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Abstract 
Superconducting Magnetic Energy Storage (SMES) is one of most important device attracting 

researchers for enhancing the transient stability of power systems. To facilitate the use of this device in 
different simulations and studied, a phasor model is established and used to analyse the impact of this 
device using matlab/Simulink software. The phasor model has enough advantages like using the SMES 
without need detailed model that contains the electronic power converter and therefore minimize the 
simulation time. The Western Systems Council Coordinating (WSCC) 3 machine-9 bus system is taken as 
a power system test. Simulation results show that the phasor model of SMES unit is very effective to study 
their impact for enhancing the transient stability in large scale time. 
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1. Introduction 

Due to the development of electric power networks, the control becomes more and 
more delicate in this situation a lot of researches are established to better controller as FACTS 
and storage energy devices [1]. 

Superconducting Magnetic Energy Storage (SMES) is one of solutions proposed in 
order to maintain the stability of electric networks because of their effectiveness designed by 
their very short response time [2]. The SMES is a superconducting coil can store electrical 
energy in a magnetic field with no active losses [3]. 

With the development of electronic power converter, the use of SMES and other 
systems of FACTS becomes more and more possible. But the problem with conventional 
methods of analysis systems to study the imapct of theses devices on electrical systems 
through the use of detailed model is the simulation time because of the use of nonlinear 
systems such as electronic power converter. Using the detailed model requires a study of the 
systems in short time scales and especially when the system is complicated as multimachine 
power system, simulation becomes more and more slower, hence the results obtained do not 
give a precise idea on the principals parameters of electric network as the load angle or voltage 
bus and their variation in time, because of his, looking for a method or equivalence to the device 
in order to allow us to the studies in large scales of time should be required. In this paper we 
established a new model of SMES which based on the method of phasor model that has been 
proposed by matlab in some electrical systems such as FACTS [4], [5]. This facilitates the study 
of SMES in large scale time and minimizes the simulation duration [6], [7]. To prove the 
effectiveness of this method, the proposed model was applied on a multimachine power 
network. 
 
 
2. Modeling of SMES Unit 

Figure 1 shows the configuration of the SMES unit. The unit contains Y-Y/Y-∆ 
connected transformer, a 12-pulse converter and a DC Superconducting inductor. The control of 
the firing angles α1 and α2 of the bridges makes the SMES have the ability to control active and 
the reactive power independently and rapidly within circular range containing four quadrants of 
the power domain [8], [9], [10]. 
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Figure 1. The configuration of SMES unit 
 
 
The voltage Vsm of the DC side of the 12-pulse converter is expressed by 
 

       (1) 
 

is the ideal no-load maximum DC voltage of the 6-pulse bridges.  
The current and voltage of superconducting inductor are related as 
 

        (2) 

 
Ism0 is the initial current of the inductor. 
The real and reactive power absorbed or delivered by the SMES unit are 
 

 
(3) 

 
 
The energy stored in the superconducting inductor is: 
 

        (4) 

 
Wsm0 is the initial energy in the inductor. It is such as:  
 

        (5) 

 
For ∆  the voltage deviation at the terminal bus of the generator because of sudden change in 
the system, the desired Qsm-modulation of the SMES unit is: 
 ∆         (6) 

 
is the reactive power of the SMES before the fault and , is the amplifier gain. Tdc is the 

delay time of the converter.  
For ∆ω the speed deviation, the active power modulation of the SMES unit  is:  
 ∆         (7) 

 	is the active power of the SMES before the fault and  is the gain of the amplifier. is 

the delay time of the converter. 
To meet the physical aspect of SMES, use limiters voltage and current is required. 
Figure 2 shows the transfer function of SMES unit for reactive and active power respectively 
which can obtain from the equations (2) (4-7). 
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By knowing and  desired, and with using equation (3), the firing angle of the converter 
under four quadrant operations can be calculated [8], [9] as  
 2  

(8) 2  

 
 

A.                                                              B. 

  
  

Figure 2.  A) Reactive part of S-block of SMES unit   B) Active part of S-block of SMES unit 
 
 
3. Phasor Model of SMES 

Phasor method is based on the development of Fourier series, it was proposed by 
matlab/Simulink to solve the problem of simulation time when the system is complicated or there 
are nonlinear systems in the model such as FACTS devices that are based on static converters 
[4]. 

