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Abstract

Abstrak

behavior are central to the physiology of humans
and, consequently, “mitochondrial dysfunction™
has been implicated in a wide range of diseases.

BACKGROUND: Mitochondrial function and

CONTENT: Mitochondrial ROS might attack various
mitochondrial constituents, causing mitochondrial
DNA mutations and oxidative damage to respiratory
enzymes. A defect in mitochondrial respiratory enzymes
would increase mitochondrial production of ROS,
causing further mitochondrial damage and dysfunction.
Mitochondrial dysfunction is associated with diseases,
such as neurodegenerative disorders, cardiomyopathies,
metabolic syndrome, obesity, and cancer. Pathways that
improve mitochondrial function, attenuate mitochondrial
oxidative stress, and regulate mitochondrial biogenesis
have recently emerged as potential therapeutic targets.

SUMMARY: Mitochondria perform diverse yet
interconnected functions, produce ATP and many
biosynthetic intermediates while also contribute to
cellular stress responses such as autophagy and apoptosis.
Mitochondria form a dynamic, interconnected network that
is intimately integrated with other cellular compartments.
It is therefore not surprising that mitochondrial dysfunction
has emerged as a key factor in a myriad of diseases,
including neurodegenerative, cancer, and metabolic
disorders. Interventions that modulate processes involved
in regulation of mitochondrial turnover, with calorie

ATAR BELAKANG: Fungsi dan perilaku
mitokondria memegang peran kunci pada fisiologi
manusia, dan “disfungsi mitokondria” mempunyai

dampak pada terjadinya berbagai macam penyakit
metabolik.

ISI: Dampak Reactive Oxygen Species (ROS) mitokondria
terhadap berbagai konstituennya, menyebabkan mutasi
pada DNA mitokondria dan dapat merusak enzim-
enzim respiratori. Kerusakan pada enzim respiratori
akan meningkatkan produksi ROS pada mitokondria,
yang selanjutnya memperparah kerusakan dan dis-
fungsi mitokondria. Disfungsi mitokondria terkait
dengan berbagai macam penyakit seperti gangguan
neurodegeneratif, kardiomiopati, sindrom metabolik,
obesitas, dan kanker. Target terapi pada dewasa ini
diarahkan kepada cara untuk memperbaiki fungsi
mitokondria, meredam stres oksidatif pada mitokondria,
dan mengendalikan biogenesis mitokondria.

RINGKASAN: Mitokondria berperan pada produksi
ATP, zat perantara biosintesis, dan pada respon stres
selular seperti autofagi dan apoptosis. Mitokondria
membentuk suatu jaringan kompartemen selular yang
dinamis, saling terhubung, dan terintegrasi sehingga tidak
mengejutkan jika disfungsi mitokondria merupakan faktor
kunci pada sejumlah besar penyakit, termasuk penyakit
neurodegeneratif, kanker, dan gangguan metabolik.
Intervensi yang bertujuan untuk memodulasi biogenesis
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restriction and induction of mitochondrial biogenesis, are
of particular interest.

KEYWORDS: Mitochondrial Biogenesis, Mitochondrial
Dysfunction, Reactive Oxygen Species (ROS), Metabolic
Diseases
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dan proses metabolisme mitokondria, dengan cara restriksi
kalori dan induksi biogenesis mitokondria menjadi hal
yang sangat menjanjikan.
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Introduction

Mitochondria play important roles in a myriad of cellular
processes including ATP production via oxidative
phosphorylation (OXPHOS), biosynthetic pathways,
cellular redox homeostasis, ion homeostasis, oxygen
sensing, signaling, and regulation of programmed cell
death. Mitochondrial dysfunction is central in the theories
of aging because age-related changes of mitochondria are
likely to impair a host of cellular physiological functions in
parallel and contribute to the development of all common
age-related diseases (1).

