

Electronic Journal of Graph Theory and Applications

On an edge partition and root graphs of some classes of line graphs

K. Pravas^a, A. Vijayakumar^b

^aDepartment of Mathematics, K. K. T. M. Government College, Pullut-680663, India.

pravask@gmail.com, vijay@cusat.ac.in

Abstract

The Gallai and the anti-Gallai graphs of a graph G are complementary pairs of spanning subgraphs of the line graph of G. In this paper we find some structural relations between these graph classes by finding a partition of the edge set of the line graph of a graph G into the edge sets of the Gallai and anti-Gallai graphs of G. Based on this, an optimal algorithm to find the root graph of a line graph is obtained. Moreover, root graphs of diameter-maximal, distance-hereditary, Ptolemaic and chordal graphs are also discussed.

Keywords: line graph, Gallai, anti-Gallai, root graph Mathematics Subject Classification: O5C99

DOI:10.5614/ejgta.2017.5.1.12

1. Introduction

The line graph L(G) of a graph G has as its vertices the edges of G, and any two vertices are adjacent in L(G) if the corresponding edges are incident in G. The Gallai graph Gal(G) [10, 15] of a graph G has as its vertices the edges of G, and any two vertices are adjacent in Gal(G) if the corresponding edges are incident in G, but do not span a triangle in G. The anti-Gallai graph G has as its vertices the edges of G, and any two vertices of G are adjacent in G and lie on a triangle in G.

In [13] it is shown that the four color theorem can be equivalently stated in terms of anti-Gallai graphs. The problems of determining the clique number and the chromatic number of Gal(G) are

Received: 8 July 2016, Revised: 14 January 2017, Accepted: 26 February 2017.

^bDepartment of Mathematics, Cochin University of Science and Technology, Cochin-682022, India.

NP-Complete[13]. In [3] it is shown that there are infinitely many pairs of non-isomorphic graphs of the same order having isomorphic Gallai graphs and anti-Gallai graphs. In [2] it is shown that the complexity of recognizing anti-Gallai graphs is NP-complete.

A graph H is forbidden in a graph family \mathcal{G} , if H is not an induced subgraph of any $G \in \mathcal{G}$. For any finite graph H, there exist a finite family of forbidden subgraphs for the Gallai graphs and the anti-Gallai graphs to be H-free [3]. However, both Gallai graphs and anti-Gallai graphs cannot be characterized using forbidden subgraphs [13].

The Gallai and the anti-Gallai graphs are spanning subgraphs of line graphs. In fact, they are complement to each other in L(G). Therefore a natural question arises: is it possible to identify the edges of Gal(G) and antiGal(G) from L(G)? A positive answer to this is given in this paper by introducing an algorithm to partition the edge set of a line graph into the edges of Gallai and anti-Gallai graphs, using the adjacency properties of common neighbors of the edges of a line graph in a hanging [8].

A graph G is a root graph of the line graph H if $L(G) \cong H$. The root graph of a line graph is unique, except for the triangle and $K_{1,3}$ [16]. In this paper, using the edge-partition, an algorithm is obtained to find the root graph of a line graph. Also, the root graphs of diameter-maximal, distance-hereditary, Ptolemaic and chordal graphs are obtained.

Let H = (V, E) be a graph with vertex set V = V(H) and edge set E = E(H). Let N(v) denote the set of all vertices adjacent to v and $N_M(v) = M \cap N(v)$, where $M \subseteq V$. The edge joining u and v is denoted by uv. The common neighbors of uv is $N(u) \cap N(v)$ and $N(uv) = N(u) \cup N(v)$. The subgraph induced by $\{v_1, v_2, ..., v_k\} \subseteq V$ is denoted by $\{v_1, v_2, ..., v_k\}$. A clique is a complete subgraph of a graph. An edge clique cover of H is a family of cliques $\mathcal{E} = \{q_1, q_2, ..., q_k\}$ such that each edge of H is in at least one of $E(q_1), E(q_2), ... E(q_k)$.

