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Abstract 
The integrated UMTS and WLAN ad hoc networks are getting more and more popular as they 

hold substantial advantages by next generation networks. We introduce a new secure, robust routing 
protocol specifically designed for next generation technologies and evaluated its performance. The design 
of the SNAuth_SPERIPv2 secure routing protocol takes advantage to the integrated network, maintaining 
Quality of Service (QoS) under Wormhole Attack (WHA). This paper compares performance of newly 
developed secure routing protocol with other security schemes for CBR video streaming service under 
WHA. 

  
Keywords: integrated UMTS and WLAN Ad Hoc network, QoS, routing, scalability, security, WHA 

  
 
1. Introduction 

In the trusted environment, inter-domain packet routing in the Integrated Universal 
Mobile Telecommunications System (UMTS) and Wireless Local Area Network (WLAN) ad hoc 
multi-hop network [1] is used under the guidance of routing protocols. The development of 
secure routing protocol to defend against untrusted environment is research issue now a days.   
Most applications such as online transactions, critical business operations, military networks, 
etc., that run in untrusted environments wants secure communication and routing to protect 
network from unhealthy situations. The routing infrastructure of integrated network is vulnerable 
to a variety of attacks because there are no strong security services built in routing protocols. 
Most internet routing protocols provide authentication using plain-text password, that is easy for 
an adversary to make admission to an integrated network of manipulation routing information. 
We introduce a secure, robust routing protocol, namely SNAuth_SPERIPv2 periodic distance 
vector routing protocol using secure neighborauthentication for performing routing for 
untrustworthy environment. The Integrated UMTS and WLAN multi-hop networks support 
different class of services, namely: conversational, streaming, interactive, and background class 
service [2], [3], [4]. First two classes are guaranteed QoS classes (highly delay sensitive) and 
next two are non-guaranteed QoS classes (loss sensitive) [5]. CBR video streaming application 
is real-time asymmetric guaranteed class of service.  

The rest of the paper is organized as follows: Section 2 discusses background: 
integrated UMTS and WLAN ad hoc networks vulnerabilities and attacks, section 3 introduce 
related work, section 4 discuses secure routing requirements and design of secure routing 
protocol for the integrated network and section 5 introduces performance evaluation. Finally, 
Section 6 concludes this paper. 

 
 

2. Background: Integrated UMTS and WLAN Ad Hoc Networks Vulnerabilities and Attacks 
The WLAN nodes of integrated UMTS and WLAN ad hoc network are capable of 

operating independently without any fixed infrastructure. The dynamic routing protocols in such 
network, find routes between these nodes and allowing packets to be sent on to a further 
destination network node [6]. The integrated network has unstable infrastructure vulnerability 
due to absence of wired network deployment in ad hoc network [7-8]. In RIPv2, there is several 
known security vulnerabilities exist because its routing update message contains a vector of 
pairs (destination distance) [9-10]. Some of attacks are discussed below. 
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2.1. Router Impersonation 
In router impersonation, an unauthorized node can connect easily to a routing domain 

and take part in routing. This may be trained with the help of IP spoofing. After performing 
impersonation, an attacker may alter or replay routing messages among legitimate routers.  
RIPv2 has clear-text password for authentication, which can easily breached. The keyed 
Message-Digest algorithm 5 (MD5) has been developed to replace this password authentication 
scheme [11]. Keyed mechanism is better, but also vulnerable due to compromised router which 
may disclose keying materials of all routers [9-10]. 

 
2.2. Prefix Impersonation 

In prefix impersonation, an unauthorized or malicious node may claim a zero distance to 
those routers who does not directly connected to the network subnet (prefix). The MD5 
authentication scheme [11] is not enough for this attack. Prefix impersonation can easily launch 
Denial of Service (DoS) in inter-domain (e.g., BGPv4 [12]) as well as intra-domain routing 
protocol (e.g., RIPv2) [9-10]. In the ARPANET [13], a similar incident has occurred known as 
blackhole attack. 

 
2.3. Distance Fraud 

In distance fraud, an unauthorized may claim a distance shorter or longer than the 
actual distance to a specific destination. The short distance fraud may be used to attract traffic 
to float different passive attacks e.g., session hijacking, eavesdropping etc. Whereas, long 
distance fraud can be used to avoid traffic and preserve its resources which may lead to unfair 
utilization of network links and cause network congestion due to consistency check of routing 
updates by routers. The long distance fraud is an active threat and may lead to launch a DoS 
attack on the network. The RIPv2 with MD5 authentication scheme is not enough for this attack 
[9-10]. 

