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Abstract

ACKGROUND: The
eukaryotic cells are restrained from intercellular
been

challenged by recent reports on nanotubes, exosomes,

prevailing view that

exchange of genetic information has
apoptotic bodies, and nucleic acid—binding peptides that
provide novel pathways for cell —cell communication, with
implications in health and disease.

CONTENT: Microparticles (MPs) are a heterogeneous
population of small plasma membrane structures that
serve as Important signaling structures between cells.
MPs are composed of a phospholipid bilayer that exposes
transmembrane proteins and receptors andencloses cytosolic
components such as enzymes, transcription factors, and
mRNA derived from their parent cells. Growing evidence
suggests that MPs regulate inflammation, stimulate
coagulation, affect vascular functions and apoptosis, and
can also play a role in cell proliferation or differentiation.
MPs circulate in the bloodstream, can be detected in the
peripheral blood, and may originate from different vascular
cell types (eg, platelets, monocytes, endothelial cells, red
blood cells, and granulocytes).

SUMMARY: Cells of wvarious types small

membrane vesicles called MP on their activation, as well

release

as during the process of apoptosis. The properties and roles
of MP generated in different contexts are diverse and are
determined by their parent cell and the pathway of their

generation, which affects their content. MP are involved in
multiple cellular functions, including immunomodulation,
inflammation,coagulation.and intercellularcommunication.
MPs are able to deliver molecular signals in the form of
lipids, proteins, nucleic acids, or functional trans-membrane
proteins from the parent cell to distantly located targets.
From a clinical point of view, MP may serve as biomarkers
for disease status and may be found useful for developing
novel therapeutic strategies.

KEYWORDS: Microparticles, Microvesicle, Membrane
Remodeling, Intercellular communication.
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Introduction

Cells communicate and exchange information by
different mechanisms. They may communicate by (i)
secreted growth factors, cytokines, chemokines and small
molecular mediators (e.g., nucleotides, nitric oxide ions,
bioactive lipids), (ii) cell-to-cell adhesion contacts that
are mediated by sets of specialized adhesion molecules
and (iii) exchanging information by means of tunneling
nanotubules (1-6). However, attention is now being
focused on cell-to-cell communication that involves
circular membrane fragments called microparticle (MP)
(7-12), a mechanism that for many years has been largely
overlooked.
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It is well established that virtually all eukaryotic cells
possess the fundamental capacity to release small vesicles,
generally referred to as MPs. Existence of MPs, which
allow a selective and concentrated release of the cellular
content into the surrounding milieu, was first noticed by
Wolf in 1967 as formation of a procoagulant “dust” around
activated blood platelets (13). Although MPs are present
in peripheral blood of healthy individuals, with platelet
MPs being the most abundant and representing 70% to
90% of all circulating MPs (14,15) marked elevations
occur in many disease states. These conditions include
autoimmune disorders, atherosclerosis, malignancies, and
infection among others (14,16-18).

Shedding of membrane-derived MPis a physiological
phenomenon that accompanies cell activation and growth
(7-12.15,19). Interestingly, rapidly growing cell lines tend
to secrete more MP than slowly growing ones. Generally,
the number of MP shed from cells increases upon (i) cell
activation, (ii) hypoxia or irradiation, (iii) oxidative injury,
(iv) exposure to proteins from an activated complement
cascade and (v) exposure to shearing stress (7-12,15,19).
MP shedding depends on an increase in cytosolic Ca* and
degradation of the membrane skeleton.

Although a precise definition of MPs remains
elusive, they are commonly described as a heterogeneous
population of spherical structures with a diameter of 100
to 1000 nm, which are released by budding of the plasma
membrane (ectocytosis) as phospholipid vesicles known
to express antigens specific of their parental cells. This
characterization allows differentiation from exosomes,
referring to preformed vesicles with are diameter of less
than 100 nm that are stored intracellularly in multivesicular
compartments and are secreted when these endosomal
compartments fuse with the cell plasma membrane
(20,21). Continuing efforts in deciphering the signature
of circulating MPs could also lead to the development of
new diagnostic strategies, with MPs emerging as unique
potential sources of disease-related and possibly predictive
biomarkers (22).

Microparticle (MP)

In  multicellular  organisms, homeostasis results
a subtle balance between cell proliferation and
degenerescence. Cells differentiate, expand, fulfill
particular functions, then undergo programmed death
and are finally cleared by phagocytosis. At each stage of
its life, the cell is subjected to a variety of stimulations
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leading to the release of submicron fragments from the
plasma membrane, usually termed microvesicles or
microparticles (MPs). MPs hijack membrane constituents
and cytoplasmic content and survive the cell (10).

MPs are fragments shed almost spontaneously from
the plasma membrane blebs of virtually all cell types when
submitted to a number of stress conditions, including
apoptosis. MP release is an integral part of the membrane-
remodeling process in which the asymmetric distribution
of constitutive phospholipids (PL) between the two
leaflets is lost. After having long been considered ‘cell
dust’, MPs have more recently been shown to reflect in
vitro cell stimulation, and testify to cellular activation and/
or tissue degeneration occurring in vivo under a variety
of pathophysiologic circumstances. Besides their marker
characteristics, MPs have been identified as true vectors in
the transcellular exchange of biologic information (23).

On one hand, deleterious MP stemming from activated
cells can elicit an adverse response from other cells,
themselves undergoing membrane vesiculation, leading
to pathogenic amplification. On the other hand, since they
are thought to reflect a balance between cell stimulation,
proliferation, and death, it is conceivable that they are
discerned as sensors for the maintenance of homeostasis in
multicellular organisms. Because vesiculation is an integral
part of the plasma-membrane remodeling process, with the
transverse migration of procoagulant phosphatidylserine
from the cytoplasmic to the exoplasmic leaflet as the central
event, the majority of released MPs are thought to fulfill a
hemostatic function under physiologic conditions. This is
particularly true when they originate from platelets, with
possible deviation towards thrombosis when produced in
excess (23).