Figure 3 shows the detailed model of phasor type of SMES, including the 
measurements systems and transforms, calculation of reference current, control method with a 
simple PI controller, the equivalent AC converter. The SMES is modelled as current source 
connected with power system in parallel and the active and reactive components of the current 
source can be controlled independently [6], [11].  

Based on investigations of Performance of UPFC without DC link capacitor [12], [13], 
and on decoupled control method [14]. The instantaneous power is modified and obtained in 
terms of d-q quantities as  

 32 .  

           (9) 32 .  

 
From equations (9) the required current References are calculated as follows: 
 ∗ 23 ∗

 

(10) ∗ 23 ∗
 

 
Where ∗and	 ∗ are the reference active and reactive power which are to be exchange by the 
SMES unit and the transmission line. 
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Figure 3. SMES detailed phasor type with decoupled method controller 
 

 
4. Equivalent Converter System 

For injecting the currents obtained after application of the control system it is first 
necessary to calculate the equivalent AC converter which modelled as R-L series circuit for 
each phase. The mathematic model of three phase series R–L circuit [6]-[15], in d q axis can be 
described as: 
 ∗  

(11) ∗  

 
Using Laplace transforms and per unit (pu) quantities, Eq. (9) can be arranged as 
 ∗  

           (12) ∗  

 
By using equation (10), we can calculate the equivalent d q current and inject it in the 
transmission line using current source element. 
 
 
5. Simulation, Result and Discussion  

Figure 4 shows the studied system Implement in Sim Power Systems which consists of 
a 3 machines and 9 buses where M1, M2 and M3 are the generators of the power system 
equipped with a classical regulation and the loads 1, 2 and 3 connected respectively to the bus 
5, 6 and 7. The simulated fault is a three-phase short circuit to ground in line 5-7 at 25% near 
the bus 7 started at 0.2s with duration of 200ms. The optimal position of the SMES to improve 
the system stability depends on the fault’s location [16], [17]. In this case, the SMES unit must 
be connected to the bus 2. ALL the data of the system is given in the Appendix A, B, and C.  

A series of simulations has been carried out by using the model corresponding to the 
equivalent scheme of Figure 4. The simulation is implemented by using matlab/Sim Power 
Systems which the simulation time used is (7sec).  

The simulation was done in three steps, the first one is to have the behaviour of the 
system studied without any regulation, the second one we introduce only the conventional 
regulation. The final step, and since the fault is close to the generator 2 or it is the most disrupt 
we introduce the SMES in bus 2.  
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Figure 4. WSCC 3 machine-9 bus System with SMES unit in MATLAB /SimpowerSystems. 
 
 

Firstly, Figure 5 shows the variation in the reactive power according to active power. It’s 
the most important result to confirm the model as a phasor model of the SMES; it demonstrate 
that the operation of the model is made in four quadrants of the exchange of power between the 
SMES and the network which is the characteristic of SMES unit based on 12-pulse converter.  

Figure 6 shows the control of firing angle α1 and α2 which are calculate by using 
equation (8), it’s very clearly that the control was made on unequal alpha mode and the 
obtanied result can compare with [9]. 
 
 

 
 

Figure 5. QSM in terms of PSM 
 

 
 

Figure 6. Firing angle α1 and α2 
 
 

Secondly, to see the effectiveness of the phasor model of SMES in this study a 
comparison between results has been obtained in the different mode of simulation. 
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Figures 7, 8 and 9 shown the system performances without any regulation, with 
classical regulation and with the SMES unit applied in bus 2, the figures represented 
respectively load angle in degree, the rotor speed and the voltage in (p.u) on bus 2. 

It is observed that the use of classical regulation and SMES unit improves the system 
damping; it’s very clearly that the settling time of SMES is a bit worse than of only conventional 
regulation, the addition of the SMES unit improves the system damping and the settling time 
decreases substantially. 

