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Deep learning has recently been used for this issue 
with superior results in automatic modulation classifi-
cation. Previous studies state that it is challenging to 
categorize a variety of modulation formats using tradi-
tional approaches; however, modulation classification is 
a crucial component of non-cooperative communication 
in wireless communication. The deep learning network 
was applied to solve the issue and get decent outcomes. 
This work uses a deep learning convolutional neural net-
work (DLCNN) to classify three analog and eight dig-
ital modulation techniques by generating channel-im-
paired and synthetic waveforms as training data. The 
obtained DLCNN is tested by over-the-air indicators and 
a Software Define Radio(SDR) platform. The trained 
DLCNN estimates the modulation kind of each frame by 
taking 1024 samples of channel-impaired signals. The 
method includes generating several frames of 4-arry 
pulse amplitude modulation (PAM4) that are impaired 
with sampling time drift, Additive white Gaussian noise 
(AWGN), center frequency, and Rician multipath fading. 
The DLCNN predicts real inputs when receiving a sig-
nal with complex samples of baseband. Before updating 
the network coefficients and on all iterations, the data 
store transforms data from files and records it. This net-
work takes about 50 minutes to train using in-memory 
data and 110 minutes to train using disk data. The eval-
uation of the trained DLCNN is carried out by obtain-
ing the classification accuracy for the test frames. The 
obtained outcome demonstrates that the developed net-
work can achieve an accuracy of about 94.3 % in rough-
ly 12 epochs for such types of waveforms, which elapsed 
about 26 minutes for training. This will increase the effi-
ciency of spectrum usage and detect the modulation type 
of the wireless communication receivers
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1. Introduction

Automatic modulation categorization (AMC) is a tool 
for primary signal processing techniques of the wireless 
physical layers that are used to increase the efficiency of 
spectrum usage and intend to blindly detect the modulation 
kind for the received signal of the wireless communication 
receivers. Numerous contemporary AMC methods utilizing 
deep networks have been proposed to address the current 
limitations of conventional approaches, which are motivated 
by deep learning convolutional neural network (DLCNN) 
high-influence achievements in several informatics fields, in-
cluding radio signal processing for communications. In order 
to recognize modulation patterns, DLCNN can efficiently 
learn the fundamental properties of radio signals. This 
enhances the modulation classification performance even 
when there are channel defects [1]. In order to determine the 
kind of wireless signal modulation and recover the signal by 
demodulation, automatic modulation classification is crucial 
in many fields [2].

It is challenging to categorize a variety of modulation 
formats using traditional approaches; however, modulation 
classification is a crucial component of non-cooperative com-
munication in wireless communication. The deep learning 
network was applied to solve the issue and get decent out-
comes. The input data length for the (DLCNN) is fixed [3–5]. 
The network is unable to use the input signal data to increase 
classification accuracy since the signal length varies during 
communication [6]. Wireless communications can use auto-
matic modulation categorization in a wide variety of situa-
tions. Deep learning has recently been used for this issue with 
superior results. DLCNN-based modulation categorization 
typically uses fixed-size inputs. The actual radio signal burst’s 
length can vary, though.

In resident communications such as cognitive radios and 
military signal reconnaissance, automatic modulation classifi-
cation (AMC) is a crucial technique. The majority of previous 
studies concentrated on the AMC in additional white Gauss-
ian noise channels; however, it is more feasible and difficult to 
implement the AMC in time-varying wireless channels [7].
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Wireless networks in the 5G and outside will be more het-
erogeneous and dynamic, necessitating the use of multistrand 
waveforms. The identification of a specific modulation type 
that the transmitter employs at the specified time to correctly 
decode the data is one of the biggest obstacles in such a dy-
namic network, especially in non-cooperative instances [8].

Significant interest is shown in automatic modulation 
classification in the context of both present and future 
wireless communication systems. Deep learning has become 
a potent method for modulation classification because it 
enables concomitant learning of discriminative characteris-
tics and the categorization of signals. However, optimizing 
DLCNN architectures for modulation classification is a 
labor-intensive, manual procedure that needs extensive do-
main expertise [9]. Therefore, wireless communications are 
essential to apply the automatic modulation classification in 
a wide variety of conditions, and using DLCNN has recently 
been used for this issue with superior results.

