

Electronic Journal of Graph Theory and Applications

Enumeration for spanning trees and forests of join graphs based on the combinatorial decomposition

Sung Sik U

Faculty of Mathematics, Kim Il Sung University, DPRK

e-mail address: usungsik@yahoo.com

Abstract

This paper discusses the enumeration for rooted spanning trees and forests of the labelled join graphs $K_m + H_n$ and $K_m + K_{n,p}$, where H_n is a graph with n isolated vertices.

Keywords: spanning tree, spanning forest, join graph, enumeration

Mathematics Subject Classification: 05C05 05C30

DOI:10.5614/ejgta.2016.4.2.5

1. Introduction

In this paper we consider the enumeration problem of rooted spanning trees and forests of two labelled join graphs. In [2], the number of spanning forests of the labelled complete bipartite graph $K_{m,n}$ on m and n vertices has been enumerated by combinatorial method. In [1] and [3], it has been given the enumeration of spanning trees of the complete tripartite graph $K_{m,n,p}$ on m,n and p vertices and the complete multipartite graph, respectively. In [4], by using the multivariate Lagrange inverse, the number of spanning forests of the labelled complete multipartite graph was derived. And, in [5], it has been found the asymptotic number of labeled spanning forests of the complete bipartite graph $K_{m,n}$ as $m \to \infty$ when $m \le n$ and $n = o(m^{6/5})$.

Given two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ with disjoint vertex sets, we let $G_1 + G_2$ denote the join of G_1 and G_2 , that is, the graph $G_1 + G_2 = (V_1 \cup V_2, E_1 \cup E_2 \cup E(V_1, V_2))$ where $E(V_1, V_2) = \{(i, j) | i \in V_1, j \in V_2\}, (i, j)$ denotes an edge between two vertices $i \in V_1, j \in V_2$.

Received: 21 April 2014, Revised: 11 July 2015, Accepted: 2 August 2016.

Clearly, by the definition of a join graph, the complete bipartite graph $K_{m,n}$ is a join graph $H_m + H_n$ and the complete tripartite graph $K_{m,n,p}$ is a join graph $H_m + H_n + H_p$, where H_m , H_n and H_p are graphs with m isolated vertices, n isolated vertices and p isolated vertices, respectively.

The goal of this paper first is to give a combinatorial proof of the enumeration for the spanning trees and forests of a labelled join graph $K_m + H_n$, where K_m is the complete graph on m vertices and H_n is the graph with n isolated vertices. Second, this paper also gives a combinatorial proof of the enumeration for the spanning trees and all forests of another labelled join graph $K_m + K_{n,p}$, where $K_{n,p}$ is the complete bipartite graph on n vertices and p vertices.

2. Enumeration for spanning trees and forests of a join graph $K_m + H_n$

Let V(G) denote the vertex set of graph G. Throughout this paper, we will consider only the labelled graphs. In this section, we consider a join graph $K_m + H_n$ where K_m is the complete graph on the vertex set $\{x_1, x_2, \dots, x_m\}$.

Lemma 2.1. The number f(m, l) of the labelled spanning forests of K_m with l roots is

$$f(m,l) = \binom{m}{l} l m^{m-l-1}. \tag{1}$$

Proof Let $X=V(K_m)=\{x_1,x_2,\cdots,x_m\}$ be the vertex set of K_m and $\{x_{i_1},x_{i_2},\cdots,x_{i_l}\}$ be the given root set of K_m . There are $\binom{m}{l}$ ways to choose the l roots in $V(K_m)$. Also, let $X'=X\setminus\{x_{i_1},x_{i_2},\cdots,x_{i_l}\}$ be a subset of X, and X'' be another copy of X' and let $x''\in X''$ denote copy of $x'\in X'$. Take the complete bipartite graph $K_{m,m-l}$ with the partition (X,X'') of its vertex set. Consider the subgraph G of $K_{m,m-l}$ that contains only the directed edges of the form $(x',x''),x'\in X',x''\in X''$. The number of the components of G is equal to m-l and G is a forest of $K_{m-l,m-l}=(X',X'')$. Let $D(m,|\{x_{i_1},x_{i_2},\cdots,x_{i_l}\}|;m-l,0)$ be the set of the labelled spanning forests of $K_{m,m-l}=(X,X'')$ with l roots $x_{i_1},x_{i_2},\cdots,x_{i_l}\in X$ and $D^*(K_m;x_{i_1},x_{i_2},\cdots,x_{i_l})$ be the set of the labelled spanning forests of K_m with l roots $x_{i_1},x_{i_2},\cdots,x_{i_l}\in X$. Now any spanning forest in $D(m,|\{x_{i_1},x_{i_2},\cdots,x_{i_l}\}|;m-l,0)$ containing G gives rise to a spanning forest in $D^*(K_m;x_{i_1},x_{i_2},\cdots,x_{i_l})$ by contracting the edges $(x',x''),x'\in X',x''\in X''$.