It has been postulated that the phenotype of stem cells
is reversibly changing during the cell cycle transit until a
terminal-differentiating stimulus is encountered at a cycle-
susceptible time. In this model the cell cycle status and the
microenvironmental ex posure to the products of contiguous
cells may play key roles in stem cell plasticity (29). The
same stem cell may show different phenotypes in different
functional states, depending on the cell cycle phase. This
dynamic context is regulated by the microenvironment
and in particular the MP-mediated transfer of genetic
information between cells (30).

Transfer of genetic information from injured cells
may explain stem cell functional and phenotypic changes
without the need for trans-differentiation into tissue cells.
On the contrary, transfer of genetic information from
stem cells may redirect altered functions in target cells
suggesting that stem cells may repair damaged tissues
without directly replacing parenchymal cells (26). MPs
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Figure 1. Cellular MP: a disseminated storage pool of bioactive effctors (Adapted with

permission from American Physiol Society).

can therefore be considered a disseminated storage pool
of bioactive effectors, the nature and proportion of the
latter accounting for duality, more particularly evidenced
in vascular disease, inflammation, and immunity (10).

Thus, MPs are vesicles that bud off from cells, lack
a nucleus, contain a membrane skeleton and are defined
by their size and expression on their surface of antigens
specific of parental cells (27-29). These phospholipid
vesicles are less than 1 pm of diameter. To reliably
define MPs, the terms exosomes and ectosomes need to
be introduced. Exosomes originate from multivesicular
bodies and exocytosis of endocytic bodies, and ectosomes
directly originate from the membrane surface (15, 16).
In this review, we will mainly use the commonly used
term “microparticles”, keeping in mind their definition as
ectosomes (30,31).

MPs display a broad spectrum of bioactive substances
and receptors on their surface and harbor a concentrated set
of cytokines, signaling proteins, mRNA, and microRNA.
Recent studies provided evidence for the concept of MP as
veritable vectors for the intercellular exchange of biological
signals and information. Indeed, MP may transfer part
of their components and content to selected target cells,
thus mediating cell activation, phenotypic modification,
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and reprogramming of cell function. Because MP readily
circulate in the vasculature, they may serve as shuttle
modules and signaling transducers not only in their local
environment but also at remarkable distance from their
site of origin. Altogether, this transcellular delivery system
may extend the confines of the limited transcriptome and
proteome of recipient cells and establishes a communication
network in which specific properties and information
among cells can be efficiently shared (22).

Circulating MPs in blood originate from different
cells (i.e. red blood cells, granulocytes, monocytes,
lymphocytes, platelets and ECs) and their blood levels
result from the balance between their rates of release from
cells and their clearance from the circulation. Changes
in MP levels in circulating blood may be due to some
pathological conditions. Platelet — derived MPs (PMPs)
are the most abundant, representing about 70-90% of all
circulating MPs (17).

Hence, MP could serve as potential diagnostic markers
in laboratory medicine and the development of new
diagnostic strategies based on the analysis of number and
molecular signature of circulating MP can be anticipated in
the near future (32).
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Formation of MPs

Generation and shedding of MPs occurs during
biological processes of considerable diversity, including
not only cellular activation following stimulation
with proinflammatory, prothrombotic, or proapoptotic
substances, or exposure to high shear stress as present
in arteries with a severe stenosis, but also cellular
differentiation, senescence, or apoptotic cell breakdown
(14,33,34).

The plasma membrane is a well-structured entity
characterized by a controlled transverse distribution of
lipids and proteins between the two leaflets but also by a
lateral organization in domains termed “rafts.” Following
stimulation, a general redistribution occurs, leading to raft
structuration, phosphatidylserine externalization, and MP
release (10).

In steady-state, the cell membrane is asymmetric
regarding the composition and the distribution
of phospholipids in its inner and outer layers:
phosphatidylcholine and sphingomyelin are located
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in the outer layer, while phosphatidylserine (PS) and
phosphatidyl-ethanolamine (PE) are present in the inner
layer. This asymmetric distribution of phospholipids in
the membrane is maintained by a three piece enzyme
system: flippase, floppase and scramblase. Flippase
is an aminophospholipid translocase that specifically
translocates PS and PE from the outside to the inside of
the bilayer membrane. Floppase transports phospholipids
from the inner to the outer leaflet. Floppase does not
specifically act on transport of aminophospholipids and
probably works together with flippase. Scramblase, whose
role is thought to be the transportation of phospholipids
between the two monolayers of the cell membrane, is
inactive in steady-state (10,23,35).

The exposure of procoagulant phospholipids and the
shedding of MPs are cellular responses that depend on
activating conditions. Notably, membrane remodeling and
PS externalization is dependent on an increase in cytosolic
calcium. Activation of human platelets by a Ca® ionophore
results in the surface exposure of PS. Conversely, the
inhibition of Ca* influx abolishes agonist-induced PS
externalization and the procoagulant response in activated
platelets (36).
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Figure 2. The plasma membrane response to cell stimulation (Adapted with permission

from American Physiol Society).
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Calcium inactivates flippase and activates floppase and
scramblase, inducing the loss of phospholipids asymmetry
between the inner and the outer leaflets. Contacts between
aminophospholipids and cytoskeleton are then disrupted.
In addition, calcium release leads to activation of two
enzymes: calpain and gelsolin. Calpain hydrolyzes actin-
binding proteins that decreases association of actin with
membranes glycoproteins (38,39), while gelsolin (only in
platelets) is involved in the cleavage of the actin capping
proteins (40).

