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Abstract

Given two graphs G1 and G2, the Ramsey number R(G1, G2) is the smallest integer N such that,

for any graph G of order N , either G1 is a subgraph of G, or G2 is a subgraph of the complement

of G. Let Cn denote a cycle of order n, Wn a wheel of order n + 1 and Sn a star of order n. In

this paper, it is shown that R(Wn, C4) = R(Sn+1, C4) for n ≥ 6. Based on this result and Parsons’

results on R(Sn+1, C4), we establish the best possible general upper bound for R(Wn, C4) and

determine some exact values for R(Wn, C4).
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1. Introduction

In this note we deal with finite simple graphs only. For a nonempty proper subset S ⊆ V (G),
let G[S] and G− S denote the subgraph induced by S and V (G)− S, respectively. Let NS(v) be

the set of all the neighbors of a vertex v that are contained in S, let NS[v] = NS(v) ∪ {v} and let

dS(v) = |NS(v)|. If S = V (G), we write N(v) = NG(v), N [v] = N(v) ∪ {v} and d(v) = dG(v).
For two vertex-disjoint graphs G1 and G2, G1 +G2 is the graph obtained from G1 ∪G2 by joining

every vertex of G1 to every vertex of G2. A star, a cycle and a complete graph of order n are

denoted by Sn, Cn and Kn, respectively. A wheel Wn = K1+Cn is a graph of order n+1. We use
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∆(G), δ(G) and α(G) to denote the maximum degree, the minimum degree and the independence

number, respectively, of a graph G.

Given two graphs G1 and G2, the Ramsey number R(G1, G2) is the smallest integer N such

that, for any graph G of order N , either G contains G1 or G contains G2, where G is the comple-

ment of G. It is well-known that it is difficult to deal with some extremal problems involving C4.

In this note, we are interested in the relationship between two Ramsey numbers involving C4, that

is, R(Sn+1, C4) and R(Wn, C4). The former has been well-studied and the latter has received more

attention recently.

Parsons [6] began to consider the Ramsey numbers R(Sn+1, C4) back in 1975. By using the

existence of projective planes over Galois fields and the generalized friendship theorem, in [6]

he established upper bounds for R(Sn+1, C4) and determined the exact values for several specific

values of n, as expressed in the following two results.

Theorem 1.1. (Parsons [6]). R(Sn+1, C4) ≤ n + ⌊
√
n− 1⌋ + 2 for all n ≥ 2, and if n = q2 + 1

and q ≥ 1, then R(Sn+1, C4) ≤ n+ ⌊
√
n− 1⌋+ 1.

Theorem 1.2. (Parsons [6]). If q is a prime power, then R(Sq2+1, C4) = q2+q+1 and R(Sq2+2, C4) =
q2 + q + 2.

Noting that if n = q2, then n + ⌊
√
n− 1⌋ + 2 = q2 + q + 1, we see that the general bound for

R(Sn+1, C4) in Theorem 1.1 is best possible.

Obviously, Sn+1 is a (spanning) subgraph of Wn and so R(Wn, C4) ≥ R(Sn+1, C4). By using

an exhaustive computer search, Tse [10] was able to calculate the value of R(Wn, C4) for 3 ≤
n ≤ 12. An interesting question in this respect is: what is the best possible upper bound for

R(Wn, C4)? Surahmat et al. [9] showed that R(Wn, C4) ≤ n + ⌈n/3⌉ + 1 for n ≥ 6. Clearly,

this upper bound is not tight in general. Because R(Wn, C4) ≥ R(Sn+1, C4) showing that the

best bound for R(Wn, C4) is at least n + ⌊
√
n− 1⌋ + 2, one may ask whether R(Wn, C4) −

R(Sn+1, C4) is a constant or a function depending on n. Recently, by using Reiman’s theorem [8]

on the Turán number t(n,C4), Ore’s theorem [5] on Hamiltonicity, a result of Faudree and Schelp

[3] on R(Cn, C4) and the Erdős-Rényi graph, Dybizbański and Dzido [2] established a general

upper bound for R(Wn, C4) for n ≥ 10 and determined some exact values of R(Wn, C4). We

summarized some of their results in the following theorem.

Theorem 1.3. (Dybizbański and Dzido [2]). R(Wn, C4) ≤ n+ ⌊
√
n− 1⌋+ 2 for all n ≥ 10, and

if q ≥ 4 is a prime power, then R(Wq2 , C4) = q2 + q + 1.

In the same paper, with the help of computers, they determined the exact values of some Ramsey

numbers for a small wheel versus a C4.

Theorem 1.4. (Dybizbański and Dzido [2]). R(Wn, C4) = n+ 5 for 13 ≤ n ≤ 16.