Conversely, any forest in $D^*(K_m; x_{i_1}, x_{i_2}, \dots, x_{i_l})$ can be extended to a forest in $D(m, |\{x_{i_1}, x_{i_2}, \dots, x_{i_l}\}|; m-l, 0)$ containing G by inserting vertex $x'' \in X''$ after $x' \in X'$. Therefore, from G, we will construct the rooted spanning forests of $K_{m,m-l}$ with l roots in X as follows.

For any fixed integer $t \in [0, m-l-1]$, add t edges consecutively to G as follows. At each step we add an edge of the form (v, x') between $x' \in X'$ and a (unique)vertex $v \in X''$ of outdegree zero in any component not containing x' in the graph already constructed. The number of components decreases by one each time such an edge is added.

Since |X'| = m - l and the number of components not containing x' in the graph G is m - l - 1, there are (m - l)(m - l - 1) choices for the first such edge. Similarly, there are (m - l)(m - l - 2) choices for the second edge, \cdots , and (m - l)(m - l - t) choices for the tth edge.

The order in which the t edges are added to G is immaterial, so it follows that there are

$$\frac{[(m-l)(m-l-1)][(m-l)(m-l-2)]\cdots[(m-l)(m-l-t)]}{t!} = \binom{m-l-1}{t}(m-l)^t$$

ways.

Every graph we obtained will have m-l-t (weakly) connected components each of which has a unique vertex in X'' of out-degree zero. Link edges from m-l-t vertices of out-degree zero in these components to l given roots $x_{i_1}, x_{i_2}, \dots, x_{i_l}$, there are l^{m-l-t} ways. Hence,

$$f(m,l) = \binom{m}{l} \sum_{t=0}^{m-l-1} \binom{m-l-1}{t} l^{m-l-t} (m-l)^t = \binom{m}{l} l m^{m-l-1}.$$

Let D(m, l) be the set of the labelled spanning forests of K_m with l roots, i.e.,

$$f(m,l) = |D(m,l)|. (2)$$

Theorem 2.1. The number g(m,n) of the labelled spanning trees of $K_m + H_n$ is

$$g(m,n) = m^{n-1}(m+n)^{m-1}. (3)$$

Proof Let $V(K_m) = \{x_1, x_2, \dots, x_m\}$, $V(H_n) = \{y_1, y_2, \dots, y_n\}$ be the vertex sets of K_m, H_n , respectively, and $y_1 \in V(H_n)$ be the given root of $K_m + H_n$. Let $D(m, 0; n, |\{y_1\}|)$ be the set of the labelled spanning trees of $K_m + H_n$ with root y_1 and T(m, n) be the set of the labelled spanning trees of $K_m + H_n$. Clearly, $|T(m, n)| = |D(m, 0; n, |\{y_1\}|)|$.

From every graph $F \in D(m, l)$, we will construct the rooted spanning trees of $K_m + H_n$ as follows. Link an edge (y,x) between every $y \in V(H_n) \setminus \{y_1\}$ and some $x \in V(F)$. There are m^{n-1} ways. Notice that the obtained graph G has l (weakly) connected components each of which has a unique vertex in $V(K_m)$ of out-degree zero.

Now, for any fixed integer t, let G' denote a graph obtained by adding t edges consecutively to G as follows. At each step we add an edge of the form (x,y) where y is any vertex of $y \in$ $V(H_n)\setminus\{y_1\}$ and $x\in V(K_m)$ is a vertex of out-degree zero in any component not containing y in the graph already constructed. The number of components decreases by one each time such an edge is added.