 
2.4. Wormhole Attack (WHA) 

WHA is a powerful active attack that may have severe consequences on distance 
vector routing protocols by showing shortest path for routing packets. The active WHA may be 
considered with passive eavesdropping threat [8], [14]. The eavesdropping threat has the 
capacity to intercept wireless traffic (breach confidentiality of the network) without altering and 
dropping of packets. In WHA, attacker developed a high bandwidth and low latency wireless 
tunnel between two malicious nodes. Attackers intercept packets at one location in the network 
and tunnel them to another location, and then replay (potentially altered) all tunneled packets 
into the network [8], [14], [15]. It works in two modes, namely: transparent mode and participant 
mode. In the transparent mode, wormhole malicious nodes are not victim network members. 
Where in participant mode, these nodes are the part of the victim network [16]. 

 
 

3. Related Work  
This section focuses our study on the approaches proposed in literature that protect 

internet routing protocols (e.g. RIP, BGP, etc.) against active attacks. Several works already 
have been done to secure intra-domain distance vector routing (e.g. RIPv2 [17]) and inter-
domain path vector routing protocol (e.g. BGPv4 [18]) using public-key digital signatures or 
Message Authentication Code (MAC) cryptographic approaches [9], [10], [19] and [20]. The 
related works of several researchers have reviewed below. 

Hu et al. [8] introduced the severe WHA against wireless ad hoc network routing 
protocols, and proposed a new packet leashes mechanism for detecting and defending against 
this attack. A multi-hop wireless network is more vulnerable from this attack. Packet leashes 
(which can be either temporal or geographic leashes) are used to restrict the maximum 
transmission distance of routing packet for avoiding next hop fraud. The temporal leashes has 
implemented by TIK (TESLA with Instant Key disclosure) protocol based on a message 
authentication code (symmetric cryptographic primitives) which is an extension of the TESLA 
broadcast authentication protocol.  

Hu et al. [21] proposed security mechanisms using efficient one-way hash functions and 
authentication trees for Secure Efficient Ad Hoc Distance Vector Routing protocol (SEAD) e.g. 
RIP against active attack. Their approach is one of the first robust approaches against multiple 
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uncoordinated attackers creating an incorrect routing state in victim nodes or compromising 
nodes in the network and may prevent shorter and same distance fraud. Limitation of the work 
is that it does not take up long distance fraud.  

Hu et al.[22] proposed various security mechanisms using hash tree chain, tree-
authenticated one-way chains and a one-way Merkle-Winternitz (MW) chain (new cryptographic 
mechanism) for distance vector routing protocol and cumulative authentication mechanism for 
path vector routing protocol against DoS attack. The distance vector (e.g. RIP) and path vector 
(e.g. BGP) use in the internet and can be applied to multi-hop wireless ad hoc networking.  

Sanzgiri et al. [23] proposed a secure routing protocol for ad hoc network known as 
Authenticated Routing for Ad hoc Networks (ARAN) and successfully work against active 
tunnelling attacks which enable DoS attacks. It provides authentication using predetermined 
cryptographic certificates that guarantee end-to-end authentication to secure shortest path 
attack.  

Hu et al. [24] proposed a secure distance vector routing protocol for ad hoc network 
known as Rushing Attack Prevention (RAP) protocol against rushing attacks which enable DoS 
in network. This is secure neighbor authenticated multipath distance vector routing protocol and 
developed by generic approach. Due to route discovery techniques, the protocol has higher 
overhead, but performs well and provides a usable route against the active attack. They also 
propose to integrate different secure distance vector routing protocols with a secure neighbor 
authentication scheme to enhance security.   

Hu et al. [25] proposed an on-demand secure ad hoc routing, called Ariadne against 
active attack. It can authenticate the routing message using highly efficient symmetric 
cryptographic primitives. 

Wan et al. [10] proposed a secure distance vector routing protocol (S-RIP) which can be 
significantly applied to the non-trustworthy environment like ad hoc network and inter-domain 
routing. 