The central roles of mitochondria in metabolism
position them as key factors in global energy modulation.
An increased need for ATP is met by increasing
mitochondrial inducing OXPHOS. For
example, an increase of mitochondrial mass and activity
is observed after endurance exercise (2). The regulation
of mitochondrial biogenesis is tightly coordinated with
pathways that induce vascularization, enhance oxygen
delivery to tissues, and enable oxygen supply to facilitate
efficient mitochondrial oxidization of glucose and fat (3).

Mitochondrial metabolism is both the basis and target
of nutrient signals that ultimately orchestrate an integrated
physiological response. The molecular components
that sense energy status include transcription factors,
hormones, cofactors, nuclear receptors, and kinases,
which detect specific signals of mitochondrial activity,
such as the NAD":NADH ratio, the AMP:ATP ratio, or
acetyl-CoA levels (4).

Nutrient responses are likely to be highly tissue
specific. In the liver, low blood lipid concentrations
induce the nuclear PPAR-alpha receptor, which ultimately
induces ketogenesis. In adipose tissue, mitochondria-
derived starvation responses trigger lipolysis to provide

mass and

peripheral tissues with fuels (5,6). In the hypothalamus,
AMPK affects neuronal plasticity and transmitter receptor
activity to promote food intake and provide neuronal
protection in response to hunger (7.8). During a high
nutritional load, multiple cell types exhibit high levels of
ATP and NADH and the metabolic balance tips toward
lipid and glycogen storage and mitochondrial biogenesis
is downregulated, increasing glycolytic ATP synthesis (4).

How does the interrelationship between nutrient
sensing and mitochondrial function contribute to disease?
Not surprisingly, alterations in mitochondrial mass and
activity are contributory factors in obesity and metabolic
syndrome.

Mitochondrial Biology and Function

Mitochondria are ubiquitous membrane-bound organelles
that are a defining feature of the eukaryotic cell. The
organelle is comprised of a soluble matrix surrounded by
a double membrane, an ion impermeable inner membrane,
and a permeable outer membrane. Early biochemists
recognized the importance of mitochondria as the sites
of aerobic oxidation of metabolic fuels. It is now well
established that they contribute to many important
functions including pyruvate and fatty acid oxidation,
nitrogen metabolism, and heme biosynthesis among
others (9).

‘We now understand oxidative phosphorylation as
a process catalyzed by constitutive proteins of the inner
mitochondrial membrane that encompasses electron
transfer between the complexes of the respiratory chain,
vectorial H* release into the intermembrane space, and
H* reentry to the matrix through FO with ATP synthesis
by the F1-ATP synthase. In addition, mitochondria are
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recognized to contribute to intracellular signaling and
regulation with a central role in keeping homeostatic cell
ionic composition (10).

The mitochondrial respiratory chain consists of a
series of electron carriers that function as redox pairs
and that are mainly prosthetic groups of integral proteins.
There are four electron transfer or respiratory complexes
(complexes 1-IV), each capable of catalyzing electron
transfer in a partial reaction of the respiratory chain (11).

Mitochondrial ATP production (oxidative phosphory-
lation) is driven by the transfer of electrons from NADH
and FADH2 to O, through Complexes I-1V of electron
transport chain. The released energy allows components
of Complexes 1, III and IV to pump protons (H") across
the inner mitochondrial membrane. This creates an
electrochemical H* gradient (called proton motive force,
AuH~) that provides energy for ATP synthesis. The
movement of protons back across the inner mitochondrial
membrane driven by the proton motive force is coupled with
the synthesis of ATP by the mitochondrial ATP synthase.
The whole process is called the oxidative phosphorylation.
Any proton re-entry bypassing ATP synthase leads to
uncoupling of oxidative phosphorylation. A well-known
example of such an uncoupling of respiration from ATP
synthesis is represented by uncoupling proteins (UCPs)
(12).

Mitochondria are a principal source of cellular
reactive oxygen species (ROS). Whereas mitochondrial
ROS production has commonly been thought as solely
the result of inefficiencies in the electron transport
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chain. Mitochondrial production of ROS is also a tightly
controlled process and plays a role in the maintenance
of cellular oxidative homeostasis and propagation of
cellular signaling pathways. Production of ROS at
the mitochondria thus integrates cellular energy state,
metabolite concentration, and other upstream signaling
events and has important implications in cellular stress
signaling, maintenance of stem cell populations, cellular
survival, and oncogenic transformation (13).

