Pengaruh Panjang Penyaluran Sambungan Terhadap Kekuatan Balok Beton Pracetak Tulangan Bambu

The Effect of Length Development of Connection to The Strength of Bamboo Reinforced Concrete Precast Beam

Nanang Gunawan Wariyanto¹, Yanuar Haryanto², Gathot Heri Sudibyo³

¹nanang_g@yahoo.com
²yanuar_haryanto@yahoo.com
³gathot_hs2003@yahoo.com

¹,²,³Jurusan/Program Studi Teknik Sipil Fakultas Teknik Universitas Jenderal Soedirman Purwokerto

Abstrak—Kajian ini bertujuan untuk mengetahui pengaruh panjang penyaluran sambungan terhadap kekuatan balok beton pracetak tulangan bambu. Kajian dilakukan terhadap 6 tipe benda uji, masing-masing balok tulangan baja, balok tulangan bambu, balok pracetak penyaluran 5 cm, balok pracetak penyaluran 7 cm, balok pracetak penyaluran 9 cm, dan balok pracetak penyaluran 9 cm tanpa diangkur. Benda uji memiliki dimensi 120 mm x 150 mm x 600 mm dengan masing-masing tipe dibuat sejumlah 3 buah, dan pengujian dilakukan dengan pembebanan dua titik. Hasil kajian memperlihatkan bahwa kekuatan balok tulangan bambu memiliki rasio 0,53 terhadap kekuatan balok tulangan baja. Panjang penyaluran sambungan yang menghasilkan kekuatan tertinggi pada balok pracetak adalah 7 cm dengan rasio 0,21. Pengangkuran menghasilkan peningkatan kekuatan sebesar 47,20% pada balok pracetak dengan panjang penyaluran sambungan 9 cm. Keruntuhan balok pracetak terjadi pada sambungan.

Kata kunci— balok pracetak, kekuatan, panjang penyaluran, sambungan, tulangan bambu

Abstract—This study aims to determine the effect of length development of connection to the strength of bamboo reinforced concrete precast beam. The study was conducted on six types of specimens, steel reinforced beam, bamboo reinforced beam, precast beam with 5 cm length development, precast beam with 7 cm length development, precast beam with 9 cm length development, and non-anchored precast beam with 9 cm length development. The specimen has dimensions of 120 mm x 150 mm x 600 mm with each type was made a number of 3 pieces, and the experiment was conducted by two points loading. The study results showed that the strength of bamboo reinforced beam has a ratio of 0.53 to the strength of steel reinforced beam. The length development of connection that produces the highest strength on the precast beam is 7 cm with a ratio of 0.21. Anchorage resulted in an increase of 47.20% on the strength of precast beam with 9 cm length development. Precast beams collapse occurred on the connection.

Keyword— precast beam, strength, length development, connection, bamboo reinforcement

PENDAHULUAN

Di sisi lain, beton bertulang pada masa kini masih menjadi pilihan utama sebagai struktur penopang dari suatu bangunan. Meskipun bahan lain seperti kayu dan bambu masih digunakan sebagai penopang struktur pada bangunan sederhana, namun struktur beton bertulang lebih banyak digunakan karena memiliki keunggulan yaitu keawetan dan kekuatan. Namun demikian, ketersediaan bahan baku baja tulangan yang
semakin menipis menjadi alasan perlu adanya alternatif material pengganti baja tulangan dengan harga yang lebih murah dan jumlah yang melimpah. Kementerian ESDM (2013) dalam laporannya mengemukakan, Lester Brown dari World Watch Institute telah memperkirakan bahwa biji besi bisa habis dalam waktu 64 tahun, berdasarkan pada ekstrapolasi konservatif dari 2% pertumbuhan per tahun.

Wibowo dkk (2012) memodelkan sambungan kering dengan angkor dan plat baja pada sistem balok pracetak berdimensi 15 cm x 15 cm dan 15 cm x 20 cm dengan panjang 150 cm untuk mengetahui perilaku struktur balok tersebut. Pengujian dilakukan menggunakan beban dua titik dengan jarak 1/3 bentang balok. Beban akan diberikan terus menerus hingga balok maupun sambungan mengalami kelelahan. Hasil yang diperoleh menyebutkan bahwa balok 15 cm x 15 cm mengalami kegagalan pada beton bertulang terlebih dahulu, sedangkan sambungan pracetak belum mengalami kegagalan dengan pola retak yang terjadi dikarenakan lentur dan geser yang terjadi diluar sambungan. Balok 15 cm x 20 cm mengalami kegagalan sambungan las pada tulangan, sehingga terjadi degradasi kekakuhan dan kekuatan yang besar dengan pola retak pada beban awal sangat baik, namun setelah beban 9,1 ton, retak mulai menyerang titik terlemah beton bertulang.

METODE

A. Bahan dan Alat

Bahan utama yang digunakan dalam kajian ini adalah bahan penyusun beton seperti agregat kasar, agregat halus, semen dan air. Serta tulangan baja dengan diameter 8 mm dengan mutu f, 230 MPa, tulangan baja diameter 6 mm sebagai sengkang, serta tulangan bambu menggunakan jenis bambu apus diameter 10 mm. Peralatan yang digunakan antara lain alat-alat pertukangan seperti gergaji, golok, dan catut. Peralatan lainnya meliputi molen, compression testing machine, alat bor beton dan universal testing machine.