Assmallincreases in Ca* lead to platelet activation, the
maintenance of a stable Ca is essential to keep platelets in
a resting state. The mechanisms limiting platelet activation
by counteracting Ca* leakage from the intracellular stores
rely on sarcoplasmic/endoplasmic Ca** ATPases that pump
the calcium ions back to the stores (targeted by the inhibitor
thapsigargin) and on a plasma membrane Ca™ ATPase that
pumps Ca* out of the cell (17.41).

When cells undergo activation or apoptosis, PS
externalization is one of the earliest observable indicators
of the process. Its translocation to the outer leaflet is the
initial event that will ultimately lead to the shedding of
procoagulant MPs that are therefore regarded as reliable
markers of cell stress (42). The dynamic balance of cell
stimulation, cell proliferation, and death within the vessels
is reflected by the formation and release of MPs that may
thus represent a vascular storage pool of bio-effectors
(43).

MPs shed from activated, necrotic, or apoptotic cells
provide a catalytic phospholipid surface for the assembly
of blood coagulation factors, thereby promoting the
coagulation cascade and thrombin generation (44). MPs
can harbor active tissue factor (TF), the cellular initiator
of blood coagulation in vivo (45-47). Because PS and TF
are known to act synergistically as potent triggers of blood
coagulation, it has been suggested that TF-bearing MPs
represent the so-called blood-borne TF (48-50). These
observations suggest that MPs can be viewed as a major
therapeutic target, not only in the inhibition of arterial
and venous thrombosis but also in the containment of the
systemic inflammatory response and atherosclerosis (51).

The mechanism of MPs clearance from the circulation
is not known. Platelets have a life span of about 10 days,
contrasting with that of PMPs of which is about 30 minutes
in mice (52), or even less than 10 minutes in rabbits (53).
These MPs could be cleared from the circulating blood
by phospholipases (54), by direct mechanisms such as
PS exposure and subsequent phagocytosis, or by indirect
mechanisms such as opsonization by proteins such as
growth arrest-specific gene 6 product (GASG6), protein S
and complement (55).
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A wide variety of methods are used to measure,
quantify, and phenotype MPs from blood samples or cell
culture supernatants. For this reason, critical evaluation
and standardization of the different methods used by
each laboratory are necessary to reliably compare studies
together. Most methods use flow cytometry although the
use of classical flow cytometer is subject to caution, as
discussed by Bruce and Barbara C. Furie (56). The small
size of MPs enhances the difficulties for their detection and
quantification.

MPs can be characterized by the detection of the
different cell surface antigens (Table 1). These antigens
reflect their origin and activation method.

Despite a recent proteomic characterization of tumoral
lymphocyte MPs (57), the chemical composition of MPs
remains poorly described. MPs contain various proteins
inherited from their parental cells and a membranous
skeleton. Thereby, their origin can be identified by the
presence of cell-specific surface antigens (Table 1). Other
components of MPs have been recently described, such as
mRNA (58.59), prions (60.,61), contractile proteins such as
thrombosthenin (62).

Platelet Microparticles

Blood contains MPs derived from different cell types,
including mainly platelets, but also red blood cells,
granulocytes, monocytes, lymphocytes and endothelial
cells (ECs). Overproduction of MPs has been related to
various physiological and pathophysiological conditions
such as cell adhesion, apoptosis, immune response,
vascular function, vascular remodeling and angiogenesis,
haemostasis and thrombosis, cardiovascular diseases,
cancer, infections, as well as normal and pathological
pregnancy.

A surface area unit of PMP has approximately 50- to
100-fold higher procoagulant properties than an identical
surface area unit of an activated platelet (63). Thus, the
usually accepted role of MPs is to promote coagulation.
This is principally due to the presence of TF, the principal
initiator of coagulation, exposed on the surface of MPs.
Regardless the stimulus, about 25% of the procoagulant
activity in blood is associated with MPs derived from
activated platelets (64).

A population of PMPs is generated during platelet
activation, whereas other PMPs populations are derived
from megakaryocytes during megakaryopoiesis (65-67),
quiescent circulating platelets or might result from platelet
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Table 1. Markers for cell-derived MPs

Cellular origin of MPs

Marker

Red blood cell
Leucocyte
Granulocyte
Monocyte
Lymphocyte

Platelet

Endothelial cell

CD235a
CD45
CD66b
CD14
CD4
CD8
CcD20
CD31
CD41
CD41a
CD42a
CD42b
CD61
CD62P
CD31
CD34
CD54
CD62E
CD51
CD105
CD106
CD144
CD146

apoptosis (52). PMPs can be produced by various stimuli,
includingplateletagonists ,calciumionophore ,complement-
binding proteins, or high shear. After stimulation by the
thrombin-receptor agonist peptide (TRAP), MPs from 0.1
pm to 1 pm and exosomes from 40 to 100 nm are released
(68). Stimulation of platelets activates intracellular calpain,
and calpain inhibitors impair MPs release (39).

PMPs are generated under certain blood flow conditions
as well (69). High shear stress in severe atherosclerotic
arteries activates platelets, generating PMPs, whereas
normal shear stress does not (33). In addition, platelet

adhesion to immobilized von Willebrand factor (VWE)
under fast flow conditions, engages a mechanism for
the generation of MPs. This results in the deposition of
procoagulant structures that are not removed even under
extreme flow conditions, as encountered in severely
stenosed arteries (70). This mechanical release of PMPs
is dependent on the interaction of vWf with glycoprotein
(GP) Iba, and the resulting procoagulant PMPs enhance
thrombus formation (17).

