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Abstract
This paper presents a new multi objective optimization algorithm with the aim of complete

coverage, faster global convergence and higher solution quality. In this technique, the high-speed
characteristic of particle swarm optimization (PSO) is combined with non-dominated differential
evolutionary (NSDE) and an efficient multi objective optimization algorithm is created. This method posses
high convergence characteristic in quite less execution times. Generating fewer populations to find the
Pareto front also makes the proposed algorithm use less memory. For the purpose of performance
evaluation, the algorithm is verified with four benchmarking functions on its global optimal search ability
and compared with two recognized algorithm to assess its diversity. The capability of the suggested
algorithm in solving practical engineering problems such as power system protection is also studied and
the results are discussed in detail.

Keywords: Hybrid algorithm, Multi objective obtimization, PSO, NSDE, Power system protection, Relay
coordination, IFCL

1. Introduction
Recently, optimization plays a significant role as a major branch of mathematics which

is used in various sciences like power engineering, thus new investigations in this field are
became more attractive for many researchers [1].

Solving nonlinear problems based on Heuristic approaches has led to many
improvements in modern science. Many nonlinear problems according to their own structures
work based on several parameters. Base on a fitness value which is given to each solution on
the basis of a weighted sum of the objectives’ values, choosing the proper algorithm is feasible
[2-4].

Utilizing novel multi objective optimization approaches caused several progressions and
remarkable achievements in various industrial branches [5-8]. But the main issue is that most of
the multi objective methods like NSGA II, NSDE and so on, work on the basis of dominance
concept and consequently their movements are toward the optimal solution. When they attain
the optimum solution of one of the function’s objectives, lead all the population nearby it,
therefore searching for the other objectives executes in this specific zone [9-12]. Such
techniques cause ignorance of the other zones’ solutions which are improper for just this
specific objective. The other drawback of these methods is low convergence speed.

The main goal of this investigation is to fix the above mentioned problems. In this study
a couple of single objective optimization techniques including particle swarm optimization and
cuckoo optimization algorithm are utilized together to perform as a multi objective optimization
algorithm. The performance and efficiency of the presented investigation has been tested on
power system protection.

2. The New Multi Objective Evolutionary Optimization Algorithm using PSO and NSDE
First by using single objective algorithm, a range is specified for each objective function

which is going to be optimized. It guides the search to spend more time in that area. Then the
best possible solution for all objective functions is achieved by using multi objective algorithm.
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2.1    Reference Range Determination for Objective Functions
In The first step is to determine an optional iterative factor corresponding to the

calculated cost for each function.
  NNkf  121 ,...,, 

1...21  N
Which N is the number of functions is going to be optimized, and is the iterative factor

of each function.
Therefore in PSO algorithm, the optimization level of each function is i x Iter; where

Iter is the total number of iterations.
The obtained population is then retrieved in Position set and a value called Cost is

assigned to each population.
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M is the number of variables.
At first step, a random initial population is created in sample space. But at next step,

initial population is equal to Position set members of previous step with maximum Cost value
(maximum profit).

1 ii BPositionFPosition

Which FPosition is initial value of ith step ( 2i ), and BPosition is population of (i-1)th
step with best profit.
The global best of next steps is also equal to best population created at previous steps.

1 ii BPositionitionGlobalBPos

Where itionGlobalBPos is global best of ith step and BPosition is best Position at (i-1)th
step.

Then, the best obtained Position in mentioned steps is used as initial population of multi
objective optimization algorithm.

  NNBPositionBPositionBPositionpop  121 ,...,,

This section, it is explained the results of research and at the same time is given the
comprehensive discussion. Results can be presented in figures, graphs, tables and others that
make the reader understand easily [2], [5]. The discussion can be made in several sub-
chapters.

2.2. The Proposed Multi Objective Optimization Algorithm
Now the created population from the best of PSO populations is used as initial

population for NSDE algorithm. In each step, DE algorithm guides the population of
solutions towards an optimum using mutation and making a difference (Figure 1). Then created
population is ranked using domain and ranking ideas. This iterative process continues
until optimum solutions are achieved [13-27].
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Figure 1. The proposed improved DE algorithm

2.3. A Benchmark Study of Proposed Algorithm
In this section, the efficiency of proposed multi-objective Pareto optimization algorithm

is investigated on a set of standard benchmark problems [28]. For this purpose, the ZDT family
of functions was selected, because they are the most recognized test functions for
benchmarking the performance of multi-objective Pareto optimization methods. Computer
specifications to run all optimization procedure are Core i5, CPU 3.00 GHz, 8 GB memory
(RAM), Windows 8 operating system. Some of ZDT functions, Fonseca and Fleming functions,
CTP1 function (two variables) and Tset function 4 which have been summarized in Table 1,
contain two objectives. Considering Table 1, on each of the test problems and for same
population size, suggested algorithm dramatically outperformed both NSDE and NSGA II in
terms of run time.

The algorithm performance is also judged by the location of solutions compared to the
optimal Pareto front. The closer solutions to the real Pareto optimum frontier mean the better
performance of the algorithm. The Figure 2 shows the new algorithm provides a better match to
real Pareto front. Considering Figure 2, NSGA-II is far away from the true Pareto front for all test
functions and NSDE for two test functions.

2.4. Application of Proposed Algorithm in Solving Practical Engineering Problems
Optimization techniques have important application in the power systems protection.