Babakhouya et al. [9] proposed a secure distance vector routing protocol (S-DV) to 
detect malicious routing update for long or short distance fraud. This scheme proposed Distance 
Reply (DR) authentication mechanism for S-DV routers, which reduces overhead and scalability 
of S-DV routing protocol. 

 
 

4. Secure Routing Requirements and Design of Secure Routing Protocol for the 
Integrated Network 

In integrated UMTS and WLAN ad hoc network, the multi-hop WLAN ad hoc network is 
a routing attack prone region. This can make overall integrated network insecure. The security 
of vulnerable domain is maintained by a secure routing protocol.  Most routing protocols provide 
authentication using plain-text password, which is easy for an adversary to make admission to 
an integrated network of manipulation routing information. For proper detection and 
authentication against WHAs on the integrated network, a Secure Neighborhood Authenticated 
Strict priority Equal-cost multipath RIPv2 (SNAuth_SPERIPv2) distance vector routing protocol 
is designed and for further enhancement of security in integrated network, integrate the secure 
distance vector routing protocol with different layer security schemes.  

 
4.1. Design of SNAuth_SPERIPv2 routing protocol 

The SNAuth_SPERIPv2 periodic distance vector routing protocol is the integration of 
secure neighbor authentication schemes with strict priority load balancing or equal-cost 
multipath RIPv2 routing protocol. That makes basic RIPv2 more robust and provides load 
balancing by spreading traffic along multiple equal cost paths. 

 
4.1.1. The secure neighbor authentication (SNAuth) schemes 

SNAuth schemes work with symmetric as well as asymmetric cryptography. In the 
SNAuth [24] with symmetric cryptography, the authentication variant is based on 16 byte pair-
wise shared secret key [26] variant between sender and receiver nodes which is hidden from 
remaining users. Authentication variant in SNAuth with asymmetric cryptography is based on 
certification. In the SNAuth based on pair-wise shared secret variant, every sender node 
broadcasts its identity (SNAuth-HELLO) packets periodically after completing a previous 
session key and a neighboring receiver node of SNAuth-HELLO packet pre-shares this key with 
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the sender node and perform three-way challenge-response handshake to authenticate the 
sender node [27]. The challenge-response messages use a common secret key to encrypt and 
decrypt their nonce. Here, nonce is the 128 bit random number that may only be used once with 
particular authentication message. The Figure1 illustrates three way handshake based on pair-
wise shared secret variant.  

The second neighbor authentication method has slightly different challenge-response 
scheme where the receiver does not pre-share a master secret key with the sender. In the 
SNAuth based on certificate variant, the sender node broadcasts its certificate with a certified 
HELLO message and all neighboring receiver nodes of certified HELLO message perform two-
way challenge-response handshake to authenticate sender node [28]. The challenge certificate 
messages uses, its own certificate and a common public key encrypted cipher-text signed by its 
own private key. The public key cryptosystem uses an Elliptic Curve Cryptosystem (ECC) [29] 
which has shorter certificate length and cipher-text length and offers less communication 
overhead. The response messages use a secret session key to encrypt and decrypt their 
nonce. The Figure2 illustrates two way handshakes based on certificate variant. 

 
 

 
 

Figure 1. The Pair-Wise Shared Secret Variant of SNAuth 
 

 

 
 

Figure 2. The SNAuth Variant based on Certification 
 
 
4.1.2 Strict Priority Equal-cost multipath RIPv2 (SPERIPv2)  

Routing Information Protocol version2 (RIPv2) is used for intra-domain distance vector 
routing. RIPv2 is classless dynamic routing protocol works on Bellman Ford algorithm. It is used 
by medium and small organizations (IP networks of moderate size) because it’s limited hop-
count (15 hops per packet) and a value of hop count metric = 16 is considered as destinations 
network unreachable. For extension of coverage area up to 64 hops, the WLAN ad hoc network 
is integrated with UMTS network. This integration support RIPv2 routing protocols to send their 
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packets to ubiquitous locations by the support of Gateway GPRS Support Node (GGSN) with 
GPRS tunnelling protocol (GTP). 