Apoptosis and vascular cell activation are main
contributors to the release of procoagulant MPs, deleterious
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partners in atherothrombosis. Elevated levels of circulating
platelet, monocyte, or endothelial-derived MPs are
associated with most of the cardiovascular risk factors and
appear indicative of poor clinical outcome. In addition to
being a valuable hallmark of vascular cell damage, MPs are
at the crossroad of atherothrombosis processes by exerting
direct effects on vascular or blood cells. Under pathological
circumstances, circulating MPs would support cellular
cross-talk leading to vascular inflammation and tissue
remodeling, endothelial dysfunction, leukocyte adhesion,
and stimulation. Exposed membrane phosphatidylserine
and functional TF are 2 procoagulant entities conveyed
by circulating MPs. At sites of vascular injury, P-selectin
exposure by activated endothelial cells or platelets leads
to the rapid recruitment of MPs bearing the P-selectin
glycoprotein ligand-1 and blood-borne TF, thereby
triggering coagulation (44).

Endothelial MPs

MPs released into the bloodstream can act as messengers
delivering a variety of cargos, such as cell surface receptors,
proinflammatory cytokines, signaling molecules, and even
mRNA, to distal cells (1744). They may also contribute

Print ISSN: 2085-3297, Online ISSN: 2355-9179

to disease by transporting viruses and prions (17.44). In
addition, in vitro studies have shown that binding of MPs
to endothelial cells and monocytes induces the expression
of proinflammatory and procoagulant molecules (Figure
3).

Inflammation and coagulation are linked processes
in many diseases and MPs may amplify the responses by
activating the endothelium. In addition, proinflammatory
mediators directly induce tissue factor expression in
endothelial cells, and the coagulation protease thrombin
directly induces the expression of proinflammatory
mediators in endothelial cells. This results in elevated levels
of endothelial cell-derived MPs, so-called EMPs, in many
disease states. The presence of these EMPs in blood can be
used as biomarkers of endothelial cell injury (71,72).

EMP (~100 nm to 1 pm in diameter) result from
endothelial plasma membrane blebbing and carry
endothelial proteins such as vascular endothelial cadherin,
platelet endothelial cell adhesion molecule-1, intercellular
cell adhesion molecule (ICAM)-1, endoglin, E-selectin,
S-endo or av integrin (73). Endothelial NO synthase and
vascular endothelial growth factor receptor (VEGF-R2)
have also been identified on EMP (74), but there is so far
no evidence on whether or not MP endothelial nitric oxide
synthase is capable of generating nitric oxide; furthermore,
endothelial nitric oxide synthase may also be present on
platelet or red blood cell-derived MP (75).
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Figure 3. MPs derived from different cell types induce the expression of proinflammatory and
procoagulant molecules in endothelial cells, monocytes, and epithelial cells (Adapted with permission
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Exosomes (<100 nm in diameter) are produced in
multivesicular bodies during endocytosis and they play
a role in antigen presentation. Unlike MP, they do not
externalize PS and they express specific exosomal markers
such as Lampl, CD63, and TSG101; they also contain
RNA and microRNAs (21).

Apoptotic bodies are larger than MP or exosomes and
are characterized by externalized PS and, unlike MP, a
permeable membrane facilitating propidium iodide staining
of the nuclear material they contain (76). Several reports
indicate that apoptotic bodies are passive cargos delivering
their nuclear content (oncogenes, DNA, microRNA) to
phagocytes by horizontal transfer (76,77), and thus they
share this specific property with EMP (78).

Besides TNF-at, other inflammatory cytokines and
also bacterial lipopolysaccharides, reactive oxygen species
(79), plasminogen activator inhibitor (80), thrombin
(81), camptothecin (82), C-reactive protein (CRP)
(83), and uremic toxins (84) are able to induce in vitro
EMP generation. Interestingly, endogenous nitric oxide
dampens the release of EMP on stimulation with CRP by a
mechanism involving tetrahydrobiopterin (83).

Although MP of endothelial origin represent a
sparse population of circulating MP, changes in their
plasma levels might carry important clinical information
in healthy subjects and in patients with cardiovascular
disorders (73). In patients presenting a characterized

endothelial dysfunction, levels of circulating EMP are
inversely correlated with the amplitude of low-mediated
dilatation, independently of age and pressure (85-90).
Furthermore, acute endothelial injury such as that induced
by secondhand smoke rapidly impairs endothelial function
and increases circulating EMP in young healthy subjects
(91). Therefore, EMP emerge as a new surrogate marker of
endothelial health.

So far, only a few studies have investigated the
prognostic potential of the measurement of EMP plasma
levels. In patients with acute ischemic stroke, EMP levels
are associated with lesion volume and clinical outcome,
but there was no report about clinical events during
follow-up (92). In patients with pulmonary hypertension,
circulating levels of EMP expressing E-selectin predict the
1-year outcome (93). In subjects with high risk of coronary
heart disease, baseline levels of EMP expressing vascular
endothelial cadherin predicted outcome, independently
of Framingham score and of CRP and brain natriuretic
peptide (BNP) levels (94). Similar findings were observed
in chronic renal failure, where high values of CD31*CD41*
EMP were independent predictors of cardiovascular
death, whereas other MP plasma subpopulations had no
prognostic value (95). These data suggest that EMP levels
may be used in the future as a biomarker for stratification
of patients and identification of subjects with a high risk
of developing cardiovascular complications. Recently, an
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interest in multimarker strategies combining EMP with
endothelial progenitor cell levels has emerged from the
literature as an integrative marker of vascular health. A
change in the ratio of EMP to endothelial progenitor cells
may reflect an imbalance between endothelial damage
and repair that could be useful to identify patients with
damaged vasculature (96,97).

The potential contribution of EMP in endothelial
cell survival by showing that EMP release could protect
endothelial cell apoptosis by diminishing levels of
caspase-3 in cultured endothelial cells resulting from
trapping caspase-3 in MP (98). Thus, endothelial-derived
MP contribute to the sorting of several proapoptotic factors
preventing cell detachment and apoptosis

Finally, EMP carrying endothelial protein C receptor
and activated protein C (APC) could also promote
cell survival by induction of cytoprotective and anti-
inflammatory effects (99).