A path on n vertices P_n is the graph with vertex set $\{v_1, v_2, ..., v_n\}$ and $v_i v_{i+1}$ for i = 1, 2, ..., n-1 are the only edges. The distance between two vertices u and v, denoted by d(u, v), is the length of a shortest u - v path in H. The diameter of H, denoted by d(H), is the maximum length of a shortest path in H.

The join of two graphs G_1 and G_2 , denoted by $G_1 \vee G_2$, is the graph with vertex set $V(G_1) \cup V(G_2)$ and $E(G_1 \vee G_2) = E(G_1) \cup E(G_2) \cup \{uv : u \in V(G_1) \text{ and } v \in V(G_2)\}.$

All graphs mentioned in this paper are simple and connected, unless otherwise specified. Also, all other basic concepts and notations not mentioned in this paper are from [4].

2. Adjacency properties of edges of L(G)

The hanging [8] of a graph H=(V,E), with |V|=n and |E|=m, by a vertex z is the function $h_z(x)$ that assigns to each vertex x of H the value d(z,x). The i-th level of H in a hanging h_z is defined as $L_i=\{x\in H:h_z(x)=i\}$. A hanging can be obtained using a breadth first search(BFS) [1], which has a time complexity of O(m+n).

For a vertex v in L_i , a supporter of v is a vertex in L_{i-1} , which is adjacent to v. A vertex in L_i is an ending vertex if it has no neighbors in L_{i+1} . An arbitrary supporter of v is denoted by S(v). It is clear that any vertex v in the level L_i for $i \ge 1$ has at least one supporter.

We use the following, well known, forbidden subgraph characterization of a line graph.

Theorem 2.1. [6] A graph H is a line graph if and only if the nine graphs in Fig 1 are forbidden subgraphs for H.

Figure 1. Forbidden Subgraphs of line graph

Theorem 2.2. Consider a hanging of a line graph H by an arbitrary vertex in H and let uv denote the edge joining u and v in the same level L_i . Then, the following statements hold

- 1. All common neighbors of uv in L_{i-1} are adjacent to each other.
- 2. All common neighbors of uv in L_{i+1} are adjacent to each other.
- 3. If uv has no common neighbor in L_{i-1} , then all the common neighbors of uv in L_i which are adjacent to all other neighbors of uv are adjacent to each other.
- 4. There is at most one common neighbor of uv in L_i , which is adjacent to all the neighbors of uv but not adjacent to the common neighbors of uv in L_{i-1} and L_i .

Proof.

1. Let x and x' be two (distinct) common neighbors of an edge uv in L_{i-1} , then $i \geq 2$. Assume that x and x' are not adjacent. Now, if x and x' have a common neighbor w in L_{i-2} , then

 $< w, x, x', u, v > \cong F_2$ in Fig 1 which contradicts the fact that H is a line graph. So, let w and w' be any two vertices in L_{i-2} adjacent to x and x' respectively. Then $< w, w', x, x', u, v > \cong F_7$ or F_4 according as, w and w' are adjacent or not.

- 2. Let w and x be two common neighbors of an edge uv in L_{i+1} . Assume that x and w are not adjacent. Now, if z is a supporter of u in L_{i-1} , then $\langle z, u, w, x \rangle \cong K_{1,3}$, which is a contradiction.
- 3. Let uv has no common neighbor in the level L_{i-1} and hence $i \geq 2$. Let x and w be two common neighbors of uv in L_i which are adjacent to all the neighbors of uv. Assume that x and w are not adjacent. Now u and v cannot have a common supporter. So let z_1 and z_2 be two supporters of u and v respectively. Since z_1 and z_2 are neighbors of uv, both v and v are adjacent to them. Now, the vertices v_1 , v_2 , v_3 and v_4 induce a v_4 , which is a contradiction.
- 4. Assume that x and w are two nonadjacent common neighbors of uv in L_i which are not adjacent to the common neighbors of uv but adjacent to all the other neighbors of uv in L_{i-1} and L_i . So, it is clear that $i \geq 2$. Let z be a common neighbor of uv in L_{i-1} . Now u must have at least one neighbor in L_{i-1} other than the common neighbors of uv in L_{i-1} , for otherwise, the vertices u, x, w and z induce a $K_{1,3}$ which is a contradiction. Similar is the case for the vertex v. So let z_1 and z_2 be two neighbors (but not common neighbors) of u and v in L_{i-1} respectively. But, we have, $u \in S(z_1), u \in S(z_1), u$

Remark 2.1. In fact the above theorem is applicable to a larger class of graphs than line graphs as only some of the forbidden sub graphs of line graphs are used in the proof.