ROS are produced by mitochondria during oxidative
metabolism through the one-electron reduction of
molecular oxygen (O,), forming superoxide anion (O, *-).
Superoxide is the proximal ROS produced by mitochondria
and is converted to hydrogen peroxide (H,0,) through the
action of superoxide dismutases (SODs) both within the
mitochondria and in the cytosol. Complexes I, II, and
IIT of the electron transport chain contain sites wherein
electrons can prematurely reduce oxygen, resulting in the
formation of superoxide (14,15). Although complexes
I and II produce ROS only into the matrix, complex III
can produce ROS on both sides of the mitochondrial
inner membrane (14,16). This is of interest in the field of
signaling, because ROS produced into the intermembrane
space theoretically have an easier route to the cytosol to
act as signaling molecules than do ROS produced into the
matrix (17).

ROS production by mitochondria can lead to oxidative
damage to mitochondrial proteins, membranes and DNA,
impairing the ability of mitochondria to synthesize
ATP and to carry out their wide range of metabolic

Intermembrane space

Figure 1. Mitochondrial ATP production (Adapted with permission from Trifunovic A ef al. Blackwell Publishing Ltd 2008),
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Figure 2. Overview of mitochondrial ROS production (Adapted with permission from Murphy MP,
Creative Commons Attribution Non — commercial Licence, 2008).

functions, including the tricarboxylic acid cycle, fatty
acid oxidation, urea cycle, amino acid metabolism, hem
synthesis and FeS centre assembly that are central to the
normal operation of most cells. Mitochondrial oxidative
damage can also increase the tendency of mitochondria to
release intermembrane space proteins such as cytochrome
¢ (cyt ¢) to the cytosol by mitochondrial outer membrane
permeabilization (MOMP) and thereby activate the
cell’s apoptotic machinery. In addition, mitochondrial
ROS production leads to induction of the mitochondrial
permeability transition pore (PTP), which renders the inner
membrane permeable to small molecules in situations
such as ischemia/reperfusion injury. Consequently, it
is unsurprising that mitochondrial oxidative damage
contributes to a wide range of pathologies. In addition,
mitochondrial ROS may act as a modulatable redox signal,

reversibly affecting the activity of a range of functions in
the mitochondria, cytosol and nucleus (15).

It is now clear that mammalian life span is negatively
related to the mitochondrial production of oxidizing free
radicals, and that dysfunctional mitochondria determine
mitochondrial and cellular turnover. Mitochondrial
impairment and cellular dysfunction upon aging determine
tissue physiological function.

Mitochondrial biogenesis seems to be regulated
by the signaling given by NO and H,0O, diffusion from
mitochondria to the cytosol. The altered signaling by
mitochondrial NO and H,O, appears to be a likely
explanation for the decreased mitochondrial biogenesis
in aging, a process that definitively contributes to cellular
energy deficits, apoptosis, and tissue physiological failure
in aging (11).
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Mitochondrial Proteins

The mitochondrion is endowed with all the elements
necessary for protein synthesis: itharbors its own genome —
in the guise of a circular ~16.5-kb chromosome—
and transcription and translation apparatus. However,
mitochondrial DNA (mtDNA) has just 37 genes, which
encode 22 mitochondrial tRNAs, 2 mitochondrial rRNAs,
and only 13 protein subunits belonging to respiratory
complexes I, III, IV, and V1; all the subunits of complex
II and the >1000 other proteins needed within the
mitochondrion for its proper functioning are transcribed
from nuclear genes, synthesized in the cytosol, and then
transported into the organelle, where many are further
posttranslationally processed before being located into
position (18).