Taken together, the involvement of EMP in vascular
homeostasis appears to be more complex than initially
thought. EMP can play a major role in inflammation,
thrombosis, and angiogenesis. However, depending on
the pathological context, the mechanisms and sites of
formation, EMP could have favorable effects to maintain
vascular homeostasis. These paradoxical functions might
result from EMP composition, as proteomic analysis has
shown that one third of the proteins found on EMP are
specific to the stimulus initiating their release, not only
demonstrating the plasticity of these vesicles but also
revealing the complexity of the mechanisms govemning
their formation (100).

MPs in Angiogenesis

Angiogenesis is a tightly regulated process that involves
endothelial cell survival, proliferation, migration,
differentiation, and morphological changes, such as tube
formation. It is a major process in many pathological
conditions, such as tumor growth, diabetic retinopathy,
and inflammation, as well as in embryonic development
and wound healing (99).

Most of the research regarding MP has been focused
on MP from blood cell origin and on their angiogenic
activity, mainly in the tumor microenvironment. However,
MP derived from various types of cells, related to other
angiogenesis-associated disorders, were found to have
angiogenic properties. Submicron membrane vesicles
shed from retinal, vascular, and circulating cells were
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significantly increased in vitreous fluid of patients with
proliferative diabetic retinopathy. These MP, isolated from
human vitreous sample of patients, were found to stimulate
endothelial cell proliferation and formation of new vessels
(100).

MP, derived from human circulating endothelial
progenitor cells, was shown to activate an angiogenic
program in mature quiescent endothelial cells. Endothelial
progenitor cell-derived MP expressed several adhesion
molecules that were instrumental in MP internalization
into endothelial cells and required for their biological
activity. The MP-induced antiapoptotic effect organization
in capillary-like structures was dependent on mRNA
transfer. Also, microarray analysis was pre-formed on MP
derived from endothelial progenitor cells, and transcripts
associated with the phosphatidylinositol 3-kinase/Akt
signaling pathway and with endothelial nitric oxide
synthase (known to be involved in the angiogenic and
antiapoptotic program) were found (78).

Platelets contain  various angiogenesis-related
substances that release into the environment upon platelet
activation. Moreover, it was recently demonstrated that
platelets, as a cellular system, could induce an angiogenic
response (101,102). At the same time, platelet activation
at sites of blood flow disturbances or endothelium injury
results in formation of PMP. Since platelet activation
frequently occurs at the sites where angiogenesis takes
place (e.g., in the tumor vasculature, or in the proximity of
thrombus in an ischemic site), a possible impact of PMP in
blood vessel development would be of importance, either
as a part of pathogenesis of the malicious processes, or as
a counteracting factor.

PMPtriggeredan angiogenicresponse, bothin vitro and
in vivo. This effect is mediated by intra-particle cytokines,
i.e., VEGF, bFGF, and PDGE. Separate inhibition of each
cytokine resulted in a significant suppression of the vessel
sprouting, which suggests that a mutual action of pro-
angiogenic compounds is needed for the development of
an angiogenic response (103)

The present study demonstrates for the first time that
shed-membrane MPs isolated from human atherosclerotic
lesions stimulate endothelial cell proliferation and promote
in vivo neo-vessel formation after CD40 ligation. The
endothelial proliferative effect of plaque MPs was more
pronounced when MPs were isolated from symptomatic
patients compared with that seen in asymptomatic patients,
and this finding was associated with an increased number of
CD40L* MPs in these patients. Therefore, accumulation of
MPs in atherosclerotic lesions may represent an endogenous
signal for atherosclerotic plaque neovascularization and
vulnerability (104).
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MPs in Cardiovascular Disease

There are substantial differences between the fractions of
MPs or subpopulations in the blood of healthy subjects
and those present in patients suffering from diseases with
increased thromboembolic risk or vascular damage, such as
atherosclerotic vascular disease, sepsis, diabetes, chronic
severe hypertension, and preeclampsia (18,105,106).
Accordingly, in patients with acute myocardial infarction,
elevated numbers of MPs are present compared with
healthy controls (105,106,107). Moreover, subtypes of
MPs differ between patients with stable angina and those
with acute coronary syndromes or myocardial infarction
(108,109).

The clinical relevance of the presence of MPs in the
blood of healthy subjects is unclear but can be regarded
as a reflection of the dynamics of their production by
resting, activated, and apoptotic cells and their clearance.
In vascular disease states, it remains to be elucidated
whether MPs are a cause or a consequence of the condition
because disease-related factors, such as infectious agents,
cytokines, and metabolic disturbances, are all known to
affect the release of MPs (18,105,106).

In cardiovascular disorders, two distinct pools of
MPs appear of interest: (1) circulating MPs released from
vascular and peripheral blood cells; and (2) MPs shed
by apoptotic cells sequestered within the atherosclerotic
plaque and eventually exposed to flowing blood after
rupture (110,111).

In acute coronary syndromes, TF triggers the formation
of intracoronary thrombi following endothelial injury.
The acellular lipid-rich core of an atherosclerotic plaque
represents its most thrombogenic part (112), with enhanced
TF activity being directly supported by TF*-MP exposing
PhtdSer. Apoptotic macrophages constitute the main source
of membrane-bound TF (110,113). Smooth muscle cells
(SMCs) may also contribute to TF*-MPs accumulation in
the lipid core. Several mechanisms involving MPs from
the plaque could account for instability, as suggested
by in vitro data. MP would mediate the recruitment of
inflammatory cells within the plaque. Endothelial-derived
MPs released on VEGF or FGF2 stimulation harbor
functional matrix metalloproteinases possibly favoring
fibrous cap proteolysis. In the course of plaque remodeling,
MPs of various origin could modulate angiogenesis, a key
determinant of plaque vulnerability (114).