3. Anti-Gallai triangles in L(G)

Let uvw be a triangle in L(G) and let \bar{u}, \bar{v} and \bar{w} be the edges in G representing the vertices u,v and w respectively in L(G). If the edges \bar{u},\bar{v} and \bar{w} induce a triangle in G then the triangle uvw in L(G) is referred to as an anti-Gallai triangle. All the triangles in antiGal(G) need not be an anti-Gallai triangle and the number of anti-Gallai triangles in L(G) is equal to the number of triangles in G. Since each edge of an anti-Gallai graph belongs to some anti-Gallai triangle, the set of all anti-Gallai triangles in L(G) induces antiGal(G).

Remark 3.1. When a triangle uvw in L(G) is not an anti-Gallai triangle, the edges \bar{u}, \bar{v} and \bar{w} in G have a vertex in common.

Lemma 3.1. Consider a line graph $H \ncong K_3$. If a triangle uvw in H is an anti-Gallai triangle, then for all $x \in V(H) \setminus \{u, v, w\}$, one of the following holds.

- a) $< u, v, w, x > \cong K_4 e$
- b) $\langle u, v, w, x \rangle$ is disconnected.

Proof. Let G be the graph such that $L(G) \cong H$ and assume that the triangle uvw is an anti-Gallai triangle in H. Then the edges \bar{u}, \bar{v} and \bar{w} in G induce a triangle in G. Now corresponding to any vertex x in H, there is an edge \bar{x} in G. If \bar{x} is adjacent to the triangle $\bar{u}\bar{v}\bar{w}$, then \bar{x} is adjacent to exactly two of the edges of $\bar{u}\bar{v}\bar{w}$ and hence $< u, v, w, x > \cong K_4 - e$ in H. If \bar{x} is not adjacent to the triangle $\bar{u}\bar{v}\bar{w}$, then < u, v, w, x > is disconnected.

Lemma 3.2. If a triangle uvw is not an anti-Gallai triangle in a line graph $H \cong L(G)$, then there is at most one common neighbor z for an edge of uvw in H such that $\langle u, v, w, z \rangle \cong K_4 - e$.

Proof. Let \bar{u}, \bar{v} and \bar{w} be the edges in G, representing the vertices u, v and w respectively in H. Let z be such that $\langle u, v, w, z \rangle \cong K_4 - e$ in L(G) and let it be a common neighbor of uv. Then the edge \bar{z} in G is adjacent to both the edges \bar{u} and \bar{v} and not adjacent to \bar{w} . clearly \bar{u}, \bar{v} and \bar{z} induce a triangle in G and hence uvz is an anti-Gallai triangle in L(G). Now assume that z' is a vertex different from z such that it is a common neighbor of uv and $\langle u, v, w, z' \rangle \cong K_4 - e$. Then the vertices z and z' cannot be adjacent, otherwise $\langle u, v, z, z' \rangle \cong K_4$ and by Lemma 3.1 it will contradict the fact that u, v, z is an anti-Gallai triangle. But, we have, $\langle u, w, z, z' \rangle \cong K_{1,3}$ and hence H cannot be a line graph by Theorem 2.1.

Theorem 3.1. Consider a line graph $H \ncong K_3, K_4 - e, C_4 \lor K_1$ and $C_4 \lor 2K_1$. A triangle uvw in H is an anti-Gallai triangle if and only if $\langle u, v, w, x \rangle \cong K_4 - e$ or disconnected for all $x \in V(H) \setminus \{u, v, w\}$.

Proof. Let G be the graph such that $L(G) \cong H$. The necessary part of the theorem follows from Lemma 3.1.