 
 

 
 

Figure 7. Load angle (deg) 
 

 
 

Figure 8. Rotor speed (p.u) 
 

 
 

Figure 9. Voltage (p.u) 
 
 

Figures 10 and 11 shown the active and reactive power exchanged with the SMES unit 
respectively. This corroborates the power release/absorption properties of the SMES unit. 
Before the dynamic period, there is no change, during the dynamic period, the SMES unit 
releases power to the system to contribute to its stabilization. 
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Figure 10. Active power of SMES (p.u) 
 
 

 
 

Figure 11. Reactive power of SMES (p.u) 
 
 
5. Conclusion 

To easy the study of the impact of SMES unit in the transient stability of electric power 
network in large scale of time, a phasor model of this device is proposed in this paper. The 
model enables a quick and efficient simulation. We demonstrate that the phasor model of the 
SMES has a capacity of response extraordinary. With this model the control of SMES can be 
easily applied. Simply the phasor model of the SMES offers the possibility to treat this device, 
whatever the complexity of the system, and the simulation duration. The next job is to apply 
another method of control, and other type of study and compare the results obtained by this 
model with that of the detailed model. 
 
Appendix 
A -Classical regulation 
 

 
 

Bloc diagram for a representation of speed regulation. 
 
 

 
 

Bloc diagram for a representation of voltage regulation. 
 



                     ISSN: 2089-3191 

Bulletin of EEI Vol. 5, No. 1, March 2016 :  8 – 16 

15 

B-SMES parameters 
Lsm=0.15pu, Tdc=0.02s, Kps=14, Kvs=2.4, 
Psmin=-3pu, Psmax=3pu, Qsmin=-3pu, Qsmax=3pu,  
Kp =120, Ki 30. 
C-Data of studied system: 
f=60 Hz, Length = 100km for all line. Pn = 100MVA 
 

 
Table 1. Load parameters 

Load bus 5 6 8 

P (MW) 
Q (MVAR) 

125 
50 

90 
30 

100 
35 

 
 

Table 2. Generator parameters 
Generator 1 2 3 

Vn (Vrms) 
Xl (p.u) 
Xd (pu) 
Xd

’
 (pu) 

Xd
 ‘’
(pu) 

Xq (p.u) 
Xq

’
 (p.u) 

Xq
’’
(p.u) 

T
’
do (s) 

T
’’
do (s) 

T
’
qo (s) 

T
’’
qo (s) 

H (s) 

16.5 e3 
0.05 
0.146 
0.0608 
0.005 
0.0969 
0.0969 
0.005 
8.96 
0.01 
0.5 
0.001 
23.64 

18 e3 
0.05 
0.8958 
0.1198 
0.005 
0.8645 
0.1969 
0.005 
6.0 
0.01 
0.535 
0.001 
6.4 

13.8 e3 
0.05 
1.3125 
0.1813 
0.005 
1.2578 
0.25 
0.005 
5.89 
0.01 
0.6 
0.001 
3.01 

 
 

Table 3. Line parameters 
Line r1r0(Ohms/km) l1 l0 (H/km) c1 c0 (F/km) 

1 
2 
3 
4 
5 
6 

0.0629  0.1573 
0.0449  0.1124 
0.2063  0.5157 
0.1692  0.4232 
0.0529  0.1322 
0.0899  0.2248 

1.41e-3  3.53e-3 
1.01e-3  2.02e-3 
2.38e-3  6.09e-3 
2.25e-3  5.64e-3 
1.19e-3  2.38e-3 
1.29e-3  3.22e-3 

10.47e-9  06.15e-9 
7.471e-9  04.39e-9 
17.95e-9  10.55e-9 
15.34e-9  09.02e-9 
08.82e-9  05.18e-9 
7.922e- 9  04.7e-9 

 
 

Table 4. Speed governor parameters 
GOV 1 2 3 

Rs 
Tc(s) 
Ts(s) 

-0.04 
-0.04 
-0.04 

0.05 
0.05 
0.05 

0.06 
0.06 
0.06 
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