciicity, potentially enabling 
tumor grading/staging, prognostic estimation and aiding 
therapeutic decision-making.(126) In prostate cancer, three 

types of DNA alterations have been investigated as plasma/
serum biomarkers. These are mitochondrial DNA (mtDNA) 
mutations (127-130), microsatellite instability (MI) (131-
135), and gene promoter hypermethylation (132,135-145).

Hypermethylation Event

Hypermethylation of CpG islands within the promoter of the 

gene encoding GSTP1, a tumor-suppressor protein involved 

in detoxiication processes, has been described as one of 
the earliest events in prostate carcinogenesis and leads to 

loss of gene expression.(126) Measurements in urine after 
prostatic massage have shown that decreased expression of 

GSTP1 mRNA correlates with positive biopsies.(146,147) 
In addition, the promoter methylation status of GSTP1 in 

urine has been measured and shown to have speciicities 
of 93–100% for PCa detection and sensitivities of 21.4–
38.9%.(148-151) However, it was shown in other studies 

that after prostatic massage the sensitivity increased to 75%.

(152,153)

MI

Microsatellites are repeated sequences of DNA made of 
repeating units of 1-6 base pairs in length. Microsatellite 
stretches may be disrupted by base substitutions (imperfect 

microsatellites) or insertions (interrupted microsatellite). 

MSI structure consists of repeated nucleotides, most often 
seen as GT/CA repeats. A higher number of repeats causes a 
higher mutation rates (154).

 Increased frequency of MI markers was identiied in 
patients with metastatic prostate cancer.(131) Introduction 

of additional markers of MI or gene methylation may be 

Circulating Nucleic Acid as 

Biomarkers of PCA
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required to increase sensitivity of prostate cancer detection 

and overcome the high degree of tumor heterogeneity that 

is often observed in prostate cancer, and to accommodate 

differences in clearance rates of circulating tumor-associated 

DNA.(126)

mtDNA
Jeronimo et al. sequenced the D-loop region, 16S ribosome  
RNA (rRNA) and complex I of mtDNA in primary prostate 
tumors and in patients’ urine and plasma, to investigate 
whether mtDNA is mutated in prostate cancer. Twenty 
mtDNA mutations were described in primary tumors, and 
where mtDNA mutations were identiied in plasma, these 
were also found in primary tumors of affected patients. 

However, such mutations were a relatively rare event, 

with mtDNA mutations identiied in only three of 16 
patients examined, limiting the diagnostic potential of such 

mutations.(128)

 mtDNA appears to be of greater prognostic than 
diagnostic utility in prostate cancer serum/plasma, 
particularly in advanced prostate cancer, where patients 

who did not survive to 2-year follow-up had 2.6-fold 

higher circulating mtDNA level at initial presentation than 
surviving patients.(129)

Circulating mRNA
The utility of circulating mRNAs as biomarkers is hampered 
by the low speciicity of quantitative PCR (qPCR)-based 
assays, and use of target mRNAs that are prostate-speciic, 
but not always prostate cancer-speciic. Circulating mRNA 
is less stable than circulating DNA, resulting in lower 
abundance of mRNA targets for qPCR applications. Thus, 
circulating mRNAs have demonstrated potential for dis- 
tinguishing patients with organ-conined disease from those 
with metastatic disease (126).

 BMP6 expression has been demonstrated to be high in 
primary tumors of patients with metastatic prostate cancer 

and low or undetectable in individuals with localized, 

nonmetastatic prostate cancer and in benign prostate 

tissue, and appears to play a key role in promotion of bone 

metastasis by enhancing osteoblastic and invasive PCa 

abilities of prostate cancer cells. Plasma BMP6 mRNA 
levels, in combination with PSA, can be used as an indicator 
of disease progression and/or treatment response.(155,156)
 The lengths of the telomeric ends of chromosomes 

are maintained by the enzyme human telomerase reverse 

transcriptas (hTERT). Overactivity of hTERT has been 

shown to be present in 90% of PCa tissues.(157) Patients 

with high levels of plasma hTERT mRNA demonstrated 
reduced recurrence-free survival compared with those with 