Conversely, assume that uvw is a triangle in H such that $\langle u, v, w, x \rangle \cong K_4 - e$ or disconnected for all $x \in V(H)$ and that uvw is not an anti-Gallai triangle. Then the edges \bar{u}, \bar{v} and \bar{w} induce a $K_{1,3}$ in G. Note that any vertex which induces a $K_4 - e$ with the triangle uvw is adjacent to exactly two vertices among u, v and w. Now, since H is connected and not a K_3 , there is a vertex x adjacent to the triangle uvw. Assume that x is adjacent to u and w. Then in G, \bar{u}, \bar{v} and \bar{x} induce a triangle so that uwx is an anti-Gallai triangle. Since $H \ncong K_4 - e$ and also connected, there is a vertex y adjacent to at least one of the vertices u, v, w and x. If there is no vertex adjacent to the triangle uvw, then it must be adjacent to x alone, which is a contradiction to the fact that uwx is anti-Gallai triangle. So let y be adjacent to uvw. By Lemma 3.2 y cannot be adjacent to u and w. So let y be adjacent to v and w. Now we have vwy is also an anti-Gallai triangle. But, since $H \ncong C_4 \lor K_1$ and connected, using the same arguments as before, we have a vertex z adjacent to the triangle uvw again. The only possibility then is that z is adjacent to the vertices u and v. Now we show that there are no more vertices possible in H. If not, let p be a vertex in H different from u, v, w, x, y and z. But, by Lemma 3.2, the vertex p cannot be adjacent to uvw. Now if p is adjacent to x, it must be adjacent to u or w as uwx is an anti-Gallai triangle, which again is not possible. Similarly, p cannot be adjacent to y and z. Hence no such vertex p can be adjacent to any of the vertices u, v, w, x, y and z. So such a vertex does not exist in H, as H is a connected graph. Now we have $H \cong \langle u, v, w, x, y, z \rangle \cong C_4 \vee 2K_1$, which is a contradiction.

We observe that it is possible to suitably re-label the edges in the root graph of $C_4 \vee K_1$ so that no triangles in $C_4 \vee K_1$ can be claimed to be an anti-Gallai triangle, see Figure 2. It can be seen

Figure 2. Two possible labellings of $K_4 - e$ and its line graph $C_4 \vee K_1$

that $K_4 - e$ and $C_4 \vee 2K_1$ also have this property. Theorem 3.1 shows that these three graphs are the only exceptions (the graph K_3 is excluded as it is a trivial case with 3 vertices). Hence, the graphs $K_4 - e$, $C_4 \vee K_1$ and $C_4 \vee 2K_1$ are excluded in the following discussions.

Definition 1. A triangle in a hanging of a line graph is an $L\triangle$ $(M\triangle, R\triangle)$ if it is an anti-Gallai triangle and it is induced by two vertices in one level and one vertex from the lower (same, higher) level of the ordering.

We can see that any anti-Gallai triangle is either an $L\triangle$, $M\triangle$ or $R\triangle$ in a hanging of L(G)

Figure 3. A graph and the hanging of its line graph by vertex f. The dotted lines show an $L\triangle fgh, R\triangle hij$ and an $M\triangle abc$

Theorem 3.2. Let uv be an edge in any level of a hanging of $H \cong L(G)$ by an arbitrary vertex in H, then

- 1. uv cannot be an edge of an $L\triangle$ in any level L_i for i > 1.
- 2. *uv cannot be an edge of an* $M \triangle$ *in* L_1 .
- 3. If uv is an edge in an $M\triangle$ then uv cannot be an edge of an $L\triangle$.
- 4. If uv is an edge in an $M\triangle$ then uv cannot be an edge of an $R\triangle$.
- 5. If uv is an edge in an $L\triangle$ then uv cannot be an edge of an $R\triangle$.
- 6. uv can be an edge of at most one $L\triangle$ or $R\triangle$ or $M\triangle$.

Proof.

- 1. Let uv be an edge in an L_i for i > 1 and let it belong to an $L \triangle uvx$, where $x \in L_{i-1}$. Let w be the vertex in L_{i-2} which is adjacent to x. Then < w, x, u, v > induces a subgraph which is neither a $K_4 e$ nor disconnected, which is a contradiction.
- 2. Let uvx be an $M\triangle$ in L_1 and z be the vertex, from where the hanging of H being considered. Then $d(z) \geq 3$ and (z, x, u, v) induce a K_4 and hence uvx cannot be an anti-Gallai triangle, which is a contradiction.
- 3. Let uv be an edge in $L\Delta$ then uv is in L_1 by (1) and hence uv cannot be an edge of an $M\Delta$ by (2).

