ANALISIS ANGKA KEAMANAN *DIAFRAGMA WALL*MENGGUNAKAN PERMODELAN MOHR COLOUMB DENGAN PARAMETER TOTAL DAN EFEKTIF

Ferra Fahriani

Staf Pengajar Jurusan Teknik Sipil Universitas Bangka Belitung Email: f2_ferra@yahoo.com

ABSTRAK

Pada satu lereng buatan (galian dalam) memerlukan suatu konstruksi penahan tanah yang besar untuk menahan tekanan lateral yang terjadi agar lereng dalam keadaan stabil. Analisis kestabilan suatu lereng ditunjukkan pada suatu angka keamanan. Ketika dipasang suatu konstruksi penahan tanah perlu dianalisis angka keamanan dari penahan tanah tersebut. Pemilihan parameter tanah yang tepat sangat diperlukan untuk mendapatkan hasil analisis yang tepat. Pada penelitian ini akan dianalisis angka keamanan suatu diafragma wall yang dipasang sebagai penahan pada suatu galian dalam. Dengan menganalisis besarnya bending momen pada diafragma wall yang terjadi menggunakan program PLAXIS selanjutnya dapat ditentukan besarnya angka keamanan diafragma wall. Permodelan tanah menggunakan permodelan Mohr – Coloumb yang di analisis dengan analisis drained dan undrained menggunakan parameter total dan efektif digunakan pada penelitian ini. Hasil analisis didapatkan bahwa semakin dalam galian, faktor keaman galian yang didapat semakin kecil. Analisis galian dalam menggunakan analisis drained memberikan faktor keamanan yang kecil dibandingkan undrained. Dari Angka keamanan yang paling kecil didapat dalam desain galian dalam keadaan kritis terjadi pada kondisi drained. Untuk itu disarankan penggunaan analisis drained pada analisis galian dalam, sebagaimana telah diungkapkan pada beberapa teori tentang pemilihan parameter pada galian dalam.

Kata Kunci: Galian Dalam, Faktor Keamanan, Diafragma Wall, Drained, Undrained

PENDAHULUAN

Kestabilan suatu tanah akan terganggu akibat adanya suatu penggalian, baik penggalian dangkal maupun dalam. Suatu galian yang dalam dan luas memerlukan penahan tebing galian agar tetap vertikal, maka dapat dipakai konstruksi tanah penahan yang dikonstruksikan sebelum dilaksanakan suatu penggalian. Galian yang dalam menyebabkan beban lateral menjadi sangat besar sehingga memerlukan konstruksi penahan tanah yang besar pula. Pada kasus galian dalam, selain angka keamanan pada galian perlu pula diananlisis angka

keamanan pada dinding penahan sebagai penyangga galian tersebut. Pada penelitian ini diafragma wall merupakan konstruksi yang digunakan sebagai penahan galian Dengan menganalisis besarnya tanah. bending momen pada diafragma wall yang terjadi menggunakan program **PLAXIS** selanjutnya dapat ditentukan besarnya angka keamanan diafragma wall pada ini. Permodelan tanah penelitian permodelan menggunakan Mohr Coloumb yang di analisis dengan analisis drained dan undrained menggunakan parameter total dan efektif digunakan pada penelitian ini. Pada penelitian ini akan diannalis pengaruh pemilihan parameter tanah terhadap angka keamanan diafragma wall.

TINJAUAN PUSTAKA

Faktor Keamanan Diafragma Wall

Perhatian utama pada suatu perencanaan dan pelaksanaan pada adalah pengaruh yang kuat penggalian pada konstruksi yang berhubungan dengan pergerakan tanah pada terhadap properti dan sarana disekitarnya. Selama penggalian tegangan pada tanah disekeliling daerah galian berubah. Perubahan paling besar sisi dinding penahan vaitu berkurangnya tegangan pada permukaan galian hasil dari pegerakan tanah secara horizontal diikuti pergerakan tanah secara vertikal pada suatu keseimbangan dan meningkatnya tegangan vertikal akibat akibat menurunnya muka air tanah penurunan segera dan konsolidasi pada Pergerakan tanah tanah. dapat menyebabkan bangunan khususnya pondasi mengalami translasi, rotasi, deformasi, distorsi mengakibatkan dan akhirnya kerusakan, jika jaraknya melebihi batas yang ditolensi.