Clearly, Theorem 1.3 implies that Parsons’ bound for R(Sn+1, C4) is also a best possible upper

bound for R(Wn, C4) if n ≥ 10. In an unpublished paper, Wu et al. [11] obtained nine new

values for R(Wn, C4); as in the other cases their calculations have been performed with the aid of

computer search.
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Theorem 1.5. (Wu et al. [11]) R(Wn, C4) = n + 5 for 17 ≤ n ≤ 20; R(W26, C4) = 32;

R(Wn, C4) = n+ 7 for 34 ≤ n ≤ 36; R(W43, C4) = 51.

The exact values of the Ramsey numbers R(Sn+1, C4) for n ≤ 6 can be found in [7]. For the

value of R(S8, C4), we get R(S8, C4) ≤ 11 by Theorem 1.1. Since the Petersen graph contains

no C4 and its complement has no S8, we get R(S8, C4) ≥ 11 and so we obtain that R(S8, C4) =
11. Using Theorem 1.2, we can get the exact values of R(Sn+1, C4) for n = 9, 10, 16, 17. By

considering Theorems 1.1, 1.2 and 1.3, and these known values of R(Sn, C4) and R(Wn, C4) for

small n ≥ 6, we observe that there is an infinite number of values of n for which R(Wn, C4) =
R(Sn+1, C4). Motivated by this observation, a natural question is whether this equality holds in

general. In this note, we give an affirmative answer to this question. Our main result is as follows.

Theorem 1.6. R(Wn, C4) = R(Sn+1, C4) for n ≥ 6.

We postpone our proof of this result to the next section.

By Theorem 1.6, we see that the two functions R(Wn, C4) and R(Sn+1, C4) are in fact the same

when n ≥ 6. Because the Ramsey numbers R(Sn+1, C4) are well-studied, we can use Theorem 1.6

and known results on R(Sn+1, C4) to establish new results on R(Wn, C4). Of course, we can do

that in reverse as well. Up to now, most known values of R(Wn, C4) for small n are obtained with

the help of computers. Because finding an Sn+1 is much easier than finding a Wn in a graph using

computers, we can focus our calculation on R(Sn+1, C4) by computers instead of R(Wn, C4) if we

want to determine some values of R(Wn, C4) with the help of computers.

Combining Theorems 1.1, 1.2 and 1.6, we obtain the following.

Theorem 1.7. R(Wn, C4) ≤ n + ⌊
√
n− 1⌋ + 2 for n ≥ 6, and if n = q2 + 1 and q ≥ 3,

then R(Wn, C4) ≤ n + ⌊
√
n− 1⌋ + 1. Furthermore, if q ≥ 3 is a prime power, then we have

R(Wq2 , C4) = q2 + q + 1 and R(Wq2+1, C4) = q2 + q + 2.

Clearly, Theorem 1.7 is stronger than Theorem 1.3. Furthermore, by Theorems 1.1-1.7 and

some other known results on R(Sn+1, C4), we can summarize several exact values (see Table 1) for

R(Wn, C4) and R(Sn+1, C4) when n ≥ 6 is small. Here the numbers marked with ∗ are obtained

from the results in this paper, and the numbers marked with ⋆ can be obtained by Theorem 1.7

avoiding computer search.

n 6 7-8 9-10 11-15 16-17 18-20 25 26 34-36 43

R(Wn, C4) 9 n+ 4 n+ 4⋆ n+ 5 n+ 5⋆ n+ 5 31 32⋆ n+ 7 51

R(Sn+1, C4) 9 n+ 4 n+ 4 n+ 5∗ n+ 5 n+ 5∗ 31 32 n+ 7∗ 51∗

Table 1: Exact values of R(Wn, C4) and R(Sn+1, C4) for 6 ≤ n ≤ 43.

As for the lower bounds of R(Sn+1, C4), Burr et al. [1] showed that R(Sn+1, C4) > n+
√
n−

6n11/40. In the same paper, they proposed the following conjecture, for which Erdős, one of the

authors, offered $100 for a proof or disproof.

Conjecture 1. (Burr et al. [1]). R(Sn+1, C4) < n +
√
n − c holds infinitely often, where c is an

arbitrary constant.

After an easy calculation, we find that all exact values of R(Sn+1, C4) listed in Table 1 satisfy

R(Sn+1, C4) ≥ n+ ⌈√n⌉. Thus we finish this section by posing the following intriguing problem.

Question. Is it true that R(Wn, C4) = R(Sn+1, C4) ≥ n+ ⌈√n⌉ for all n ≥ 6?

112



www.ejgta.org

A remark on star-C4 and wheel-C4 Ramsey numbers | Yanbo Zhang et al.

2. Proof of Theorem 1.6

In order to prove Theorem 1.6, we need the following four lemmas.

Lemma 2.1. (Faudree and Schelp [3]). R(Cn, C4) = n+ 1 for n ≥ 6.