From (3) and Theorem 3.1, it follows that anti-Gallai triangles of a graph cannot share an edge in a line graph. Hence the proof of (4) to (6) follows.

Now, Lemma 3.3 follows.

Lemma 3.3. Exactly one triangle of a $K_4 - e$ in a line graph is an anti-Gallai triangle.

From Theorems 2.2 and 3.1, we have the following propositions.

Proposition 3.1. The edge uv is in an $L\triangle$, with both its ends in the same level of a hanging of a line graph if and only if it satisfies the following conditions

- 1. Each vertex in L_1 is either adjacent to u or v but not to both.
- 2. Each neighbor of uv in L_2 is a common neighbor of uv.

Proposition 3.2. The edge uv is in an $M\triangle$ in a hanging of a line graph if and only if it satisfies the following conditions

- 1. The edge uv has a common neighbor x in L_i which is not adjacent to the other common neighbors of uv in L_{i-1} and L_i .
- 2. Either u or v is adjacent to each neighbor of x.
- 3. Each non neighbor of x is either a common neighbor of uv or not a neighbor of uv.

Proposition 3.3. The edge uv is in an $R\triangle$ with both its ends in the i^{th} level of a hanging of a line graph if and only if it satisfies the following conditions

- 1. The edge uv has exactly one common neighbor x in L_{i+1} .
- 2. The vertex x is an ending vertex.
- 3. Either u or v is adjacent to each neighbor of x.
- 4. Each non neighbor of x in $L_{i-1} \cup L_i$ is either a common neighbor of uv or not a neighbor of uv.

4. Partitioning the edges of a line graph

We now provide an algorithm to partition the edge set of a line graph into edge sets of its Gallai and anti-Gallai graphs. The following three tests checks whether an edge $uv \in L_i$ belongs to an $L\triangle, M\triangle$ or $R\triangle$.

Algorithm 1. $L\triangle$ *test*

- 1. If $i \neq 1$ go to step 7.
- 2. Find N(u) and N(v).
- 3. If $N_{L_i}(u) \cup N_{L_i}(v) \neq L_i$ then go to step 7.
- 4. If $N_{L_i}(u) \cap N_{L_i}(v) \neq \emptyset$ then go to step 7.
- 5. If $N_{L_{i+1}}(u) \neq N_{L_{i+1}}(v)$ then go to step 7.
- 6. Triangle uvz is an $L\triangle$.
- 7. The edge uv is not in $L\triangle$.

Algorithm 2. $M\triangle$ *test*

- 1. If i = 1 go to step 9.
- 2. Find the set C of common neighbors w_i of uv in L_i . If $C = \emptyset$, go to step 9.
- 3. Find the set B of common neighbors x_j of uv in L_{i-1} and L_{i+1} .
- 4. For each $x_j \in B$, delete the members of the set $N_C(x_j)$ from C. If $C = \emptyset$ go to step 9.
- 5. For each w_j , if $|N_C[w_j]| > 1$, delete the members of the set $N_C[w_j]$. If $|C| \neq 1$ go to step 9.
- 6. Find the set N(uv) in H.
- 7. If $|N_C(y_j)| = 1$, for each $y_j \in N(uv) \setminus (B \cup C)$, go to step 8. Else go to step 9.
- 8. Triangle uvx is an $M\triangle$.
- 9. The edge uv is not in $M\triangle$.

Algorithm 3. $R\triangle$ *test*

- 1. Find the set C_R of common neighbors of uv in L_{i+1} .
- 2. If $|C_R| \neq 1$ go to step 7. Else choose the common neighbor of uv in L_{i+1} as x.
- 3. If the vertex x is not an ending vertex, go to step 7.

- 4. Either u or v is adjacent to each neighbor of x. Else go to step 7.
- 5. Each non neighbor of x is either a common neighbor of uv or not a neighbor of uv. Else go to step 7.
- 6. Triangle uvx is an $R\triangle$.
- 7. The edge uv is not in $R\triangle$.