Since $|V(H_n)\setminus\{y_1\}|=n-1$ and the number of components not containing y in the graph G already constructed is l-1, there are (n-1)(l-1) choices for the first such edge. Similarly, there are (n-1)(l-2) choices for the second edge, \cdots , and (n-1)(l-t) choices for the tth edge, where, $0 \le t \le l-1$, because the number of components in the graph G is l. The graph G'thus constructed has l-t components each of which has a unique vertex in $V(K_m)$ of out-degree zero and the remaining vertices all have out-degree one; if we add edges from these vertices of out-degree zero to y_1 , we obtain a tree T' in $D(m, 0; n, |\{y_1\}|)$ that contains G and in which the in-degree of y_1 equals to l-t. The order in which the t edges are added to G to form G' is immaterial, so it follows that there are

$$\frac{[(n-1)(l-1)][(n-1)(l-2)]\cdots[(n-1)(l-t)]}{t!} = {\binom{l-1}{t}}(n-1)^t$$

rooted spanning trees T' for fixed integer t. This implies that there are

$$\sum_{t=0}^{l-1} {l-1 \choose t} (n-1)^t = n^{l-1}$$

spanning trees T in $D(m, 0; n, |\{y_1\}|)$ that contain G. Hence, by (2) and Lemma 2.1, we have

$$g(m,n) = |D(m,0;n,|\{y_1\}|)| = \sum_{l=1}^{m} |D(m,l)| n^{l-1} m^{n-1}$$
$$= \sum_{l=1}^{m} {m \choose l} l m^{m-l-1} n^{l-1} m^{n-1} = m^{n-1} (m+n)^{m-1}$$

as desired. \Box

Theorem 2.2. The number g(m, l; n, k) of the labelled spanning forests of $K_m + H_n$ with l roots in K_m and k roots in H_n is

$$g(m,l;n,k) = \binom{m}{l} \binom{n}{k} m^{n-k-1} (m+n)^{m-l-1} (lm+mk+ln-kl).$$
 (4)

Proof Let $V(H_n) = \{y_1, y_2, \dots, y_n\}$ be the vertex set of H_n and $\{y_{i_1}, y_{i_2}, \dots, y_{i_k}\}$ be the given root set of H_n . There are $\binom{n}{k}$ ways to choose the k roots in $V(H_n)$. Let $V(K_m) = \{x_1, x_2, \dots, x_m\}$ be the vertex set of K_m and $Y' = V(H_n) \setminus \{y_{i_1}, y_{i_2}, \dots, y_{i_k}\}$ be a subset of $V(H_n)$.

From every graph $F \in D(m,s)(s \geq l)$, we will construct the rooted spanning forests of $K_m + H_n$ with l roots in K_m and k roots in H_n as follows. Link an edge (y,v) between every $y \in Y'$ and some $v \in V(F)$. There are m^{n-k} ways. Notice that the obtained graph G has s (weakly) connected components each of which has a unique vertex in $V(K_m)$ of out-degree zero and the remaining vertices all have out-degree one.

As in the proof of former theorem, link an edge (v, y) between $y \in Y'$ and a vertex $v \in V(K_m)$ of out-degree zero in any component not containing y in the graph already constructed, we repeat this procedure i times, where, $0 \le i \le s - l$, because the required forests have l roots in $V(K_m)$.

There are

$$\frac{[(n-k)(s-1)][(n-k)(s-2)]\cdots[(n-k)(s-i)]}{i!} = \binom{s-1}{i}(n-k)^{i}$$
 (5)

ways.

Every graph G' we obtained will have s-i components each of which has a unique vertex in $V(K_m)$ of out-degree zero. Now, choose the s-i-l vertices of out-degree zero in these s-i components and link edges from these s-i-l vertices to k roots $y_{i_1},y_{i_2},\cdots,y_{i_k}$. There are

$$\binom{s-i}{s-i-l} k^{s-i-l} = \binom{s-i}{l} k^{s-i-l}$$
 (6)

ways.

Therefore, by (5) and (6), the number of the rooted spanning forests of $K_m + H_n$ which are obtained from F is equal to

$$\sum_{i=0}^{s-l} {s-1 \choose i} {s-i \choose l} (n-k)^i k^{s-i-l} = {s \choose l} n^{s-l} - {s \choose l} \frac{s-l}{s} n^{s-l-1} (n-k). \tag{7}$$

Hence, by (2), (7) and Lemma 2.1, the number g(m, l; n, k) of the labelled spanning forests of $K_m + H_n$ with l roots in K_m and k roots in H_n is as follows.

$$g(m, l; n, k) = \binom{n}{k} \sum_{s=l}^{m} |D(m, s)| m^{n-k} \sum_{i=0}^{s-l} \binom{s-1}{i} \binom{s-i}{l} (n-k)^{i} k^{s-i-l}$$

$$= \binom{n}{k} \sum_{s=l}^{m} \binom{m}{s} s m^{m-s-1} m^{n-k} \left[\binom{s}{l} n^{s-l} - \binom{s}{l} \frac{s-l}{s} n^{s-l-1} (n-k) \right]$$

$$= \binom{m}{l} \binom{n}{k} m^{n-k-1} (m+n)^{m-l-1} (lm+mk+ln-lk).$$

We get the required result.