MPs may not only have deleterious effects by
promoting coagulation and inflammation or by modifying
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endothelial function, which all contribute to the development
of Cardiovascular Disease (CVD); but may also have
beneficial effects. First, recent studies have shown that MPs
are efficient vectors that exchange biological information
between cells (intercellular communication) (18,105,106).
Second, the release of MPs protects cells against the
consequences of external stimuli or stress. Endothelial
cells escape from complement-induced lysis by releasing
MPs carrying the lytic complement C5b-9 complex
(115). Similarly, the release of MPs protects cells against
an overshoot in (internal) cellular reactions triggered by
external stressors. Regarding the latter, MPs play a role
in “cellular waste management” because they contain
increased (compared with parent cell) concentrations of
chemotherapeutics, oxidized phospholipids, or caspase 3
(18,105,1006).

In patients with subclinical or less occlusive
atherosclerosis, more endothelial MPs are present when
compared with patients with established or symptomatic
atherosclerosis (109,116), suggesting that the ability of the
endothelium to release MPs depends on its integrity and
viability. In other words, if the ability of the endothelium
to release MPs becomes impaired or inhibited, the integrity
and viability of the cells may deteriorate.

In vitro, MPs from various cellular or disease origins
or both induce endothelial dysfunction, especially by
altering the balance between NO and reactive oxygen
species (ROS) production and release (117-119).

Evidently, MPs are able to restore endothelial injury
through their dual ability to increase NO and reduce ROS.
In summary, MPs can have both detrimental and beneficial
effects on endothelial functions, especially by altering the
balance between NO and ROS production and release.
It seems that these effects are dependent on the specific
stimulus underlying the release of MPs by their parent
cells.

In the light of the previously described procoagulant
and proinflammatory properties of MPs, together with the
association between elevated numbers of MPs and clinical
CVD, the prevailing view is that circulating MPs are
harmful, contributing to CVD and risk of CVD. However,
as previously outlined, in addition to their potentially
harmful effects, cell-derived MPs may also be beneficial
and protectagainstcellular and vascular damage. Therefore,
it is not surprising that both elevated and lower levels of
circulating MPs have been associated with (risk factors of)
CVD (120).

Interestingly, elevated platelet MPs were described in
patients with both type 1 and 2 diabetes, hyperlipidemia,
obesity/metabolic syndrome, and hypertension (18,105).
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Thus, in plasma samples from patients with chronic
severe hypertension compared with patients with mild
hypertension and controls, more MPs exposing platelet
endothelial cell adhesion molecule-1 (PECAM-1) (CD31),
but not glycoprotein Ib (CD42) (ie, MPs presumably
of endothelial or platelet origin or both), were found
(121,122). In these patients, elevated numbers of MPs are
likely to reflect the cellular stress of endothelial cells and
platelets.

Preliminary data indicate that plasma levels of
MPs could be of prognostic value for the occurrence of
cardiovascular diseases. In a 6-month follow-up study,
circulating annexin V*MPs appeared as a robust predictor
of the occurrence of secondary myocardial infarction or
death in 500 patients with acute coronary syndromes (123).
Furthermore, circulating leukocyte-derived MPs, unlike
platelet-derived MPs, predict subclinical atherosclerosis
burden appreciated by plaque numbers in carotid
arteries, abdominal aorta, and femoral arteries in > 200
asymptomatic subjects (124).

Although the prognostic potential of circulating MPs
is still in its infancy, the different studies mentioned above
clearly demonstrate that their detection and quantification
is an interesting and potentially valuable tool to appreciate
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MPs in Cancer

MPs have been widely detected in various biological
fluids including peripheral blood, urine and ascitic fluids,
and their function and composition depend on the cells
from which they originate. By facilitating the horizontal
transfer of bioactive molecules such as proteins, RNAs
and microRNAs, they are now thought to have vital
roles in tumor mmvasion and metastases, inflammation,
coagulation, and stem-cell renewal and expansion (125).

MP-mediated cargo transfer to adjacent or remote
cells has been shown to affect many stages of tumor
progression (126), including angiogenesis, escape from
immune surveillance, ECM degradation and metastasis
(Fig. 5). MPs shed from tumor cells facilitate transfer of
soluble proteins (127), nucleic acids (128), functional
trans-membrane proteins (129), chemokine receptors
(130), tissue factor (129) and receptor tyrosine kinases such
as epidermal growth factor receptor (EGFR) and human
epidermal growth factor receptor 2 (HER2) (131,132).

A recent report showed that the oncogenic receptor
EGFRvIII, which is found exclusively in a subset of
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Figure 5. Tumor — derived MPs influence many aspects of cancer progression (Adapted with

permission from The Company of Biologists Ltd.).

28



MP Novel Mechanisms of Intracellular Communication: Implication in Health and Disease (Meiliana A, et al.)

DOI: 10.18585/inabj.v3i1.131

aggressive ghoma tumors, was transferred to a non-
aggressive population of tumor cells through MPs (131).As
a consequence, the recipient cells exhibited the activation
of two signaling pathways [mitogen-activated protein
kinase (MAPK) and Akt] and changes in the expression
of EGFRvllI-regulated genes [vascular endothelial growth
factor (VEGF), Bcl-Xt, p27], leading to morphological
transformation and an increase in anchorage-independent
growth.

Thus, MPs secreted by tumor cells induce endothelial
cells to release MPs that contain VEGF and sphingomyelin
in order to promote angiogenesis. It is interesting that in
lung cancer models, hypoxia induces an increased release
of MPs (133). Thus, the adverse tumor microenvironment
somehow triggers tumor cells to release MPs, which in turn
facilitates angiogenesis by bringing nutrients and oxygen
to the rescue of cancer cells.