Given a line graph $H \cong L(G)$, obtain a hanging h_z by an arbitrary vertex z. Consider all the edges starting from a vertex u in L_1 . For each edge of the form uv for some $v \in L_1$, apply tests 1, 2 and 3 one by one. Choose another edge whenever an anti-Gallai triangle is found or when all the tests fail. When all the edges in a level are considered, go to the next level and repeat the procedure. This algorithm ends when all the edges in the last level of the hanging are considered and uses a time complexity of O(m)

We now observe that in a line graph L(G), any edge that is in the edge set of antiGal(G) belongs to some anti-Gallai triangle. Hence the set of all the edges of the anti-Gallai triangles gives the edge set of antiGal(G) and the remaining edges of the L(G) corresponds to the edge set of Gal(G).

5. An algorithm to find the root graph of a line graph

An optimal algorithm to recognize a line graph and out put its root graph can be seen in [14], the time complexity of which is O(n)+m. Using the above edge partition, an algorithm, which uses a time complexity of O(m)+O(n), is provided to find the root graph of a line graph H. The same algorithm can be used as a recognition algorithm for line graphs. For this, applying the above three tests for the edges in an arbitrary graph, we call a triangle type I if it belongs to the category of anti-Gallai triangles and type II otherwise.

Algorithm 4. Root graph of a line graph

Consider a connected graph H=(V,E) with |V|=n, |E|=m and its hanging h_z , by an arbitrary vertex z.

Let $M=\{z,u\}$, where u is a neighbor of z. Let G be a path on three vertices with $V(G)=\{\{z\},\{z,u\},\{u\}\}\}$ and $E(G)=\{(\{z\},\{z,u\}),(\{z,u\},\{u\})\}$. Here the labels of vertices of G are represented as sets which can be re-labeled, in the steps of the following algorithm, using set operations.

- 1. Choose a vertex v from $V(H) \setminus M$ with $N_M(v) \neq \emptyset$.
- 2. If v induces a clique in $N_M(v)$ and does not induce a type I triangle go to step 3. Else go to step 4.
- 3. Make $V(G) = V(G) \cup \{v\}$, and join $\{v\}$ with a vertex $C \in V(G)$, where $C = N_M(v)$, and make $M = M \cup \{v\}$ and $C = C \cup \{v\}$. If no such vertex C exists, go to step 4.

4. Find two vertices A and B in V(G) such that $A \cup B = N_M(v)$ and make $M = M \cup \{v\}$, $A = A \cup \{v\}$ and $B = B \cup \{v\}$. Go to step 1.

The algorithm ends whenever M = V(H) or there does not exist C or A and B as required. Here the graph G represents the root graph of the line graph H and in the latter case it can be concluded that the graph H is not a line graph of any graph.

The correctness of the algorithm can be verified with the help of the following theorem due to Krausz [12].

Theorem 5.1. A graph H is a line graph if and only if it has an edge clique cover \mathcal{E} such that both the following conditions hold:

- 1. Every vertex of H is in exactly two members of \mathcal{E} .
- 2. Every edge of H is in exactly one member of \mathcal{E} .

Since the vertex labels of G are represented as sets, a vertex in $\langle M \rangle$ is an element of some vertex label (set), of G. Here the elements of each vertex label in V(G) induce a clique in $\langle M \rangle$ of H, since x, y are in a vertex label of G if and only if x and y are adjacent in < M > of H. Now from the construction of G, each vertex of < M > is an element of exactly two vertex labels of G and also any adjacent vertices in < M > belong to a vertex label of G. Now V(G) gives an edge clique cover of < M > which satisfies the two conditions given in Krausz's theorem. Hence the algorithm obtains a graph G with $L(G) \cong H$ if and only if M = V(H).

We now provide the difference between our algorithm and the algorithm in [14].