Most mitochondrial proteins are synthesized on
cytosolic ribosomes and must be imported across one or
both mitochondrial membranes. There is an amazingly
versatile set of machineries and mechanisms, and at least
four different pathways, for the importing and sorting
of mitochondrial precursor proteins (19). Mitochondrial
proteins function in energy metabolism, metabolism
of amino acids, lipids, heme and iron, as transporters
for metabolites, protein transport and folding, protein
degradation, signaling processes, membrane remodeling,
fusion and fission, and also involved in programmed cell
death (19).

The three-carbon molecule pyruvate is a metabolic
intermediate and a central hub for cellular energy
metabolism. It lies at the junction of aerobic and anaerobic
metabolism and is the precursor for biosynthetic pathways
including glucose, lipid, and amino acid synthesis. Given
the ubiquitous role of pyruvate in cellular bioenergetics,
its subcellular localization plays a critical role in its
fate (20). The final product of pyruvate metabolism is
fundamentally altered once it enters the mitochondrion.
As such, the identity of the protein that transports pyruvate
from the cytoplasm into mitochondria has been eagerly
anticipated, and the wait has been nearly 40 years. Bricker
et al. (21) and Herzig et al. (22), report the identification
of a mitochondrial pyruvate carrier (MPC) responsible
for this function—a momentous development in the field
of bioenergetics with profound implications for treating
metabolic diseases.

Given that the mitochondrial pyruvate transporter
regulates a crucial branch point in cellular metabolism,
its identification has enormous potential to treat human
disease. Identification of the MPC also has implications
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for treating other pathologies, including heart failure,
ischemia/reperfusion injury, and type 2 diabetes.
Modulation of pyruvate transport could potentiate
metabolic flexibility and respiratory capacity that might
be beneficial to treating these diseases (20).

The mitochondrial inner membrane consists of two
domains, inner boundary membrane and cristae membrane
that are connected by crista junctions. Mitofilin/Fcjl was
reported to be involved in formation of crista junctions,
however, different views exist on its function and possible
partner proteins (23).

Mitofilin is part of a large multi-subunit protein
complex in the inner membrane, termed mitochondrial
inner membrane organizing system (MINOS) for its role
in controlling cristae morphology. Additionally, mitofilin
interacts with the outer membrane (TOM) Momplex and
promotes protein import into the intermembrane space via
the mitochondrial intermembrane (MIA) pathway (23).
VCP/Cdc48-associated mitochondrial stress responsive
(Vmsl) is a required component of an evolutionarily
conserved system for mitochondrial protein degradation,
which is necessary to maintain mitochondrial, cellular,
and organismal viability (24).

Mitochondria are a complex organelle whose
dysfunction underlies a broad spectrum of human diseases.
Identifying all of the proteins residing in this organelle
and understanding how they integrate into the pathways
represent major challenges in cell biology (25).

Mitochondrial Biogenesis,
Mitophagy and Apoptosis

Adipose tissue serves as source of adipokines and
cMitochondria do not exist as discrete static entities;
rather, mitochondria form a network that continuously
moves, divides, and fuses. The structure of this dynamic
network is in part maintained by a balance of division
and fusion events (26). The ratio of division to fusion
events that defines a proper balance is not universal but
varies with developmental stage, cell type, and biological
circumstances (27).

Mitochondria are essential organelles because
they supply the cell with metabolic energy in the form
of ATP generated by oxidative phosphorylation. In
addition, they perform a number of other key metabolic
reactions. Their shape, from spherical to elongated, is
continually remodeled by fusion and fission that link all
the organelles within a cell into a continuum over time. A
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host of pathways and enzymatic functions residing within
mitochondria can modify and influence OXPHOS, and
OXPHOS abnormalities can in turn generate signals that
trigger either homeostatic pathways, e.g., mitochondrial
biogenesis or execution programs, e.g., mitophagy, which
eliminates single dysfunctional organelles, or apoptosis,
which eliminates the whole dysfunctional cell (28).