RIPv2 is an extension of RIPv1. It is a UDP based protocol that means each router that 
uses this routing process will send and receive datagram on a UDP port. RIPv2 packet format is 
given in Figure 3. In Figure3 (a), command is 8 bit field that indicated the type of message. 
RIPv2 router uses two types of message to transmit and receive, namely: request and response 
for completing routing table. Address Family Identifier (AFI) is used for message authentication. 
In RFC-2453, RIPv2 support 20 byte plain text password for authentication which can easily 
breached. In RFC-2082, the keyed 16 byte MD5 has been developed to replace this password 
authentication scheme as shown in Figure3 (b). The unsigned 8 bit authentication data length 
present in field permits other authentication algorithms to be substituted by MD5. The Route 
Tag (RT) field is provided a method of separating internal intra-domain route provided by an 
Interior Gateway Protocol (IGP) from external inter-domain route by Exterior Gateway Protocol 
(EGP). RIPv2 has Variable Length Subnet Mask (VLSM) of the destination prefix specified in “IP 
Address”, which support RIPv2 for Classless Inter-Domain Routing (CIDR) [30]. The next hop 
field is an advisory field which is used to eliminate extra hops in the packet being routed.  If a 
packet routing is done by the originator of advertisement or received next hop is not directly 
reachable, then hop IP address is represented as 0.0.0.0. The RIPv2 message has an IP 
multicast address used for periodic broadcast in every 30 second by the regular routing update.  

 
 

 
 

Figure 3. RIPv2 Message Format (a) with a Plain Text Password (b) Keyed MD5 
 
 

 
 

Figure 4. Equal Cost Path in RIPv2 
 
 

Most of internet applications want more than one route to the destination. Hence, it is 
advantageous if a RIP router may learn equal cost routes. In RIPv2, the split horizon with poison 
reverse (techniques to avoid routing loops) may apply for equal cost routes by setting their 
metrics to infinity. By suitable modification in processing of response messages and correct 
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implementation of split horizon with poison reverse while advertising the routes to neighbors, up 
to 16 equal-cost paths in the RIPv2 route table can be implemented [31]. The meaning of equal 
cost multipath is that more than one equal cost path between the source destination. There 
should be advertise only one route with a cost of 16 (set metrics to infinity) after completion of 
poison reverse process, no matter router learns how many equal cost routes [17]. which helps 
to increase robustness of the routing protocol and provide load balancing by distributing traffic 
among all routers. Figure4 illustrates the equal cost path in RIPv2 between source and 
destination based on a Bellman Ford algorithm. The equal cost multiple path routing creates 
more overhead but makes available better performance in congestion and capacity by its load 
balancing capability. The strict priority equal cost multiple path routing provides proper and 
scheduled routes which decrease congestion and increase the network throughput. In this 
scheme, SNAuth has been performed on the basis of pair-wise shared secret variant. The 
maximum time interval for which a node waits to do the next neighbor detection handshake 
(secure-neighborhood expiration timeout) has been specified as 5000 ms [32]. 

 
4.2. Integrate the Secure Distance Vector Routing Protocol (SNAuth_SPERIPv2) with 
Different Security Schemes 

The aim of this integration is to make integrated networks with very robust against 
WHA. The different security schemes are structured in below sub-sections. 

 
4.2.1. SNAuth_SPERIPv2 with Direct Sequence Spread Spectrum (DSSS) 

The aim of the integration of SNAuth_SPERIPv2 with DSSS is to provide security 
services for both routing protocol information and data message signal in an integrated network. 
In this scheme, SNAuth based on pair-wise shared secret variant has been performed.The 
DSSS technique offers jamming resistance at the physical layer. It has been implemented in 
WCDMA and 802.11b for providing secure data message signal in physical layer. A multi-layer 
wormhole adversary model with the network security models is used as attack model. WHAs on 
routing protocol produces DoS directly on network layer and indirectly on other layers of network 
that effect availability and integrity of routing packets. In typical DSSS technique, spreads the 
modulated signal by spreading signal is generated from a Pseudo-Noise (PN) sequence running 
periodically at a much higher rate than the original data signal for securing physical layer of the 
network against jamming DoS attacks [33]. The transmission and reception turnaround latency 
for UMTS and WLAN radios have been specified as 25µs and 2µs, respectively. In Figure5, 
DSSS system model has been illustrated. 