Corollary 2.1. The number S(m,n) of all spanning forests of the join graph $K_m + H_n$ is equal to

$$S(m,n) = (m+n+1)^m (m+1)^{n-1}.$$
(8)

Proof By Theorem 2.2,

$$S(m,n) = \sum_{l=0}^{m} \sum_{k=0}^{n} g(m,l;n,k)$$

$$= \sum_{l=0}^{m} \sum_{k=0}^{n} {m \choose l} {n \choose k} m^{n-k-1} (m+n)^{m-l-1} (lm+mk+ln-kl)$$

$$= (m+n+1)^{m} (m+1)^{n-1}.$$

Thus, this corollary is true. \Box

3. Enumeration for spanning trees and forests of a join graph $K_m + K_{n,p}$

In this section, we consider another join graph $K_m + K_{n,p}$ where K_m is the complete graph and $K_{n,p}$ is the complete bipartite graph. We will show how to count the number of the spanning trees of a join graph $K_m + K_{n,p}$. Clearly, $K_m + K_{n,p} = (K_m + H_n) + H_p$. Let D(m, l; n, k) be the set of the labelled spanning forests of $K_m + H_n$ with l roots in K_m and k roots in H_n , i.e.,

$$g(m, l; n, k) = |D(m, l; n, k)|.$$
 (9)

Theorem 3.1. The number g(m, n, p) of the spanning trees of $K_m + K_{n,p}$ is equal to

$$g(m, n, p) = (m+n)^{p-1}(m+p)^{n-1}(m+n+p)^m.$$
(10)

Proof Let $V(K_m+H_n)=\{x_1,x_2,\cdots,x_m;y_1,y_2,...,y_n\}$ be the vertex set of K_m+H_n and $V(H_p)=\{z_1,z_2,...,z_p\}$ be the vertex set of H_p . Let $z_1\in V(H_p)$ be the given roots of $K_m+K_{n,p}$ and $Z'=V(H_p)\setminus\{z_1\}$, $D(m,0;n,0;p,|\{z_1\}|)$ be the set of the labelled spanning trees of $K_m+K_{n,p}$ with root z_1 . Clearly,

$$g(m, n, p) = |D(m, 0; n, 0; p, |\{z_1\}|)|.$$

We shall obtain the spanning trees in $D(m, 0; n, 0; p, |\{z_1\}|)$ from every graph $F \in D(m, l; n, k)$. As in the proof of former theorem, link an edge (z, v) between every $z \in Z'$ and some $v \in V(F)$. There are $(m+n)^{p-1}$ ways. Notice that the obtained graph G has l+k (weakly) connected components each of which has a unique vertex in $V(K_m) \cup V(H_n)$ of out-degree zero and the remaining vertices all have out-degree one.

For any fixed integer t such that $0 \le t \le l + k - 1$, link an edge (v, z) between $z \in Z'$ and a vertex $v \in V(K_m) \cup V(H_n)$ of out-degree zero in any component not containing z in the graph already constructed, we repeat this procedure t times.

There are

$$\frac{[(p-1)(l+k-1)][(p-1)(l+k-2)]\cdots[(p-1)(l+k-t)]}{t!} = \binom{l+k-1}{t}(p-1)^t$$

ways. Therefore, the number of the spanning trees which are obtained from F is equal to

$$\sum_{t=0}^{l+k-1} \binom{l+k-1}{t} (p-1)^t = p^{l+k-1}.$$

Hence, by (9) and Theorem 2.2,

$$g(m, n, p) = |D(m, 0; n, 0; p, |\{z_1\}|)|$$

$$= \sum_{l=0}^{m} \sum_{k=0}^{n} |D(m, l; n, k)| p^{l+k-1} (m+n)^{p-1}$$

$$= \sum_{l=0}^{m} \sum_{k=0}^{n} {m \choose l} {n \choose k} m^{n-k-1} (m+n)^{m-l-1} (lm+km+ln-lk) p^{k+l-1} (m+n)^{p-1}$$

$$= (m+n)^{p-1} (m+p)^{n-1} (m+n+p)^{m}.$$

Therefore, we get the required result.