B. Benda Uji

Terdapat 4 tipe benda uji pada kajian ini, dengan jumlah total 18 buah yang terdiri dari benda uji balok bertulangan baja, balok bertulangan bambu, balok pracetak dengan perkuatan angkor, dan balok pracetak tanpa diberi perkuatan angkor. Panjang benda uji adalah 600 mm dimana balok bertulangan baja dibuat dengan konfigurasi tulangan utama 4-Ø8 mm dan sengkang Ø6-150. Balok bertulangan bambu memiliki konfigurasi tulangan utama 5-Ø10mm dan sengkang Ø6-85. Balok pracetak bertulangan bambu perkuatan angkor dibuat dengan variasi panjang penyulaman sambungan 5 cm, 7 cm, dan 9 cm. Sedangkan untuk balok pracetak bertulangan bambu tanpa angkor memiliki panjang penyulaman 9 cm. Lebih detail keseluruhan benda uji disajikan pada Tabel 1 sedangkan penampang benda uji dapat dilihat pada Gambar 1.

<table>
<thead>
<tr>
<th>Tabel 1. Detail benda uji</th>
</tr>
</thead>
<tbody>
<tr>
<td>KODE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>BB</td>
</tr>
<tr>
<td>BP5</td>
</tr>
<tr>
<td>BP7</td>
</tr>
<tr>
<td>BP9</td>
</tr>
<tr>
<td>BP9T</td>
</tr>
</tbody>
</table>
C. Jenis Pengujian

Pengujian dilakukan dengan metode third point loading dimana beban diletakkan pada dua titik sepanjang seperti bentang untuk mendapatkan pengaruh lentur murni. Jenis pengujian dapat dilihat pada Gambar 2.

Gambar 2. Jenis pengujian

HASIL DAN PEMBAHASAN

A. Kuat Tekan Beton

<table>
<thead>
<tr>
<th>Benda Uji</th>
<th>Kuat Teken (MPa)</th>
<th>Kuat Teken Karakteristik (kg/cm²)</th>
<th>Kuat Teken Rata - Rata (kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17,5</td>
<td>210,84</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15,4</td>
<td>185,54</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15,6</td>
<td>187,95</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15,5</td>
<td>186,67</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>14,0</td>
<td>168,67</td>
<td></td>
</tr>
</tbody>
</table>

| 187,95 |

KUAT TARIK BAJA DAN BAMBU

Pengujian kuat tarik baja dilakukan pada tulangan baja diameter 8 mm yang menghasilkan nilai tegangan leleh (f₀) 230 MPa dan tegangan ultim (fₚ)316 MPa. Pengujian kuat tarik bambu dilakukan pada
tulangan bambu jenis bambu apus dengan diameter 10 mm. Pengambilan spesimen bambu yang digunakan untuk pengujian adalah bambu pada bagian tengah dan bawah dengan tegangan leleh diambil sebesar 65% tegangan ultimit. Hasil pengujian kuat tarik bambu disajikan pada Tabel 3.

<table>
<thead>
<tr>
<th>Benda Uji</th>
<th>Tegangan Ultimit (MPa)</th>
<th>Tegangan Leleh (MPa)</th>
<th>Rata-Rata Tegangan Leleh (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-T</td>
<td>134</td>
<td>87,10</td>
<td></td>
</tr>
<tr>
<td>2-T</td>
<td>147</td>
<td>95,55</td>
<td></td>
</tr>
<tr>
<td>3-T</td>
<td>127</td>
<td>82,55</td>
<td>86,875</td>
</tr>
<tr>
<td>1-B</td>
<td>138</td>
<td>89,70</td>
<td></td>
</tr>
<tr>
<td>2-B</td>
<td>146</td>
<td>94,90</td>
<td></td>
</tr>
<tr>
<td>3-B</td>
<td>110</td>
<td>71,50</td>
<td></td>
</tr>
</tbody>
</table>

B. Kekuatan Balok

Dari pengujian yang telah dilakukan pada benda uji balok dapat diketahui kekuatannya yang juga dibandingkan dengan hasil analisis seperti dapat dilihat pada Gambar 3.

C. Tipe Keruntuhan

KESIMPULAN DAN SARAN
Dari keseluruhan kajian yang telah dilakukan dapat disimpulkan bahwa kekuatan balok tulangan bambu memiliki rasio 0,53 terhadap kekuatan balok tulangan baja. Panjang penyuluran sambungan yang menghasilkan kekuatan tertinggi pada balok pracetak adalah 7 cm dengan rasio 0,21. Pengangkuran menghasilkan peningkatan kekuatan sebesar 47,20% pada balok pracetak dengan panjang penyuluran sambungan 9 cm. Keruntuhan balok pracetak terjadi pada sambungan. Sebagai saran, perlu dilakukan penelitian lain mengenai jenis sambungan yang paling efektif untuk digunakan pada balok pracetak tulangan bambu.

UCAPAN TERIMA KASIH
Penulis mengucapkan terima kasih kepada Lembaga Penelitian dan Pengabdi ke Masyarakat Universitas Jenderal Soedirman yang telah mendanai kajian ini melalui skim Riset Institusi. Penulis juga mengucapkan terima kasih kepada semua pihak yang membantu, terutama para mahasiswa yang terlibat aktif.

DAFTAR PUSTAKA