Bila suatu dinding dalam keadaan diam, yaitu bila suatu dinding tidak bergerak ke satu arah baik ke kanan maupun ke kiri dari posisi awal, maka massa tanah tersebut dalam keadaan keseimbangan elastik. Rasio antara tekanan arah vertikal dan horizontal dinamakan koefesien tekanan tanah dalam keadaan diam (*Ko*) dengan

$$Ko = \sigma_h / \sigma_v \dots (1)$$

Menurut Jaky (1944), Ko untuk tanah berbutir:

$$Ko = 1$$
- $\sin \Phi$ (2)

Menurut Brooke dan Jreland (1965), Ko untuk tanah lempung:

$$Ko = 0.95 - \sin \Phi$$
(3)

Jika suatu dinding yang membatasi suatu massa tanah tersebut diijinkan bergerak, maka tekanan tanah horizontal dalam element tersebut akan berkurang secara terus menerus dan akhirnya dicapai suatu keseimbangan plastis. Kondisi tersebut dinamakan sebagai kondisi aktif.

Menurut Rankine (1857) tekanan tanah yang bekerja pada dinding tersebut (σ_a) dinamakan tekanan tanah aktif:

$$\sigma_a = \sigma_v \quad x \quad k_a - 2c\sqrt{k_a}$$
, $k_a =$ koefisien tekanan tanah aktif = tg^2 (45- Φ /2)

Sedangkan keadaan tanah pasif adalah apabila suatu dinding didorong untuk masuk secara perlahan-lahan kearah dalam tanah, maka tegangan horizontal (σ_h) akan bertambah secara terus menerus . Pada keadaan ini, keruntuhan tanah akan terjadi yang dikenal sebagai tekanan tanah pasif.

Menurut Rankine (1857) tekanan tanah yang bekerja pada dinding tersebut (σ_p) dinamakan tekanan tanah pasif

$$\sigma_p = \sigma_v \ x k_p + 2c \sqrt{k_a}$$
 (4)

$$k_p = \text{koefisien tekanan tanah pasif}$$

$$= tg^2 (45 + \Phi/2) \dots (5)$$

Dalam menghitung batas ultimit suatu dinding penahan tanah, harus diperhitungkan hal-hal berikut ini :

- 1. Stabilitas keseluruhan struktur
- 2. Keruntuhan akibat heaving
- 3. Keruntuhan akibat tekanan hidraulik

Analisis faktor keamanan suatu lereng dapat menggunakan konsep gaya maupun konsep momen. Pada penelitian ini faktor keamanan diafragma wall dianalisis dengan konsep momen yang didapat membagi momen ultimate diafragma wall dengan momen maksimum diafragma wall. Momen maksimum didapat dari hasil analisis dengan *PLAXIS*, seperti yang terdapat pada formula dibawah ini:

$$SF = \frac{Momen Ultimate}{Momen_{max} Diafragma Wall}$$
 (6)

Permodelan Mohr – Coloumb

Permodelan tanah dalam menganalisis keruntuhan tanah dalam geotknik ada beberapa macam . Pada penelitian ini digunakan permodelan c . Model Mohr – Coloumb adalah model elastis- plastis yang terdiri dari lima buah parameter:

- a. E dan υ untuk memodelkan elastisitas tanah
- b. Φ dan c untuk memodelkan plastisitas tanah
- с. Ψ sebagai sudut dilatansi

Model c disarankan untuk analisis awal masalah geoteknik yang dihadapi. Model ini mempunyai nilai kekakuan ratarata yang konstan. Karena kekakuannya yang konstan itu maka perhitungannya cendrung cepat sehingga dapat diperoleh bentuk deformasi dari model secara cepat. Disamping kelima parameter diatas, konsisi tegangan awal dari tanah memegang peranan penting dari seluruh masalah deformasi tanah. Tegangan horizontal tanah

harus dibentuk terlebih dahulu dengan menentukan nilai *Ko* yang tepat.

Adapun kriteria keruntuhan yang diajukan oleh Mohr Coloumb (1773), Coloumb menyarankan bahwa keruntuhan yang terjadi pada kondisi kuat geser tanah, tegangan normal yang terjadi memenuhi persamaan berikut ini:

$$\tau = c + \sigma_n \tan \Phi \dots (7)$$

Undrined Drained Shear Strength

Pada kondisi *undrained* shear *strength*, kadar air dan volume pada suatu lempung adalah konstan dan *excess pore pressure* dihasilkan. *Shear strength* pada kondisi ini didefinisikan sebagai *undrained shear strength*.