Mitochondrial biogenesis can be defined as the growth
and division of pre-existing mitochondria. According to
the well-accepted endosymbiotic theory, mitochondria
are the direct descendants of an aproteobacteria
endosymbiont that became established in a host cell.
Due to their ancient bacterial origin, mitochondria have
their own genome and a capacity for autoreplication.
Mitochondrial proteins are encoded by the nuclear and
the mitochondrial genomes (29). Correct mitochondrial
biogenesis relies on the spatiotemporally coordinated
synthesis and import of ~1000 proteins encoded by the
nuclear genome, of which some are assembled with
proteins encoded by mitochondrial DNA within newly
synthesized phospholipid membranes of the inner and outer
mitochondrial membranes. In addition, mechanisms of
mitochondrial DNA replication and mitochondrial fusion
and fission must also be coordinated (29). Mitochondrial
biogenesis is triggered by environmental stresses such as
exercise, cold exposure, caloric restriction and oxidative
stress, cell division and renewal, and differentiation. The
biogenesis of mitochondria is accompanied by variations
in mitochondrial size, number, and mass.

Mitochondria in cells of most tissues are tubular, and
dynamic changes in morphology are driven by fission,
fusion, and translocation (30). The ability to undergo
fission/ fusion enables mitochondria to divide and helps
ensure proper organization of the mitochondrial network
during biogenesis. The processes of fission/fusion are
controlled by GTPases, most of which have been identified
in genetic screens in yeast (26,31). Mitochondrial fission
is driven by dynamin-related proteins (DRP1 and OPAL),
while mitochondrial fusion is controlled by mitofusins
(Mfn1 and 2). Mitofusins are highly expressed in heart and
skeletal muscles, and their expression is induced during
myogenesis and physical exercise (32,33). In addition
to the control of the mitochondrial network, Mfn2 also
stimulates the mitochondrial oxidation of substrates,
cell respiration, and mitochondrial membrane potential,
suggesting that this protein may play an important role
in mitochondrial metabolism, and as a consequence, in
energy balance (32). OPAl, by contrast, is involved in
the remodeling of cristae. Mfn and DRP1 expression
increases in parallel with mitochondrial content and
exercise capacity in human skeletal muscle (34),
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suggesting that fusion/fission processes are an integral
part of mitochondrial biogenesis. Cardiolipin plays a key
role in the activity of several inner membrane proteins
and in the binding of mitochondrial creatine kinase in the
vicinity of translocase (35).

Mitochondrial biogenesis and respiration are
stimulated by PGC-la through powerful induction of
NRF1 and NRF2 gene expression. PGC-1a is enriched in
tissue with high oxidative activity-like heart and brown
adipose tissue and, to a lesser extent, skeletal muscle
and kidney, and it is rapidly induced under conditions
of increased energy demand such as cold, exercise, and
fasting. Data are accumulating which show PGC-la
to be a master regulator of mitochondrial biogenesis in
mammals (29).

In cells, organelles called lysosomes are responsible
for breaking down a wide range of cellular material such
as proteins and other organelles, through a process known
as autophagy (36). When nutrients are scarce, autophagy
allows a cell to break down its own components and
recycle important molecules (37). Degradation inside
autophagosomes occurs when lysosomes fuse with the
autophagosome and infuse it with enzymes that break down
the cargo(38).The ultimate purpose of autophagy is tobreak
down the cargo and recycle essential macromolecules, and
this only occurs once the lysosomal hydrolases reach the
autophagosome through fusion (38). Defective autophagy
has been linked to common human diseases such as
neurodegenerative conditions (e.g., Alzheimer’s disease,
Parkinson’s disease), metabolic disorders (diabetes,
obesity), and aging. The formation of autophagosomes is
intact or even enhanced in many of these pathologies; it is
the failure to degrade these structures that compromises
cellular viability (39). Autophagy, a tightly regulated
process by which cells consume unwanted cytoplasmic
macromolecular constituents and recycle nutrients
for cellular remodeling, is mediated by the coordinated
activity of autophagy-specific (ATG) genes (40).

Recently, mitochondrial fission has been linked to
the cellular death program of apoptosis. Mitochondria
are involved in the so-called intrinsic pathway of
apoptosis where they release soluble proteins, including
cytochrome C, from the intermembrane space to initiate
caspase activation in the cytosol (41.42). The release
of these proteins is a consequence of the integrity
of the mitochondrial outer membrane (OMM) being
compromised, a process called mitochondrial outer
membrane permeabilization (MOMP).