low levels, an effect not observed for plasma PSA.(158) 
AGR2 mRNA may also have a role as a potential biomarker 
for prostate cancer. The protein product of this gene is 

associated with metastatic progression and cell migration in 

prostate cancer cells, and urine anterior gradient 2 (AGR2) 
levels have been investigated as a putative diagnostic 

prostate cancer biomarker.(159,160) AGR2 mRNA levels 
are signiicantly elevated in patients with metastatic prostate 
cancer, and are highest in patients with clinicopathological 

indicators of NP-CRPC (161). AGR2 mRNA levels may be 
used as an aid to noninvasively identify patients with NP-

CRPC and to subsequently assist with treatment planning 

(161).

Circulating micro RNA (miRNA)
miRNAs are naturally occurring single-stranded RNA 
molecules, 19-25 nucleotides in length, PCa able of post-

transcriptional regulation of target mRNAs to which they 
bind, at complementary sequences most frequently in the 

3'-untranslated region. Reduced levels of the encoded 
protein result from subsequent translational repression or 

mRNA degradation. Furthermore, miRNAs can function 
as either oncogenes, encouraging tumor growth, or tumor 

suppressors, repressing it collectively termed oncomirs.

(162) The desirable properties of miRNAs in the context 
of circulating biomarkers include stability (they are stable 

even in archival samples) and availability (they have been 

isolated from most body luids).(163) Tumor cells release 
miRNAs into the blood and circulating expression proiles 
of miRNAs are altered in many tumor types, suggesting 
that miRNA proile can be informative about the disease.
(164,165) Furthermore, detection and quantitation can be 
relatively easily achieved in low volumes of blood serum or 

plasma qPCR, which is both speciic and sensitive.(166) PCa 
associated miRNAs in serum allow for minimally invasive 
diagnostic separation of samples from tumor burdened and 

healthy patients. miR-21, miR-125b, miR-221 and miR-222 

are part of the oncogenic miRNA family that are upregulated 
in human aggressive PCa.(167) miR-21 is overexpressed 

in PCa and other tumors acting as an oncogenic regulator 

leading to tumor growth (168) by silencing PTEN and 

other tumor suppressing genes.(169) The miR-200 family 

has recently generated interest in PCa research due to their 

lowered expression in PCa. A study of a Chinese population 
(140) identiied a panel of ive miRNA markers (let7-c, 
let7e, miR-30c, miR-622 and miR-1285) that differentiated 

PCa from benign and healthy control samples. However, 

for a larger clinical utility, these circulating nucleic acid 

biomarkers require extensive and detailed standardization 

and conirmation.
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Early diagnosis and accurate prognosis of organ-conined 
PCa coupled with identiication of predictive markers that 
can be identiied to guide treatment options is still the 
goal that the PCa research community is striving towards. 

The discovery of novel noninvasive markers would aid in 

this effort tremendously by reducing biopsy procedures, 

surgeries and treatments for men who would not see a beneit. 
Currently, no single test can achieve the above goals and we 

predict that one single biomarker will not be able to fulill 
the above requirements for the next PCa screening tool. 

Due to the heterogeneity of the disease, no one biomarker 
will be diagnostic and prognostic for every patient. On this 

basis, we summarize that the next biomarkers for PCa will 

most likely be an assay employing multiple biomarkers 

assayed in combination using protein and gene microarrays, 

containing markers that are differentially expressed in PCa.

The emergence of the ‘omics’ era has created great insight 
into the mechanisms and networks involved in disease 

progression and etiology. Speciically, proteomics has 
provided information on the post-translational fate of 

genes, through the analysis of protein expression levels 

and post-translational modiications. A challenge with 
proteomic analysis of biological luids such as plasma and 
serum is the large dynamic range of protein concentrations.

(171) Increasing improvements in genomic technologies 

facilitated the migration from array-based methods to ‘next-

generation’ sequencing platforms. Metabolomic analysis of 
PCa tissues and urine identiied that sarcosine tissue levels 
correlate with PCa progression and metastasis.(172)

Proteomic, Genomic and Metabolomic 

Approaches to PCa Biomarker Discovery
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