2. Literature review and problem statements

The study [1] provided a fundamental concept of a variety 
of architectures, such as DLCNN, long short-term recall, re-
current neural networks, and neural networks as an essential 
environment. This study then discussed the use of Deep Learn-
ing (DL) of adaptive modulation and coding (AMC) in wireless 
communications. Although the study investigated advanced 
designs and several sophisticated structures of DLCNN in 
various data kinds of constellation images, spectrum photos, 
and sequential radio signals to deal with a variety of channel 
impairments, it provides a survey and was limited to what 
has been done before. The paper [10] also reviews a variety 
of DLCNN models and algorithms for the classification and 
modulation recognition of wireless communication patterns. 
However, it didn’t discuss the recognition between the analog 
and the digital modulation kinds such as Single sideband am-
plitude modulation (SSB-AM), Double sideband amplitude 
modulation (DSB-AM), Broadcast FM (B-FM), Continuous 
phase frequency shift keying (CPFSK), Gaussian frequen-
cy shift keying (GFSK), 4-array pulse amplitude modula-
tion (PAM4), 64-array quadrature amplitude modulation (64-
QAM), 16-array quadrature amplitude modulation (16-QAM), 
8-array phase shift keying (8-PSK), Quadrature phase shift 
keying (QPSK), and the Binary phase shift keying (BPSK). 

The paper [2] contributed to exploring the appropriate 
design of the DLCNN technique in the area of communication 
signals recognitions. Although the study adopted the de-nois-
ing auto-encoder to provide the ability to resist finite pertur-
bations of the input and pre-process the received data, it fails 
to cover the analog and digital modulations. The research [6] 
proposed a revolutionary DLCNN technique that makes use 
of a multi-stream topology. The proposed shorter network 
structure makes it easier to compare and recognize some digi-
tal modulation signals and avoid over-fitting issues. However, 
only a limited number of communication signals have been 
recognized. The study [11] offered a multi-stream architecture 
to enrich the types of signal features obtained and increase 
the network width, but this study also didn’t compare the an-
alog and digital modulation types. A wide expansion for signal 
recognition has been done by the paper [12], where full use of 
the complete signal burst was used to get better classification 
accuracies. However, the results obtained showed only three 
types of recognized communication signals. 

The article [7] investigated a time-varying AMC guide using 
the DLCNN technique to get high classification accuracies. Its 
experimental outcome showed that the presented AMC system 
achieved superior classification precision in both fast and slow 
fading, but it was with very complicated AMC architectures.

All this allows to assert that it is expedient to conduct a 
study on the use of a deep learning convolutional neural net-
work (DLCNN) to classify analog and eight digital modulation 
signals with generated waveforms as training data. Then, the 
obtained DLCNN network is tested by a platform/hardware 
such as over-the-air signals and software-defined radio (SDR).

3. The aim and objectives of research

 The aim of research is to classify wireless signal mod-
ulations by sorting them according to the type using deep 
learning convolutional neural network DLCNN. This will 
make it possible to categorize various modulation schemes as 
modulation classification is a crucial component of non-co-
operative communication in wireless communication.

To achieve this aim, the following objectives are accom-
plished:

– to develop a DLCNN for classifying three analog and 
eight digital modulation techniques;

– to generate channel-impaired and synthetic waveforms 
as training data;

– to train and test the developed DLCNN.

4. Materials and methods

4. 1. Object and research hypothesis
This work develops a deep learning convolutional neu-

ral network (DLCNN) architecture to classify three analog 
and eight digital wireless modulation techniques by generating 
channel-impaired and synthetic waveforms as training data. The 
categorized modulation types include BPSK, QPSK, 8PSK, 
16QAM, 64QAM, PAM4, GFSK, CPFSK, B-FM, DSB-AM, 
and SSB-AM. The obtained DLCNN is tested by over-the-air 
signals and software-defined radio (SDR) platform using MAT-
LAB environment functions. The assumptions made in the work 
are described in section 4. 2, while the simplifications adopted 
are demonstrated in the following subsections.

4. 2. Using deep learning to predict modulation type
This work includes recognizing the analog and digital 

modulation kinds as listed in Table 1.
This stage includes performing the following steps:
1. Loading a pre-trained network.
2. Categorization of modulation types ([“BPSK”, 

“QPSK”, “8PSK”,   “16QAM”, “64QAM”, “PAM4”, “GFSK”, 
“CPFSK”, “B-FM”, “DSB-AM”, “SSB-AM”]).

3. Loading a trained network called “trained-Modula-
tion-Classification-Network”.

4. The trained DLCNN gets channel-impaired 1024 sam-
ples to predict the type of modulation for every frame. 

5. Creating some frames of PAM4 to be impaired with 
Additive white Gaussian noise (AWGN), sampling time 
drift, center frequency, and Rician multipath fading. 