Many signaling pathways have been shown to be
involved in mitochondrial biogenesis. Whether they
directly control PGC-1a expression or whether they
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impaired energy metabolism, still need more work in
this growing area. The PGC-la axis however could
be envisioned as a new, exciting therapeutic target in
metabolic disorders and heart failure.

Mitochondrial Dysfunction and
Metabolic Disease

In the last 20 years mitochondrial dysfunction has been
recognized as an important contributor to an array of
human pathologies. Mitochondrial defects play a direct
role in certain well-defined neuromuscular diseases
and are also thought to contribute indirectly in many
degenerative diseases.

Mitochondria are highly dynamic organelles, and
their biogenesis is likely to be involved in the regulation of
endothelial cell metabolism, redox regulation, and signal
transduction. Impairment of mitochondrial biogenesis
is frequently observed in diabetes and the metabolic
syndrome (43) and is thus likely to contribute to cellular
energetic imbalance, oxidative stress, and endothelial
dysfunction in these pathological conditions (44). It
has become increasingly evident that mitochondrial
dysfunction can result from more causes than previously
thought (inherited OXPHOS diseases) and that the onset
and progression of several diseases often depends on the
severity of the mitochondrial dysfunction (45).

Dysfunctional mitochondria are characterized
by decreased state 3 respiration, respiratory controls,
and membrane potential, and increased rates of state 4
respiration and mitochondrial size and fragility associated
to an increased content of oxidation products (46-49). In
humans, insulin resistance in the skeletal muscle has been
associated with a lower ratio of oxidative type 1 to type
2 glycolytic type muscle fibers, decreased mitochondrial
oxidative capacity and ATP synthesis, and, lastly,
decreased expression of genes that control mitochondrial
activity (50-52). One gene whose decreased expression
is consistently implicated in the human or animal
diabetic muscle is the PGC- la (50,53,54). PGC-la is
a coactivator with pleiotropic functions (55,56). Most
importantly, PGC-1a controls mitochondrial biogenesis
and function, which in the muscle can contribute to fiber-
type switching (57) and, in the brown adipose tissue
(BAT), to adaptive thermogenesis (58). Transcriptional
activators and coactivators that regulate mitochondrial
biogenesis have been suggested as potential contributors
to this phenomenon (9).
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Therapeutic Strategies to Improve
Mitochondrial Function

Mitochondria are highly dynamic organelles, and
dysregulation of mitochondrial turnover is likely to be one
of the intrinsic causes of mitochondrial dysfunction, which
contributes to dysregulation of cell metabolism, oxidative
stress, and altered signal transduction. Pathways that
improve mitochondrial function, attenuate mitochondrial
oxidative stress, and regulate mitochondrial biogenesis
have recently emerged as potential therapeutic targets.

AMPK is a crucial cellular energy sensor. Once
activated by falling energy status, it promotes ATP
production by increasing the activity or expression of
proteins involved in catabolism while conserving ATP
by switching off biosynthetic pathways. AMPK also
regulates metabolic energy balance at the whole-body
level (58). AMPK is also switched on by numerous
drugs and xenobiotics, including antidiabetic drugs
(such as metformin, phenformin, and thiazolidinediones
(59,60)), plant products reputed to have health-promoting
properties (resveratrol from grapes and red wine (61),
epigalocatechin gallate from green tea, capsaicin from
peppers (62), curcumin from turmeric (63) and even
garlic (64) and plant products used in Chinese medicine
(berberine (65) and hispidulin (66)). Another crucial
process activated by AMPK is mitochondrial biogenesis
which in the longer term generates increased capacity for
the oxidative catabolism of both glucose and fatty acids
(58).