 
 

 
 

Figure 5. DSSS System Model 
 
 

4.2.2. SNAuth_SPERIPv2 with Counter Mode Cipher Block Chaining Message 
Authentication Code Protocol (CCMP) - Advanced Encryption Standard (AES) 

The aim of the integration of SNAuth_SPERIPv2 with CCMP-AES is to provide security 
services for both routing protocol information and data message in integrated network. 
SNAuth_SPERIPv2 provide routing protocol message authentication, where, CCMP-AES 
provides confidentiality, integrity and authentication of Media Access Control Protocol Data Unit 
(MPDU). In this scheme, SNAuth has been performed on the basis of pair-wise shared secret 
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variant. CCMP-AES is a Robust Security Network (RSN) data confidentiality and integrity 
protocol. It has been implemented in 802.11i as Wi-Fi Protected Access II (WPA2) for providing 
secure data frames in data link layer by utilizing the newest and strongest 128-bit AES 
encryption algorithm [34], [35]. This scheme protects integrated network from eavesdropping, 
alteration and dropping of data frames from unauthorized users. The processing delay for 
CCMP 'AES' encryption algorithm with CBC Hash-based Message Authentication Code (HMAC) 
has been specified as 5µs. CCMP originates cipher text and Message Integrity Code (MIC) for 
plain text MPDU using MPDU Data, Temporal Key (TK), Additional Authentication Data (AAD) 
and Nonce. The encrypted MPDU has been formed by combining cipher text and MIC with 
MPDU and CCMP header as shown in Figure 6(a). The MPDU plain text has been recovered 
using same keys and sequence number in decryption scheme as shown in Figure 6(b). 
 
 

 
 

Figure 6. MPDU (a) Encryption (b) Decryption Scheme  
 
 

4.2.3. SNAuth_SPERIPv2 with Internet Protocol Security (IPSec) 
The aim of the integration of SNAuth_SPERIPv2 with IPSec is to provide security 

services for both routing protocol information and entire IP datagram in integrated network 
against WHA. SNAuth_SPERIPv2 provide routing protocol message authentication, where, 
IPSec provides confidentiality, integrity and authentication of an IP datagram. In this scheme, 
SNAuth has been performed on the basis of pair-wise shared secret variant. The proposed 
IPSec scheme uses a hybrid version of IPSec protocol that includes both Encapsulating 
Security Payload (ESP) and Authentication Header (AH) protocols [36], [37], [38] as shown in 
Figure7. ESP provides confidentiality with optional integrity and authentication by authenticated 
encryption algorithms.ESP works in two modes, namely: transport and tunnel mode. In tunnel 
mode, the ESP header is inserted before the original IP header and after the new IP header 
while protection applies to entire original IP datagram. In transport mode, the ESP header is 
inserted after the original IP header while protection applies to upper layer protocols. AH is a 
member of the IPsec protocol suite that provide guaranteed integrity and authentication of the 
entire original IP datagram including the new IP header. The hybrid version of IPSec has been 
used with ESP tunnel mode while protecting entire IP datagram with security association using 
the Internet Security Association and Key Management Protocol (ISAKMP) for protection of a 
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particular data flow between a pair of hosts of integrated network [39]. Common authentication 
algorithms have been used in ESP and AH that includes HMAC-MD5, HMAC- Secure Hash 
Algorithm 1(SHA1), HMAC-MD5-96, and HMAC-SHA1-96 with 10µs cryptographic processing 
delay. The Data Encryption Standard - Cipher Block Chaining (DES-CBC) encryption algorithm 
has been used in ESP with 10µs cryptographic processing delay.  

 
 

  
 

Figure 7.  The IPSec Protocol Architecture 
 
 
4.2.4. SNAuth_SPERIPv2 with Wireless Transport Layer Security (WTLS) 

The aim of the integration of SNAuth_SPERIPv2 with WTLS is to provide the complete 
end-to-end security for routing protocol information, transport and upper layer in an integrated 
network. SNAuth_SPERIPv2 provide routing protocol message authentication, where, WTLS 
provides data privacy, authentication and integrity for Wireless Application Protocol (WAP) 
applications against man in the middle DoS attacks [23], [40], [41], 42]. In this scheme, SNAuth 
has been performed on the basis of certificate. WTLS security protocol is the security layer of 
WAP that defines a set of protocols in transport, security, transaction, session, and application 
layers to enable a creation of the value added mobile services such as online banking and 
ecommerce, etc. In this scheme, WTLS certificate has been implemented on each IP interface 
with the IPSec ESP in transport mode for transport and upper layer security. The WTLS uses 
modern cryptographic algorithms are MD5, SHA1, AES, 3DES, and Elliptic Curve Cryptography 
(ECC). 