A range of hematological complications broadly
categorized as ‘thromboembolism’ is associated with
cancer-related mortality (134). A recent study showed that
most of the TF-bearing MPs were tumor derived (135).
The group further confirmed the association between the
presence of TF-bearing MPs and an increased risk of
thromboembolic disease in malignancy (135). Additionally,
activation of the coagulation system and TF signaling has
also been suggested to deliver growth-promoting stimuli to
dormant cancer stem cells (136).

Hypothetically, cancer cells can fuse with MPs derived
from non-cancer cells to camoufiage behind the lipids and
membrane-specific proteins of non-transformed cells. A
study by Tesselaar and colleagues identified a low number
of circulating MPs from cancer patients that stained for
both MUCI, a cancer-cell marker, and glycoprotein [lla,
a protein that is exclusively present on platelets (137).
It could be argued that such MPs are released by tumor
cells after they have fused with MPs released by platelets.
All of the above suggest that the horizontal transfer of
MP cargo can successfully divert immune cells to altered
phenotypes, thereby facilitating cancer-cell evasion of the
immune response.

Matrix degradation is essential for promoting tumor
growth and metastasis (138). As indicated above, MPs
that are shed by tumor cells are loaded with proteases
and provide an additional means of matrix degradation,
creating a path of least resistance for invading tumor
cells. Accordingly, studies report the presence of Matrix
Metalloproteinase (MMP)2, MMP9, MT 1-MMP and their
zymogens urokinase-type plasminogen activator (uPA)
and EMMPRIN, within tumor-derived MPs (139-142).
Given the importance of matrix degradation in tumor
metastases, it is logical to hypothesize that there is a direct
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correlation between the number of invasive MPs and tumor
progression.

An example for the direct involvement of MPs
in facilitating tumor-cell survival comes from the
demonstrated expulsion of therapeutic drugs from tumor
cells through MPs. Tumor cells treated with doxyrubicin
accumulated and released the drug in shed MPs, implying
MP shedding as a drug-efflux mechanism involved in drug
registance (143). Another study documented that MPs of
cisplatin-insensitive cancer cells contained 2.6- fold more
cisplatin than cisplatin-sensitive cells that release MPs
(44). Therefore, by virtue of their ability to harness select
bivactive molecules and propagate the horizontal transfer
of these cargoes, shed MPs can have an enormous impact
on tumor growth, survival and spread. Molecules that
regulate MP shedding and proteins on circulating MPs that
are responsible for tumor growth, progression and survival
will be effective targets for anti-cancer therapeutics.
Tumor-specific markers that are exposed on circulating
MPs might be particularly useful as potential biomarkers.
The protein composition of MPs might reflect molecular
changes in tumor cells from which they are derived and,
therefore, can potentially serve as a prognostic indicator of
disease stage and efficacy of treatment.

MPs in Hypertension, Diabetes, and
Chronic Renal Failure

Severe, uncontrolled hypertension is associated with high
rates of target organ complications (145-150), but the
molecular mechanisms by which extreme blood pressure
elevation leads to vascular injury are not well defined.
Increasing evidence suggests that hypertension confers
a prothrombic state, characterized by abnormalities of
endothelial function and platelet activation (151-168).
Consequently, investigative interest has recently focused
on endothelial and platelet activation as important
mediators of hypertensive vascular injury (121).

Endothelial Cells Microparticles (EMP) release can
be caused by a number of cytokines such as interleukin-1
and tumor necrosis factor and by elevated shear pressure
(169-174). Assays for circulating EMP have recently been
developed (169,170) as potential means of quantifying
endothelial cell injury.

Platelet derived Microparticles (PMP) concentration
is a marker of platelet activation (14,175-176). PMP are
formed by platelet membrane vesicle formation and
shedding (14). PMP are known to possess procoagulant
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activity and are elevated in severe thrombotic states such as
acute myocardial infarction and stroke (14,177-181). EMP
and PMP have diverse effects on coagulation, leukocytes,
platelets, and endothelium that could ultimately contribute
to the pathogenesis of the acute vascular injury observed in
patients with uncontrolled severe hypertension. EMP and
PMP may therefore be mediators of as well as markers for
endothelial and platelet activation and hypertensive target
organ injury (121).

Pulmonary arterial hypertension (PAH) is a severe
disease of the small pulmonary arteries characterized by
vascular narrowing and raised pulmonary artery pressure
leading to the development of right-sided heart failure
and death. In PAH, vasoconstriction, remodeling of the
pulmonary vessel wall, endothelial and vascular smooth
muscle cell proliferation and dysfunction, and thrombosis
contribute to increased pulmonary vascular resistance
(PVR), right ventricle overload, and stretch (182).

Circulating EMPs are increased in chronic renal failure
(CRF) and hemodialyzed (HD) patients and represent a new
marker of endothelial dysfunction in uremia. In addition,
the ability of p-cresol and indoxyl sulfate to increase an
EMP release in vitro suggests that the specific-uremic
factors could be involved in an EMP elevation in patients
(84.86).

Type 2 diabetes is associated with accelerated
atherosclerosis (183,184), which is evidenced already early
in the course of the disease. Recently, increased numbers
of PMP were reported in type 2 diabetic patients with
poor metabolic control and microvascular complications
(185). TF, possibly of granulocytic origin, is exposed on
MP subpopulations in asymptomatic patients with well-
regulated type 2 diabetes. TF-positive MPs are associated
with components of the metabolic syndrome but not with
coagulation. Thus, TF on MPs may be involved in processes
other than coagulation, including transcellular signaling or
angiogenesis (186).

Compared with age-matched control subjects, type 1
diabetic patients presented significantly higher numbers
of platelet and endothelial MPs (PMP and EMP), total
annexin V—positive blood cell MPs (TMP), and increased
levels of TMP- associated procoagulant activity. In type
2 diabetic patients, only TMP levels were significantly
higher without concomitant increase of their procoagulant
activity. Interestingly, in type | diabetic patients, TMP
procoagulant activity was correlated with HbAlc,
suggesting that procoagulant activity is associated with
glucose imbalance. Thus, diabetic patients differ by the
procoagulant activity and the cellular origin of MPs (187).