The “master regulator” of mitochondrial biogenesis
is PGCla, a co-activator enhances the activity of
several transcription factors acting on nuclear-encoded
mitochondrial genes (67). AMPK directly phosphorylates
PGCla, which has been proposed to cause activation of
its own transcription via a positive feedback loop (68).
AMPK acts as the prime initial sensor that translates
this information into SIRT1-dependent deacetylation
of the transcriptional regulators PGC-la and FOXOI,
culminating in the transcriptional modulation of
mitochondrial and lipid utilization genes (69).

As well as increasing mitochondrial biogenesis,
AMPK is involved in the turnover of mitochondria via
the special form of autophagy termed mitophagy. UNC-
51 like kinase (ULK-1) and ULK-2, the mammalian
ortholouges of the yeast Atgl kinase that initiates the
autophagy cascade, form stable complexes with AMPK
(70), and AMPK phosphorylates and activates ULK1, thus
triggering autophagy (71,72). This supports the idea that
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phosphorylation of ULK1 by AMPK is required for the
clearance of dysfunctional mitochondria. Mitochondria
are the main site of production of ROS in the cell and are
particularly susceptible to oxidative damage. By recycling
components of damaged mitochondria, mitophagy
may be as important in maintaining a healthy cellular
ATP-generating capacity as in the production of new
mitochondria (58).

In  mice, with resveratrol (3,54'-
trihydroxystil-bene), a diet-derived polyphenol, improved
mitochondrial function and biogenesis in the skeletal
muscle (73) and the liver (61). Studies in diabetic
mice demonstrated that resveratrol treatment improves

treatment

endothelial function and attenuates vascular inflammation
in diabetes mellitus (74-78) and extends longevity
(61,74). Similar protective effects of resveratrol treatment
were observed in aged mice (74,79). As noted above,
both diabetes and aging are characterized by impaired
mitochondrial biogenesis (80).

The mechanisms underlying the beneficial effects
of calorie restriction are multifaceted, and include
normalization of mitochondrial biogenesis (81,82),
attenuation of mitochondrial ROS production (83-85), and
consequential inhibition of signaling pathways regulated
by mitochondria-derived ROS (eg, NF-#B) (86). The
cellular pathways involved in mitochondrial protection
induced by calorie restriction appear to depend on an
increased expression/activity of the NAD"-dependent
histone deacetylase SIRT1111 and activation of its down-
stream effectors, including PGC-1 o (82,83). These
effects mediated by SIRT1 are likely potentiated by an
increased bioavailability of nitric oxide and increased
levels of adiponectin (87). Calorie restriction can also
activate the transcription factor Nrf2, which controls the
expression of numerous ROS detoxifying and antioxidant
genes involved in regulation of mitochondrial redox
homeostasis (88).

The potential mechanisms underlying the
mitochondrial effects of exercise are likely multifaceted
and may include an increased shear stress—induced NO
production, altered metabolism, and neurohormonal effects
(1). Because meta-analyses of clinical studies applying
nontargeted antioxidants have shown disappointing results
(89), several specific mitochondrial-targeted antioxidants
have been developed. Triphenylphosphonium ion (TPP+)
has been successfully used to deliver several lipophylic
antioxidants to the mitochondrial matrix, including Mito-Q
(coenzyme Q), mitovitamin E, and mitophenyltertbutyline
as well as SkQ1 (plastoquinone). These mitochondrial-
targeted drugs can achieve concentrations in the
mitochondrial matrix 100- to 1000-fold higher than those
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in the cytosol because of their strong positive charge, as
mitochondria have a highly negative membrane potential
(approximately ~150 mV) (1).

Conclusions

Mitochondrial function and behavior are central in the
physiology of humans and, consequently, ‘“mitochondrial
dysfunction” has been implicated in a wide range of
diseases. The complexity of mitochondrial functions
and thus ‘“mitochondrial dysfunction,” however, are
challenges to unravel, but these challenges must be met
to determine whether mitochondrial manipulation can be
harnessed therapeutically.

Recent technological developments will allow for
systems based biochemical, metabolic and genomic
approaches, which will provide invaluable insight into
mitochondrial biology. These approaches will enable
the construction of a complete mitochondrial network
map that will be invaluable for understanding the role of
“mitochondrial dysfunction™ in human disease.
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