6. Using the following MATLAB functions to create 
synthetic signals for testing the DLCNN. 

7. Using the DLCNN to estimate the frames modulation 
types.
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4. 3. Waveform generation for training
The proposed work generates about 10,000 frames for ev-

ery modulation kind, of which 10 % is used for testing, 10 % 
is used for validation, and the rest 80 % is used for training. 
The validation and training frames are used throughout 
the training phase of the network. The ultimate accuracy of 
classification type is acquired via the testing frames. Every 
frame is with a sample rate of 200 kHz and is 1024 samples 
long. For digitally modulated types, a symbol is repre-
sented by eight samples. Instead of considering numerous 
consecutive frames, the network bases each judgment on a 
single frame. Let’s assume that the middle frequencies for 
the digital and analog modulation kinds are 902 MHz and 
100 MHz, correspondingly. Fig. 2 shows the flowchart of the 
algorithm assumptions.

The inaccuracy of transmitters’ and receivers’ internal 
clock sources results in clock offset. The sample rate of 
the digital-to-analog converter and the middle frequen-
cy, which are utilized to down-convert the signal to the 
baseband, deviate from the optimum values due to clock 
offset (∆clock). The clock offset factor C for the channel is 
given by C=1+∆clock/106. Each channel creates an arbi-
trary ∆clock of homogeneous distribution domain from the 
range [−max∆clock; max∆clock]. 

Table 1

List of the recognized analog and digital modulation types

No. Discretion Symbol 

1 Single sideband amplitude modulation (SSB-AM)

2 Double sideband amplitude modulation (DSB-AM)

3 Broadcast FM (B-FM)

4 Continuous phase frequency shift keying (CPFSK)

5 Gaussian frequency shift keying (GFSK)

6 4-array pulse amplitude modulation (PAM4)

7 64-array quadrature amplitude modulation (64-QAM)

8 16-array quadrature amplitude modulation (16-QAM)

9 8-array phase shift keying (8-PSK)

10 Quadrature phase shift keying (QPSK)

11 Binary phase shift keying (BPSK)

The algorithm for performing this step can be represent-
ed by the flowchart shown in Fig. 1.

Let’s start by training the convolutional neural net-
work (CNN) with labeled (known) data and generating 
synthetic data for training. Next, let’s define, train, and test 
the network to classify the modulation. Finally, by using the 
platforms of software-defined radio (SDR), let’s examine the 
CNN performance with over-the-air signals.

Fig. 1. Using deep learning to predict modulation type
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For every modulation type, let’s create a loop that pro-
duces channel-impaired frames and stores them in MAT 
files with the relevant labels. It is possible to avoid having 
to generate the data each time let’s execute the function 
by storing the data in files. The data can be distribut-
ed more successfully as well. Therefore, the flowchart 

showing the waveform generation for training is shown 
in Fig. 3.

To get rid of transients and guarantee starting frames 
at an arbitrary location concerning the symbol limita-
tions, let’s take an arbitrary number of samples out of the 
beginning of each frame.

Fig. 3. Flowchart showing the training waveform creation

Fig. 2. The flowchart of the algorithm assumptions
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4. 4. Training the Deep Learning Network
This work employs a DLCNN with one fully connect-

ed layer and six convolution layers. Every convolution 
layer includes a max pooling layer, activation layer (rec-
tified linear unit (ReLU)), and batch normalization layer 

except the final convolution level, where an average pool-
ing level is used in place of the maximum layer. There is 
softmax activation in the output layer. The screenshot 
for the details of the developed network layers is shown 
in Fig. 4.

Fig. 4. Screenshot for the details of the developed network layers
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The training configuration is as follows:
1. Every nine epochs, the learning rate is decreased by a 

factor of 10.
2. Setting the initial learning rate to 2x10

−2
.

3. Setting the maximum number of epochs to 12.
4. Using an SGDM solver with a mini-batch size of 256.
5. Plotting the training progress. 

5. Results of the proposed classifying wireless signal 
modulations

5. 1. Using deep learning network to predict modula�
tion type

The probability of every frame containing the anticipated 
modulation kind is represented by the score shown in Fig. 5.

The network classifier predicts the analog decisions and 
successfully identifies the frames as PAM4 [7×1] categorical. A 
score vector of every frame can be represented by the classifier.

5. 2. Waveform generation for training
The sample numbers against the magnitude of the imag-

inary and real regions for the adopted frames are shown 
in Fig. 6, while the plotting of the spectrograms for the ad-
opted frames is shown in Fig. 7.

All these Fig. 6, 7 represent the signal waveforms gener-
ated for training the network.