Jika lempung *satrurated* pada kondisi *undrained* dianaisis pada kondisi total, perhitungan tekanan air pori tidak diperlukan. Dibawah kondisi ini dimana Φ = 0 metode yang digunakan untuk analisis ini adalah *undrained shear strength* yang sama dengan nilai kohesi pada keruntuhan Coulomb untuk tegangan total. Untuk asumsi ini, *undrained shear strength* untuk lempung *saturated* tidak berpengaruh pada perubahan *confining pressure* selama kadar air tidak berubah.

Drained Shear Strength

Berdasarkan effective stress principle, ketahanan maksimum geser pada tanah bukan merupakan fungsi dari tegangan normal, tetapi perbedaan antara tegangan normal dan tekanan air pori, seperti ketika tanah digali, volume tanah berubah yang akan menyebabakan perubahan tekanan air pori Δu . Perubahan pada tekanan air pori ini bisa meningkat atau menurun dari waktu ke waktu tergantung tipe tanah dan tipe

tegangan yang terjadi. Pada kondisi *fully* drained (waktu yang lama) Δu terdisipasi sehingga $\Delta u = 0$. Untuk partially drained atau kondisi undrained, nilai dari Δu tergantung dari pembeban dibandingkan dengan drainase dalam tanah. Perubahan tekanan air pori , yang disebakan oleh perbahan tegangan pada kondisi undrained.

METODE PENELITIAN

Analisis angka keamanan diafragma dilakukan pada studi kasus pembangunan gedung basement di Jakarta menggunakan konstruksi penahan tanah berupa diafragma wall menggunakan software PLAXIS. Pada penelitian ini akan faktor keamanan terhadap diafragma wall ultimate didapat membagi momen diafragma wall dengan momen maksimum diafragma wall yang didapat dari hasil analisis dengan *PLAXIS*. Adapun hal-hal yang akan dibahas pada makalah ini menyangkut studi pemodelan tanah Mohr Coulomb dengan analisis drained dan undrined. Keluarannya akan berupa perhitungan bending momen yang terjadi pada dinding penahan tanah. Adapun pendekatan parameter yang dipelajari pada penelitian ini menyangkut analisis pemodelan Mohr Coulomb ini adalah analisis undrained dan drained menggunakan parameter total dan efektif. Pada penelitian ini, pemodelan Mohr Coulomb dilakukan tiga pendekatan parameter yaitu:

- a. Metode A : Analisis undrained menggunakan parameter total
- b. Metode B : Analisis undrained menggunakan parameter efektif

c. Metode C : Analisis drained menggunakan parameter efektif

Tahapan Konstruksi Galian Dalam

Tahap konstruksi galian dalam ini dimodelkan dalam program *PLAXIS* sesuai dengan kondisi lapangan , diawali dengan pemasangan konstruksi penahan tanah berupa *diafragma wall*. Galian ini menggunakan *diafragma wall* dengan tebal 0,6 m dan pelat lantai dengan tebal 28 cm

Setelah itu dilakukan tahapan penggalian. Galian dalam ini dilakukan galian dalam tahapan dengan pemasangan pelat lantai pada tiap galian menggunakan metode top down. yang Pada kegiatan konstruksi dengan metode top down, lantai dasar pada permukaan tanah dapat dipasang setelah diafragma wall dan bore pile serta kolom-kolom selesai dipasang. Tanah kemudian digali dari bawah lantai sampai ke level dan dipindahkan melalui selanjutnya lubang bukaan pada pelat lantai. Adapun tahapan penggalian menyangkut:

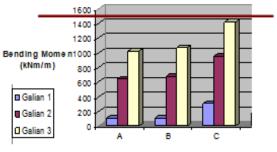
- a. Pekerjaan penggalian tahap I, pada kedalaman 0 m -2,5 m
- b. Pemasangan pelat lantai 1, pada kedalaman 2 m
- c. Pekerjaan penggalian tahap II, pada kedalaman 2,5 m -7 m
- d. Pemasangan pelat lantai 2, pada kedalaman 5 m
- e. Pekerjaan penggalian tahap III, pada kedalaman 7 m -11 m

Parameter Tanah

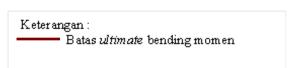
Adapun parameter tanah yang akan digunakan dalam analisis galian akan diuraikan pada Tabel 1 dibawah ini .