 
 

5. Performance of Integrated Networks 
This section presents the simulation results which have conducted using QualNet to 

evaluate the performance of security schemes under WHA. 
 

5.1. Configuration of the network including wormhole adversary 
The Integrated UMTS and WLAN ad hoc network parameters of the models have been 

configured according to IEEE802.11g and Third Generation Partnership Project (3GPP) 
guidelines. Configuration of the integrated network parameters is given in Table1. 

A wormhole adversary has been implemented in the vulnerable area of integrated 
network which can disrupt routing protocols by higher bandwidth and low latency wireless link 
tunnel as shown in Figure8. The wormhole is working in transparent mode as external 
adversary and performs DoS attack. 

 
5.2. Performance Metrics 

QoS performances of integrated networks under wormhole adversary and different 
security schemes have been analyzed using following metrics, namely: number of frames 
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dropped by wormhole (WH), routing overhead, average packet loss, average throughput, 
average end-to-end delay, average jitter and average hop-count [43]. 

CBR video streaming traffic has been employed for the QoS performance evaluation of 
integrated network under WHA. This traffic use network end-to-end delay as a performance 
metric. 

 
 

Table 1. Configuration of the Network Parameters 
Parameter UMTS WLAN  

No. of channels 
(channel frequencies) 

02 (                        ) 

01 (       ) 
Path-loss model Two-ray 

Shadowing model Constant without fading 
Antenna model Omni-directional 

PHY Layer 
Radio Type Cellular PHY- UMTS PHY 802.11a/g radio 

Maximum transmission power 30dBm 20dBm 
User data rate (Offered) 384 Kbps 6 Mbps 
Channel access scheme  FDD CSMA/CA 

Channel bandwidth 5 MHz 20 MHz 
Modulation scheme QPSK OFDM-BPSK 

Transmission and reception 
turnaround time 

25 µs 2 µs 

MAC Layer 
MAC protocol UMTS LAYER 2 – Cellular MAC 802.11 

Wormhole (WH) Adversary 
Wormhole-mode Threshold 

Wormhole propagation delay 4.25 µs 

 
 

 
 

Figure 8.The Integrated UMTS and WLAN Ad Hoc Network with WH Adversary 
 
 

5.3. Simulation Setup 
In order to assess the contribution of proposed secure routing protocol 

(SNAuth_SPERIPv2) against WHA, simulation has been carried out with and without WHA. 
Simulations are run for one way video streaming application with Constant Bit-Rate (CBR) 
traffic. The simulations are performing for two different scenarios under constant traffic load and 
constant inter-domain traffic ratio. The simulation setup for two different scenarios is given in 
Table 2.  
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Table 2. Simulation Setup 
Parameter Scenario-1 Scenario-2 

Packet size 512 Byte 512 Byte 
Traffic load 25 packets/s 25 packets/s 

Maximum number of network 
nodes 

40 nodes (users) 200 nodes (users) 

Distance between adjacent ad 
hoc nodes 

100 m 100 m 

Number of mobile nodes zero zero 
Distance between adjacent 

Node Bs 
1 km 2 km 

Perturbation zero zero  

Inter-domain traffic ratio 
50% 

(25% uplink and 75% downlink flow) 
25% 

(25% uplink and 75% downlink flow) 
Intra-domain traffic ratio zero zero 

Total simulation time 1800 s 1800 s 
Area 3x3 km2 6x6 km2 

 
 
Simulation scenario-1 is performed to evaluate the influence of the wormhole adversary 

on integrated network by increasing network size using an increasing number of fixed nodes 
from 8 to 40. The distribution of fixed nodes is uniform in 3x3 km

2 
area while keeping network 

density constant. In this scenario, the stationery node does not deviate or move in any direction 
from their ideal grid position, which indicate perturbation about 0% and integrated network 
become highly stable. After introducing wormhole adversary, how performance of IP based 
routing protocols disturb is to be investigated. 

Where, simulation scenario-2 is performed to evaluate the influence of the wormhole 
adversary on integrated network by increasing network size using an increasing number of fixed 
nodes from 40 to 200. The distribution of fixed nodes is uniform in 6x6 km2 area while keeping 
network density constant. In this scenario, the stationery node does not deviate or move in any 
direction from their ideal grid position, which indicate perturbation about 0% and integrated 
network become highly stable. After introducing wormhole adversary, how performance of IP 
based routing protocols disturb is to be investigated. 