5. 3. Training the deep learning network
The training process has been performed over a Titan 

XpNVIDIA® GPU, which elapses about 54 minutes for 
training. The network converges to more than 95 % accuracy 
in roughly 12 epochs, as seen by the training progress graph-
ic as shown in Fig. 8.

To obtain the classification accuracy for the test frames, 
a confusion matrix is prepared as shown in Fig. 9.

The obtained confusion matrix indicates that for this 
collection of waveforms, the network achieves an accuracy 
of roughly 94.5455 %.

a

c                                                                                                           d

Fig. 5. The probability score of every frame contains the anticipated modulation kind: 

a − [QPSK, 8PSK, 16QAM, GFSK, CPFSK, 

B-FM, DSB-AM, SSB-AM]; 

b − PAM4; c − 64QAM, d − BPSK
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a

j                                                k

Fig. 6. Тhe sample number vs the magnitude for the imaginary and real regions of the adopted frames: 

a − BPSK; b − QPSK; c − 8PSK; d −16QAM; e ‒ 64QAM; f ‒ PAM4; 

g ‒ GFSK; h ‒ CPFSK; i ‒ B-FM; j ‒ DSB-AM; k ‒ SSB-AM
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a                                                               b                                                               c

d                                                               e                                                               f

g                                                               h                                                               i

j                                                               k

Fig. 7. Plotting the spectrogram of the adopted frames: 

a − BPSK; b − QPSK; c − 8PSK; 

d − 16QAM;e ‒ 64QAM; f ‒ PAM4; 

g ‒ GFSK; h ‒ CPFSK; i ‒ B-FM; 

j  ‒DSB-AM; k ‒ SSB-AM
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Table 2 shows a comparison between the presented ap-
proach and the existing studies in terms of the number of 
epochs, training elapsed time, and the maximum accuracy 
achieved. 

Table 2

Comparison with previous related work

Reference 
Number of 

epochs
Elapsed time 

(min)
Accuracy 
achieved

[13] 43‒150 69 83.5 %

[14] 37 84 59.8 %

Proposed net-
work

12 54 94.5455 %

6. Discussion of the results of the proposed classifying 
wireless signal modulations

The developed network classifier predicted the ana-
log decisions and successfully identified the frames as 
PAM4 [7×1] categorical. The probability that every frame 
contains the anticipated modulation kinds is represented by 
the score as shown in Fig. 4. The sample numbers against the 
amplitude of the real and imaginary regions for the adopted 
frames are shown in Fig. 5, while the plotting of the spectro-
grams for the adopted frames is shown in Fig. 6.

The training process by measuring the accuracy and loss for 
the developed network has been shown in Fig. 7. The confusion 
matrix shown in Fig. 8 indicates that the network conflates 
64/QAM and 16/QAM frames, as the matrix demonstrated. 

Fig. 8. Training progress graphic including the accuracy and loss of the network

Fig. 9. The confusion matrix of the test frames
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Since each frame only contains 16/QAM and 128 symbols 
are a subset of 64/QAM, this issue is expected. Because the 
constellation of those modulation kinds appears related when 
rotated-phase caused by the frequency offset and fading chan-
nels, this network conflates 8/PSK and QPSK packets.

A comparison between the presented approach and the 
existing studies in terms of the number of epochs, training 
elapsed time, and the maximum accuracy achieved is shown 
in Table 2.

The use of the categorization of modulation types in-
cluding [“BPSK”, “QPSK”, “8PSK”,   “16QAM”, “64QAM”, 
“PAM4”, “GFSK”, “CPFSK”, “B-FM”, “DSB-AM”, “SSB-
AM”] limits the applicability of the developed solutions. This 
will motivate us to test this proposed network on a wider 
range of modulation types.

The disadvantage of the proposed solution is the complex-
ity of the number of hidden layers of the network of the clas-
sifier, which is increased with the number of classes. This can 
be eliminated by exploring more deep learning networks such 
as ResNet50, and ResNet80 networks over a more modern 
modulation categorization in the future.

7. Conclusions

1. Adeeplearning convolutional neural net-
work (DLCNN) for classifying three analog and eight dig-
ital modulation types has been computed as a probability 
score of every frame containing the anticipated modulation 
type including QPSK, 8PSK, 16QAM, GFSK, CPFSK, 
B-FM, DSB-AM, SSB-AM, PAM4, 64QAM, and BPSK. 

2. The presented work has successfully generated chan-
nel-impaired and synthetic waveforms as training data for 
the developed DLCNN. The process elapses about 54 min-
utes for training and the network converges to more than 
95 % accuracy in roughly 12 epochs.

3. The trained DLCNN has been tested and achieved an 
accuracy of roughly 94.5455 %.
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