Endothelial cell dysfunction may contribute to the
pathogenesis of multiple sclerosis (MS). Elevations
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of soluble adhesion molecules intracellular adhesion
molecule, vascular cell adhesion molecule, and platelet-
endothelial cell adhesion molecule-1 (CD31) have been
reported as markers of blood-brain barrier (BBB) damage
in MS, but direct assay of endothelium has been difficult.
Endothelial dysfunction is evident during exacerbation of
MS, evidenced by shedding of EMP expressing PECAM-1
(CD31). The in vitro data indicate contribution of one or
more plasma factors in endothelial dysfunction of MS
(173).

MPs in Stem/Progenitor Cells

Experimental studies have suggested that transplantation
of stem and progenitor cells may have a beneficial effect
on functional and structural recovery in several organs,
including heart, liver, and kidney.
underlining stem-cell therapy are still intensely debated.
Somestudieshave suggested anengraftmentofstemcellsby
transdifferentiation or fusion in targeted organs. However,

The mechanisms

a growing number of evidences indicate that transient
cell localization in the injured tissue may be sufficient
to favor functional and regenerative events, suggesting
the release of paracrine mediators (188-190). Several
mechanisms involved in cell-to-cell communication have
been identified, including secretion of growth factors,
cytokines, surface receptors, and nucleotides (191-194). It
has been suggested that MPs actively released from cells
may play an important role in cell-to-cell communication
(6.59,195,196).

Embryonic stem cells were recently shown to
represent an abundant source of MPs, and it was suggested
that MPs derived from these cells may represent one of
the critical components supporting self-renewal and
expansion of stem Cells (32,197). In addition, Ratajczak er
al. (197) demonstrated that embryonic stem cell-derived
MPs are able to reprogram hematopoietic progenitors by a
horizontal transfer of mRNA and protein delivery.

It has been suggested that transdifferentiation or
plasticity of stem cells may at least in part depend on
horizontal transfer of mRNA/proteins from the damaged
tissue (197). Conversely, MV-mediated transfer of
mRNA/proteins derived from stem cells may induce
dedifferentiation of mature cells, triggering a proliferative
program that may contribute to the repair of tissue injury
(52). MP-mediated transfer of mRNA/proteins derived
from stem cells may induce dedifferentiation of mature
cells, triggering a proliferative program that may contribute
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to the repair of tissue injury (78). The mechanism by
which embryonic stem cell MPs (ESMPs) may mediate
intercellular signaling could involve the activation of
receptors on the recipient cell by ligands in the ESMP. In this
manner, ESMPs would be able to carry membrane bound
ligands considerable distances from their stem cell origin.
Alternatively, ESMPs may be able to mediate signaling by
the direct transfer of proteins, RNA, or bioactive lipids to
the recipient cell, serving as “physiological liposomes™
(193,194). If ESMPs can indeed serve as ‘‘physiological
liposomes,” transferring RNA and proteins to cells, they
can perhaps be used to deliver exogenously expressed
genes for therapeutic purposes (32,197,198).

ESMPs are capable of transferring a subset of miRNAs
to mouse embryonic fibroblasts (MEFs), suggesting a
tightly regulated transfer process. Transfer of miRNAs
by MPs represents a novel method of paracrine signaling,
potentially making MPs important components of stem
cell niches. It also opens up the possibility of transferring
siRNAs via MPs (198).

Recently, it has been proposed that a dynamic stem
cell regulation may occur as result of differentiated cell-
stem cell interaction via a MP — based genetic information
transfer (25). Progenitor/stem cells may re-direct the
behavior of differentiated cells by a horizontal transfer
of mRNA shuttled by MPs (28,197) and conversely
differentiated cells may influence the stem cell phenotype
(25).

Deregibus demonstrated that MPs derived from
endothelial progenitor cells may activate an angiogenic
program in mature quiescent endothelial cells (78) and
that mRNA shuttled by MPs derived from mesenchymal
stem cells may induce repair of acute kidney injury (199).
Recently, Kostin and Popescu (200) demonstrated that the
interstitial cajal-like cells that have been described to be
present in the heart (201), communicate with neighbouring
cells via shedding of MPs.

Herrera ef al. found that MPs derived from human
liver stem cells (HLSC) induced in vitro proliferation and
apoptosis resistance of human and rat hepatocytes. These
effects required internalization of MPs in the hepatocytes
by an a4-integrin-dependent mechanism, suggest that MPs
derived from HLSC may activate a proliferative program
in remnant hepatocytes after hepatectomy by a horizontal
transfer of specific mRNA subsets (202).

The ability of MPs to transfer RNA and protein, and
to act as paracrine factors raises very exciting possibilities
for therapeutic uses. Cells engineered to express mRNA,
siRNA, or protein may be capable of delivering these
macromolecules to local cellular environments via MPs.
These engineered cells can be encapsulated to provide
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sustained local delivery. Since current techniques for gene
transfer use viral or synthetic agents as delivery agents,
their replacement by MPs released from autologous
transplants of engineered cells will offer the advantage
of a virus-free approach and make the prospects of gene
therapy safer (198).

Conclusion

In conclusion, the scientific community has made
considerable progress to date in recognizing MP as
important mediators of intercellular communication rather
than irrelevant cell debris. We have already learned much
about the biological effects of MP. Future steps would be
to (i) explore their full potential diagnostic application, (ii)
develop efficient strategies that will allow us to modulate
their secretion in various clinical situations and finally (iii)
employ MP as tools to modify the biological responses of
cells. A new era of investigation and opportunity for drug
development has begun!
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