One uplink (from WLAN to UMTS user) flow and one downlink (from UMTS to WLAN 
user) flow for every user with transmission time interval (TTI) of 40 ms are considered as 100% 
inter-domain traffic ratio. The CBR streaming traffic has taken only one uplink or only one 
downlink flow for every user in the first scenario. The last scenario is taken only one uplink or 
only one downlink flow of every two users. In [44], the authors have investigated that the RAB 
provide high capacity and low QoS in uplink, and low capacity and high QoS in downlink end 
users to CN of an integrated network for asymmetric CBR video streaming class of service. Due 
to this, all simulation scenarios are performed simulation under the 25 % amount of uplink and 
75% of downlink flows for this service.  

In both scenarios, two external wormhole malicious nodes with a low-latency, high 
bandwidth link have introduced within ad hoc network routing domains and they are not part of 
the regular integrated network. The wormhole adversary nodes have the ability to intercept 
legitimate wireless packets from victim ad hoc network nodes and tunnelled selective packet 
from one location and replayed to other locations. The external adversary under threshold mode 
is fulfilled the above requirements and produces denial of service (DoS) in an integrated 
network. For defending against WHA, it is necessary to drops maximum frames/packets by 
wormhole tunnel before replayed. In all scenarios, the victim integrated network is counted 
minimum physical and link layer delay by choosing a suitable victim turnaround time. 

A secure neighbor authenticated strict priority equal cost multipath routing information 
protocol version 2 (SNAuth_SPERIPv2) has been designed to protect an integrated network of 
wormhole routing attack. In order to evaluate security behavior in terms of QoS of integrated 
UMTS and WLAN network under WHA with different security scheme are structured in seven 
phases. In the first phase simulation has performed for RIPv2 routing protocol with MD5 
authentication without WHA and in a second phase, simulation is performed under WHA. In the 
third phase, integration of SNAuth with SPERIPv2 is done and simulation has performed with 
this robust routing protocol under WHA. Fourth, fifth, sixth and seventh phase 
SNAuth_SPERIPv2 perform with DSSS, CCMP-AES, IPSec and WTLS, respectively under 
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WHA. All simulation scenarios are also considered the cryptographic latency used by all security 
schemes. 

 
5.4. Simulation Results for Scenario -1 
5.4.1. The Performance of Integrated Network on a Number of Frames Dropped by WH 
tunnel under Different Security Scheme while the Numbers of Fixed Network Nodes are 
Increased 

Figure 9(a) shows, Frame dropped by WH is increasing with network size. The security 
schemes which have maximum number of frames dropped produce minimum DoS in an 
integrated network. SNAuth_SPERIPv2 routing protocol with IPSec have maximum number of 
frames dropped in all security schemes where RIPv2 with basic MD5 authentication scheme 
shows minimum frame dropped than other security protocols. 

 
 

 
 

Figure 9(a).Number of frames dropped by WH tunnel versus number of network nodes 
 

5.4.2. The Performance of Integrated Network on Routing Overhead under Different 
Security Scheme with and without WHA while the Numbers of Fixed Network Nodes are 
Increased 

Figure 9(b) shows the routing overhead is increasing with the network size. The routing 
overhead of different security scheme with WHA rises as the number of frames dropped by WH 
tunnel is decreased. The main reason behind this increase in routing overhead is the loss of 
packets due to WHA. When WHA is more dominant then it intercepts maximum packets from 
the victim network and replayed them.  
 
 

 
 

Figure 9(b). Average routing overhead versus number of network nodes 
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This Figure also shows RIPv2 with MD5 is more affected by WHA and have maximum 
routing overhead where SNAuth_SPERIPv2 routing protocol with IPSec is less effected by WHA 
and have minimum routing overhead among them. RIPv2 without WHA have minimum routing 
overhead from the secure routing protocols with WHA. 

 
5.4.3. The Performance of Integrated Network on Average Packet Loss under Different 
Security Scheme with and without WHA while the Numbers of Fixed Network Nodes are 
Increased 

Figure 9(c) shows the average packet loss is increasing with the network size. The 
average packet loss of different security schemes with WHA rises as the number of frames 
replayed on WH tunnel is increased means number of frame drops by WH tunnel decreased. 
This Figure also show RIPv2 with MD5 is more affected by WHA and have maximum average 
packet loss where SNAuth_SPERIPv2 routing protocol with IPSec is less effected by WHA and 
have minimum average packet loss among them. RIPv2 without WHA have a minimum average 
packet loss from the secure routing protocols with WHA.  