Theorem 3.2. The number S(m, n, p) of all spanning forests of the join graph $K_m + K_{n,p}$ is equal to

$$S(m, n, p) = (m + n + p + 1)^{m+1} (m + n + 1)^{p-1} (m + p + 1)^{n-1}.$$
 (11)

Proof Let B(p,r) denote the set of spanning forests of the join graph $K_m+K_{n,p}=(K_m+H_n)+H_p$ which r roots are in $V(H_p)$ and remaining roots are in $V(K_m)$ or $V(H_n)$.

From every graph $F \in D(m, l; n, k)$, we will construct the rooted spanning forests of $(K_m +$ $H_n)+H_p$ with r roots in $V(H_p)$ as follows. Let $z_{i_1},z_{i_2},\cdots,z_{i_r}\in V(H_p)$ be root vertices. The number of ways to select r roots in $V(H_p)$ is equal to $\binom{p}{r}$. Let $Z'=V(H_p)\setminus\{z_{i_1},z_{i_2},\cdots,z_{i_r}\}$. Link an edge (z, v) between every $v \in Z'$ and some $v \in V(F)$. There are $(m+n)^{p-r}$ ways. Notice that the obtained graph G has l + k (weakly) connected components each of which has a unique vertex in $V(K_m) \cup V(H_n)$ of out-degree zero and the remaining vertices all have out-degree one.

As in the proof of former theorem, for any fixed integer t such that $0 \le t \le l + k - 1$, link an edge (v, z) between $z \in Z'$ and a vertex $v \in V(K_m) \cup V(H_n)$ of out-degree zero in any component not containing z in the graph already constructed, we repeat this procedure t times. There are

$$\frac{[(p-r)(l+k-1)][(p-r)(l+k-2)]\cdots[(p-r)(l+k-t)]}{t!} = \binom{l+k-1}{t}(p-r)^t$$

ways.

The graph G' thus constructed has l+k-t components each of which has a unique vertex in $V(K_m) \cup V(H_n)$ of out-degree zero and the remaining vertices all have out-degree one; if we add edges from some vertices of these vertices of out-degree zero to $z_{i_1}, z_{i_2}, \cdots, z_{i_r} \in Z$, we obtain a forest in B(p,r) that contains G. There are $(r+1)^{l+k-t}$ ways. Therefore, this implies that there are

$$\sum_{t=0}^{l+k-1} {l+k-1 \choose t} (p-r)^t (r+1)^{l+k-t} = (r+1)(p+1)^{l+k-1}$$

forests in B(p, r) that contain G. Hence, by (9) and Theorem 2.2,

$$S(m, n, p) = \sum_{l=0}^{m} \sum_{k=0}^{n} |D(m, l; n, k)| \sum_{r=0}^{p} {p \choose r} (m+n)^{p-r} (r+1) (p+1)^{l+k-1}$$

$$= \sum_{l=0}^{m} \sum_{k=0}^{n} {m \choose l} {n \choose k} m^{n-k-1} (m+n)^{m-l-1} (lm+mk+ln-lk)$$

$$\sum_{r=0}^{p} {p \choose r} (m+n)^{p-r} (r+1) (p+1)^{l+k-1}$$

$$= (m+n+p+1)^{m+1} (m+n+1)^{p-1} (m+p+1)^{n-1}.$$

Thus, this theorem is true.

Acknowledgement

The author thanks the referees for very careful readings and many constructive commments that greatly improve the presentation of this paper.

References

- [1] O. Egecioglu and J. B. Remmel, Bijections for Cayley trees, spanning trees, and their q-analogues, *Journal of Combinatorial Theory, Series A* **42** (1986), 15–30.
- [2] Y. Jin and C. Liu, Enumeration for spanning forests of complete bipartite graphs, *Ars Combinatoria* **70** (2004), 135–138.
- [3] R. P. Lewis, The number of spanning trees of a complete multipartite graph, *Discrete Mathematics* **197/198** (1999), 537–541.
- [4] L. A. Szekely, Counting rooted spanning forests in complete multipartite graphs, *Ars Combinatoria* **73** (2004), 97–100.
- [5] D. Stark, The asymptotic number of spanning forests of complete bipartite labelled graphs, *Discrete Mathematics* **313** (2013), 1256–1261.