Lemma 2.2. (Tse [10]). R(W6, C4) = 9, R(Wn, C4) = n+ 4 for 7 ≤ n ≤ 10.

Lemma 2.3. (Faudree et al. [4]). R(S7, C4) = 9.

Lemma 2.4. (Zhang et al. [12]) Let C be a longest cycle in a graph G and u ∈ V (G) − V (C).
Then α(G) ≥ dC(u) + 1.

Proof of Theorem 1.6. We first prove that R(Sn+1, C4) ≥ n+4 for n ≥ 7. Let k = ⌊(n+1)/4⌋ and

C = x1x2...x4kx1 be a cycle of length 4k. Set X1 = {x1, x2}, X2 = {x3, x4}, X3 = {xi | i ≡ 1, 2
(mod 4) and i ≥ 5} and X4 = {xi | i ≡ 0, 3 (mod 4) and i ≥ 5}. We now construct a graph

F of order n + 3 from C as follows: V (F ) = V (C) ∪ {zi | 1 ≤ i ≤ l}, where 4k + l = n + 3.

If n ≡ 3 (mod 4), then let N(z1) = X1 ∪ X3 and N(z2) = X2 ∪ X4; if n ≡ 0 (mod 4), then

let N(z1) = X1 ∪ {z2}, N(z2) = X3 ∪ {z1} and N(z3) = X2 ∪ X4; if n ≡ 1 (mod 4), then

let N(z1) = X1 ∪ {z2}, N(z2) = X3 ∪ {z1}, N(z3) = X2 ∪ {z4} and N(z4) = X4 ∪ {z2};

if n ≡ 2 (mod 4), then let N(z1) = X1 ∪ {z2}, N(z2) = X3 ∪ {z1}, N(z3) = X2 ∪ {z4},

N(z4) = X4 ∪ {z2} and N(z5) = {z1, z2, z3, z4}. It is easy to check that F has no C4 and

δ(F ) ≥ 3. Therefore, R(Sn+1, C4) ≥ n+ 4 for n ≥ 7.

Since Sn+1 ⊆ Wn, we have R(Wn, C4) ≥ R(Sn+1, C4). By Lemmas 2.2 and 2.3, we see that

R(W6, C4) = R(S7, C4) and R(Wn, C4) = n + 4 for 7 ≤ n ≤ 10. Since R(Sn+1, C4) ≥ n + 4
for n ≥ 7, we get that R(Wn, C4) = R(Sn+1, C4) for 7 ≤ n ≤ 10. Now it remains to show that

R(Wn, C4) ≤ R(Sn+1, C4) for n ≥ 11. Let G be a graph of order N = R(Sn+1, C4) ≥ n + 4.

Set v ∈ V (G) with d(v) = ∆(G), Z = V (G) − N [v]. Suppose to the contrary that neither G
contains a Wn nor G contains a C4. Thus, noting that N = R(Sn+1, C4), we have d(v) ≥ n. If

d(v) ≥ n+1, then by Lemma 2.1, G[N(v)] contains a Cn, which together with v forms a Wn in G,

a contradiction. Hence we have d(v) = n. By Theorem 1.1, |Z| = N − (n+ 1) ≤ ⌊
√
n− 1⌋+ 1.

Let C be a longest cycle in G[N(v)]. By Lemma 2.1, we have |C| ≥ n − 1, and so |C| = n − 1.

Set u = N(v) − V (C). If dC(u) ≥ 3, then by Lemma 2.4, α(G[N(v)]) ≥ 4, which implies that

G contains a C4, and hence dC(u) ≤ 2. If there exists some vertex y ∈ V (G) − {u} such that

y has two nonadjacent vertices y1, y2 ∈ V (C) − NC(u), then uy1yy2u is a C4 in G, and hence y
has at most one nonadjacent vertex in V (C) − NC(u) for each y ∈ V (G) − {u}. Since n ≥ 11,

|Z| ≤ ⌊
√
n− 1⌋+ 1 and dC(u) ≤ 2, we have

|V (C)−NC(u)| − |NC(u) ∪ Z| = |C| − dC(u)− |Z| − dC(u)
≥ (n− 1)− 2− (⌊

√
n− 1⌋+ 1)− 2 ≥ 2.

Because every vertex of NC(u) ∪ Z has at least |V (C)−NC(u)| − 1 adjacent vertices in V (C)−
NC(u), by the Pigeonhole Principle, there exists some vertex w ∈ V (C) − NC(u) such that

NC(u) ∪ Z ⊆ N(w). Noting that w has at most one nonadjacent vertex in V (C) − NC(u) and

wv ∈ E(G), we have

d(w) ≥ |V (C)−NC(u)| − 2 + |NC(u) ∪ Z|+ 1 = |C|+ |Z| − 1 = N − 3 ≥ n+ 1,

which contradicts the fact that d(v) = ∆(G) = n.

This completes the proof of Theorem 1.6.
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