Given a graph H, the algorithm in [14] assumes that H is a line graph and defines a graph Gsuch that H is necessarily the line graph of G. A comparison of L(G) and H is then made to check whether the given graph is actually a line graph. The algorithm starts with two adjacent basic nodes, labeled 1-2 and 2-3, and labels the vertices in H, on the go, depending on their adjacency. The algorithm proceeds to determine all connections in G corresponding to a clique, containing the basic nodes in H, simultaneously finding an anti-Gallai triangle $\{1-2, 2-3, 1-3\}$, if it exists. In each step, the cliques sharing the vertices, which are already worked out, are considered and the algorithm finally outputs a labeled graph G.

In our algorithm, the types of triangles are found using the first three algorithms, the time complexity of which is calculated as follows. We can see that a hanging of the graph H can be obtained in O(m+n) steps. In each of the algorithms 1, 2 and 3 only a subset of E(H) are considered (as edges between the levels are not included) and the algorithm 4, which assumes that algorithms 1, 2 and 3 are already done, finishes in O(n) steps. Hence using these algorithms the root graph of a line graph can be obtained in O(m) + O(n) steps. It can be noted, as a consequence of Theorem 3.1, that irrespective of the starting set M of nodes, any pre-labeled line graph H with more than four vertices gives a uniquely labeled root graph G.

6. Root graphs of diameter-maximal line graphs

A graph G is diameter-maximal [7], if for any edge $e \in E(\overline{G})$, d(G + e) < d(G).

Theorem 6.1. [7] A connected graph G is diameter-maximal if and only if

- 1. G has a unique pair of vertices u and v such that d(u, v) = d(G).
- 2. The set of nodes at distance k from u induce a complete sub graph.
- 3. Every node at distance k from u is adjacent to every node at distance k + 1 from u.

Lemma 6.1. Let G be a diameter-maximal line graph and u, v be two vertices of G with d(u, v) = d(G). Let $L^* = (|L_0|, |L_1|, \ldots, |L_d|)$ be the sequence generated from the hanging h_u . Then, $|L_i| \leq 2$ for i = 0, 1, ..., d.

Proof. Clearly $|L_0| = |L_d| = 1$ in L^* . If possible, let u, v and w be three vertices in L_i for some i for 0 < i < d. By Theorem 6.1, $< u, v, w > \cong K_3$ and there exist vertices x in L_{i-1} and y in L_{i+1} such that u, v and w are adjacent to both x and y. But, then, $< x, u, v, w, y > \cong F_3$ which is a contradiction.

A sequence S is forbidden in L^* if the consecutive terms of S do not appear consecutively in L^* .

Theorem 6.2. For every $d \geq 3$, there exists three diameter-maximal line graphs with diameter d.

Proof. First, we show that the sequence $(a_1, a_2, 2, a_3, a_4)$, where $a_i \in \{1, 2\}$, is forbidden in L^* . For, assuming the contrary, let $|L_i| = 2$ for some $i, 2 \le i \le d-2$, and $L_i = \{v_1, v_2\}$. Let v_3, v_4, v_5 and v_6 be arbitrary vertices in L_j , for j = i-2, i-1, i+1 and i+2 respectively. But $\langle v_1, \ldots, v_6 \rangle \cong F_4$ which is a contradiction.

Applying the same argument, we see that the sequences $(a_1, a_2, 2, 2)$, $(2, 2, a_1, a_2)$ and (2, 2, 2) are also forbidden in L^* , so that the integer 2 appears at most twice in L^* and hence either (i) $|L_1| = |L_{d-1}| = 2$, (ii) $|L_1| = 2$ or (iii) all the entries of L^* are 1. Note that the case when L^* has $|L_{d-1}| = 2$ is not considered, as it is similar to (ii). Hence there are only three possible sequences of L^* when $d \geq 3$. As the three sequences are different and the pair (u, v) in Theorem 6.1 is unique, there exist exactly three diameter-maximal line graphs.

Corollary 6.1. The root graphs of diameter-maximal line graphs with diameter d are of the form G in Table 1.

Diameter of $L(G)$	d=1	d=2	$d \ge 3$
	0	OOO	$0 \cdot \cdot \cdot \cdot \cdot \cdot d + 1$
G			<i>d</i> − 1

Table 1. Graph G, for Corollary 6.1

7. Root graphs of DHL graphs

A graph G is distance-hereditary if for any connected induced subgraph H, $d_H(u,v) = d_G(u,v)$, for any $u,v \in V(H)$. A detailed study can be seen in [5]. A graph G is chordal if every cycle of length at least four in G has an edge(chord) joining two non-adjacent vertices of the cycle [4]. A graph is Ptolemaic if it is both distance-hereditary and chordal [11].