Material type yang digunakan pada penelitian ini adalah drined dan undrined. Untuk analisis drained dan undrined yang

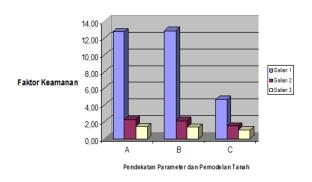
menggunakan parameter efektif nilai $c = 0.2 \text{ kN/m}^2$ pada tiap lapisan.


Depth	th Soil Description γ dry		γ wet	kx-ky	
(m)		(kN/m3)	(kN/m3)	(m/day)	
0-1	Aspal urugan	20,0	25,0	86,4	
1-13,5	Lempung kelanauan	14,5	19,5	8,64 x 10^-3	
13,5-25,5	Pasir Halus	15	20,0	0,864	
25,5 -27	Pasir Halus Kelempungan	16	21,0	0,0864	
27-33,5	Pasir Halus 2	15	20,0	0,864	
33,5-41,5	Pasir Kasar Berkerikil	19	24,0	86,4	
41,5-50	Cadas Kepasiran	19	24,0	86,4	

Depth	Soil Description	υ	N	Ø'	E
(m)				(°)	(kN/m2)
0-1	Aspal urugan	0,30	3	10	8775,00
1-13,5	Lempung kelanauan	0,35	3	13	8775,00
13,5-25,5	Pasir Halus	0,30	7,17	27	20972,25
25,5 -27	Pasir Halus Kelempungan	0,35	2	23	5850,00
27-33,5	Pasir Halus 2	0,30	22,33	29	65315,25
33,5-41,5	Pasir Kasar Berkerikil	0,30	60	31	175500,00
41,5-50	Cadas Kepasiran	0,35	60	32	175500,00


HASIL DAN PEMBAHASAN

Dari hasil analisis menggunkan program PLAXIS didapat nilai bending momen pada diafragma wall untuk masingmasing analisis. Gambar 1 berikut ini menunjukan besarnya bending momen maksimum yang terjadi pada dinding penahan tanah pada masing-masing metode pada tiap tahapan galian. Faktor Keamanan terhadap diafragma wall didapat membagi momen ultimate diafragma wall sebesar 1450 kNm dengan momen maksimum diafragma wall yang didapat dari hasil analisis dengan PLAXIS, seperti yang terdapat pada formula dibawah ini:


$$SF = \frac{M \text{ omen Ultimate}}{M \text{ omen}_{max} \text{ Diafragma Wall}}$$

Pendekatan Parameter dan Pemodelan Tanah

Gambar 1. Bending momen maksimum pada *diafragma wall*

Gambar 2. Faktor keamanan diafragma wall

Berikut adalah diagram yang menunjukkan besarnya faktor keamanan terhadap diafragma wall pada masingmasing metode A, B, C, D dan E pada tiap-tiap galian.

terlihat bahwa Dari gambar 2 semakin dalam galian faktor keamanan galian yang didapat semakin kecil. Analisis galian dalam menggunakan analisis drained memberikan faktor keamanan yang kecil dibandingkan undrained. Dari Angka keamanan yang paling kecil didapat dalam desain galian dalam keadaan kritis terjadi pada kondisi drained. Untuk itu disarankan penggunaan analisis drained pada analisis galian dalam, telah diungkapkan sebagaimana pada beberapa teori tentang pemilihan parameter pada galian dalam

DAFTAR PUSTAKA

- Atkinsonn, JH (1982) .The Mechanic of Soil, McGraw-Hill Book Company UK, England
- Abramson, Lee W (1996). Slope Stability and Stabilization Methods, A Willey-Interscience Publication, USA
- Bowles, JE (1991) .Sifat-Sifat Fisik dan Geoteknis Tanah, Erlangga, Jakarta
- Brinkgreve, R.B.J (1998). Plaxis 2D-Versi 8, A.A Balkema, Rotterdam
- Britto,AJ (1987). Crtical State soil Mechanic Via Finite Elements, Ellis Harwood Limited, USA
- Edil, Tuncer (1982). Seepage ,Slope and Embankments, Departement of Civil And Emvironmental Engineering Unoversity of Wiswconsin-Madison
- Gue, S,S and Y.C Tan. (1998) ."Design and Constuction Consideration for Deep Excavtion" SSP Geotechnics Sdn Bhd, Selangor, 1-20.