 
 

 
 

Figure 9(c). Average Packet loss versus Number of Network Nodes 
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Figure 9(d). Average throughput versus number of network nodes 
 
 

5.4.5. The Performance of Integrated Network on Average end-to-end Delay under 
Different Security Scheme with and without WHA while Numbers of Fixed Network Nodes 
are Increased 

Figure 9(e) shows the average end-to-end delay is increasing with the network size. 
The average end-to-end delay of different security schemes with WHA increases as average 
packet loss is increased. This Figure also show RIPv2 with MD5 is having a maximum average 
end-to-end delay where SNAuth_SPERIPv2 routing protocol with IPSec is having a minimum 
average end-to-end delay among them under WHA. RIPv2 without WHA have minimum 
average end-to-end delay from the secure routing protocols with WHA. 
 
 

 
 

Figure 9(e). Average end-to-end Delay versus Number of Network Nodes 
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Figure 9(f). Average jitter versus Number of Network Nodes 
 
 

5.4.7. The Performance of Integrated Network on the Average Hop - Count under Different 
Security Scheme with and without WHA while the Numbers of Fixed Network Nodes are 
Increased 

Figure 9(g) shows, SNAuth_SPERIPv2 routing protocol is having more hop-count than 
RIPv2 because SNAuth_SPERIPv2 is multipath routing protocols, and it is more robust than 
RIPv2. The route selection algorithm favors stability to lower the hop - count. RIPv2 is more 
stable in sense of routing than SNAuth_SPERIPv2. SNAuth_SPERIPv2 routing protocol with 
IPSec is having maximum hop-count and minimum packet loss under WHA. Where RIPv2 
routing protocol with MD5 is having minimum hop-count and maximum packet loss under WHA. 
To protect the network from WHA, it is necessary to make routing protocols robust. 

 
 

 
 

Figure 9(g). Average hop-count versus number of network nodes 
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Figure 10(a). Number of frames dropped by WH versus number of network nodes 
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Figure 10(b). Average routing overhead versus number of network nodes 
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have minimum average packet loss among them. RIPv2 without WHA have a minimum average 
packet loss from the secure routing protocols with WHA. 

 
 

 
 

Figure 10(c). Average packet loss versus Number of Network Nodes 
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Figure 10(d) shows the average throughput is decreasing with the network size. The 
average throughput of different security schemes with WHA decreases as average packet loss 
is increased. This Figure also show RIPv2 with MD5 is having minimum average throughput 
where SNAuth_SPERIPv2 routing protocol with IPSec is having maximum average throughput 
among them under WHA. RIPv2 without WHA have maximum average throughput from the 
secure routing protocols with WHA. 
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Figure 10(d). Average Throughput Versus Number of Network Nodes 
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Figure 10(e). Average end-to-end Delay Versus Number of Network Nodes 
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Figure 10(f) shows the average jitter is decreasing with the network size for the 
streaming service. The average jitter of different security schemes with WHA increases as 
average packet loss is increased. This Figure also show RIPv2 with MD5 is having maximum 
average jitter where SNAuth_SPERIPv2 routing protocol with DSSS is having minimum average 
jitter among them. 
 
 

 
 

Figure 10(f). Average Jitter Versus Number of Network Nodes 
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Figure 10(g) shows, SNAuth_SPERIPv2 routing protocol is having more hop-count than 
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To protect the network from WHA, it is necessary to make routing protocols robust. 
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Figure 10(g). Average hop-count Versus Number of Network Nodes 
 
 

6. Conclusion 
Simulation results show that, proposed SNAuth_SPERIPv2 routing protocol with IPSec 

outperforms existing security schemes for the integrated UMTS and WLAN Ad Hoc networks 
under WHA, for highly jitter sensitive video streaming traffic under network node scalability. The 
secure protocol performs best when utilized in most common cellular and ad hoc network 
scenarios. The impact of WHA on a wireless ad hoc network under SNAuth_SPERIPv2 routing 
protocol is mitigating. All simulation result collected, are within limits as specified by 3GPP and 
ITU guidelines. 
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