For the object of achieving a reliable protective system, the operating time of protective devices
must be minimized. This is a single objective optimization problem [29]. But the continuous
changes in power flow patterns and short circuit levels due to the power system topology
variation, cause miss-coordination between protective devices. In these situations, traditional
protection devices may fail to detect fault conditions. This is where the multi objective
optimization techniques must be called to address these issues.
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Table 1. Benchmark functions

Problem Formulation
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ZDT1 ZDT2

ZDT3 ZDT6

Test function 4 Fonseca and Fleming function

CTP1 function (2 variables)

Figure 2. Optimal Pareto front for four benchmarks with population size 100 using NSGA II and
new proposed algorithm

Several studies have been done around these topics up to now and different multi
objective optimization algorithms used in order to find better solutions [30-33]. But the
disadvantage of these algorithms such as NSGA II is that they do not cover entire space. So
there are possibilities of solutions elimination which are optimum for just one objective function
and acceptable for other objective functions. Another problem is the low convergence speed of
these algorithms. If the online protection be considered, the high convergence speed becomes
more important.
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The high convergence rate of this algorithm can be used in operations required low
optimization time such as online power system protection. In this section, to prove capability of
proposed technique, this algorithm is applied to optimal placement and capacity problem of
inductive fault current limiters considering optimal overcurrent relay coordination, and the results
are discussed in detail.

3. Problem Definition
First, combination of IFCLs at different locations is needed to be compared to determine

the optimal placements. It is also required to minimize the number of IFCLs to be installed,
because the IFCL cost increase with rise in the number of them. So, several scenarios are
defined with different numbers and locations of IFCLs.

The first object function equation to calculate the cost of inductive fault current limiter is
given as follows [34]. This equation is used to calculate the minimum FCL impedance.
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The placement of IFCLs can also have an effect on the relay coordination by changing
the short circuit levels, therefore a new coordination of relays is also required after the
placement of IFCLs.

To clarify the miss-coordination problem, the second object function equation is
stated in the following form [35]:
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Which mbΔt , is the discrimination between main and backup relays (miss-coordination
has occurred between bth and mth relays if Δt be negative.). The it , is operating time of ith
relay. The mt , is operating times of the main relays. The bt , is operating times of the backup
relays. The CTI , is coordination time interval. The 1 , 1 and 2 are weighting factors.

The above objective function should be minimized subject to various constraints. These
constraints are relay setting constraints and backup-primary relay coordination time interval.
The coordination constraints are:
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The operating times of overcurrent relay is a function of fault location and short-circuit
current level. All relay operating times can be calculated based on their pickup current and from
the following equation:
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Where M is the ratio of relay current to the relay setting. peakupI , is relay setting and
max
fI , is maximum short circuit current.
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4. Results and Discussion
The proposed method is implemented and tested on IEEE 8-bus system which shown

in Figure 3. This system consists of 14 overcurrent relays.

Figure 3. 8-bus test system without DGs

Two DGs with 10 MVA capacities are connected to bus 4 and bus 5. Systems with and
without DGs installed are compared to demonstrate how the presence of these sources
influences the over current relay coordination. Figure 4 presents changes in the system
topology that caused six constraints to be violated, when the network settings are considered for
the overcurrent relays.

Figure 4. The discrimination between main and backup relays operating time

The suggested technique is applied to determine the best locations and number of the
IFCLs for the proposed network with DGs. Simulation results show the optimum number of
IFCLs is 2 and the optimal location of X(1) and X(2) would be on lines 1-2 and 2-6 respectively.
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The solutions spreading for the considered distribution network with the purpose of
minimizing both objective functions 1 & 2 using new method, NSDE and NSGA II are
respectively shown in Figures 5, 6, 7.

Figure 5. The solutions spreading over the last 50 iterations (Purposed algorithm)

Figure 6. The solutions spreading over the last 50 iterations (NSDE)
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Figure 7. The solutions spreading over the last 50 iterations (NSGA II)

Table 2 shows the comparison between obtained results considering the number of
function calls (table). To compare the speed of three mentioned methods in finding optimum
solutions, the trend in the solutions is presented trough curves shown in Figure 8.

Table 2. Comparison between the numbers of function calls in three mentioned technique
Algorithm Iterations Population size Number of function calls

Proposed Algorithm 150 50 6181
NSDE 150 50 7552

NSGA II 150 50 8451

Figure 8. Rate of convergence to the optimum over the last 50 iterations

Considering Figure 9, the lower relay time delay setting is achieved by suggested
algorithm. Figure 10 also demonstrates the calculated discrimination between main and backup
relays operating time through proposed method is lower.



Bulletin of EEI ISSN: 2302-9285 

New Hybrid Non-Dominated Sorting Differential Evolutionary Algorithm (M. Bakhshipour)

239

Figure 9. Relay time delay setting

Figure 10. The discrimination between main and backup relays operating time

The obtained results demonstrate that the suggested approach presents a better performance
in terms of relays coordination with respect to NSDE and NSGA II algorithms under equal
iterations.

5. Conclusion
In this paper, two single objective optimization methods, particle swarm optimization

and cuckoo optimization algorithm were used together in the form of a multi objective
optimization algorithm. In proposed method, determination of initial limited area for each
objective function, and moving all functions toward global optimum, caused the range of
solutions covered the entire space and not limited to a specific area. In this technique, the
members of rank 2 (or upper) had been also moved quickly toward lower ranked points. This
caused faster convergence to the optimum solution. For the purpose of performance evaluation,
the proposed multi-objective Pareto optimization algorithm had been investigated on a set of
standard benchmark problems. From the results of these test functions, it had seen that the
proposed algorithm remarkably outperformed a known algorithm (NSGA II), in terms of
better matching to optimum Pareto front, run time and solutions diversity.

The capability of this algorithm in solving complex engineering problems such as power
system protection had been also studied. The results indicated that the fast convergence and
high speed characteristic of suggested approach can be used in online applications require fast
decision-making such as online power system protection.
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