In this section, the family of root graphs of distance-hereditary line (DHL) graphs is obtained. The root graphs of chordal and Ptolemaic graphs are also discussed.

Theorem 7.1. [5] Let G be a connected graph. Then G is distance-hereditary if and only if the graphs of Fig 4 and the cycles C_n with $n \ge 5$ are forbidden subgraphs of G.

Figure 4. The graphs for Theorem 7.1: house, domino and gem graphs

Theorem 7.2. [11] Let G be a graph. The following conditions are equivalent

- 1. G is a Ptolemaic graph
- 2. G is distance-hereditary and chordal
- 3. G is chordal and does not contain an induced gem

A vertex v is simplicial if N(v) is a clique. The ordering $\{v_1, \ldots, v_n\}$ of the vertices of H is a perfect elimination ordering if, for all $i \in \{1, \ldots, n\}$, the vertex v_i is simplicial in $H_i = \langle v_i, \ldots, v_n \rangle$.

Theorem 7.3. [9]Let G be a graph. The following statements are equivalent:

- 1. G is a chordal graph.
- 2. G has a perfect elimination ordering. Moreover, any simplicial vertex can start a perfect elimination ordering.

Theorem 7.4. In a DHL graph if a vertex is adjacent to at least one vertex in a C_4 then it must be adjacent to all the vertices of that C_4 and to no other vertices in the graph.

Proof. Let H be a DHL graph which contains a C_4 and let a vertex u be adjacent to at least one vertex of the C_4 . If u is adjacent to exactly one vertex of C_4 then a $K_{1,3}$ is formed in H, which is a contradiction. Let u be adjacent to exactly two vertices of C_4 . Then either a house, when u is adjacent to two adjacent vertices of C_4 , or a $K_{1,3}$, when u adjacent to two non-adjacent vertices of

 C_4 is formed, which is also a contradiction. Since an F_2 is obtained when u is adjacent to three vertices of a C_4 , u must be adjacent to all the four vertices of the C_4 .

Next we show that two adjacent vertices can not be made adjacent to a C_4 in H. For, otherwise each of the two vertices must be adjacent to all the vertices of C_4 and hence induces $C_4 \vee K_2$. But a copy of F_3 is induced in $C_4 \vee K_2$, which is a contradiction. If only one vertex of two adjacent vertices is adjacent to C_4 , a $K_{1,3}$ is induced in H which is also a contradiction.

Corollary 7.1. A DHL graph contains at most one C_4 .

Corollary 7.2. The root graphs of DHL graphs which contain a C_4 are K_4 , $K_4 - e$ and C_4 .

Proof. The proof is complete as we see from Corollary 7.1 that the only DHL graphs which contain a C_4 are $C_4 \vee 2K_1$, $C_4 \vee K_1$ and itself.

As there are only three DHL graphs containing a C_4 , we restrict our discussion in the following sections to DHL graphs not containing C_4 's.

If H is a DHL graph containing no anti-Gallai triangle then its root graph contains no triangles. Also, a DHL graph is C_n -free, $n \geq 5$. Now, together with Corollary 7.2, we have the following result.

Theorem 7.5. Let $H \not\cong C_4$ be a DHL graph not containing an anti-Gallai triangle, then H is a line graph of a tree.

Lemma 7.1. An anti-Gallai triangle in a DHL graph has a vertex of degree two.

Proof. Let uvx be an anti-Gallai triangle in a DHL graph $H \ncong K_3$. Then uvx is in some $K_4 - e$ in H. Let uvy be a triangle such that $u, x, y, w \cong K_4 - e$. We now show that degree of the vertex x is two. Consider h_x , we just need to show that L_1 contains no vertices other than u and v. For, let w be a vertex in L_1 . Then wx is an edge and, by Theorem 3.1, either u or v is adjacent to w. Then y cannot be adjacent to w as $N(w) \cap \{u, v, x, y\}$ together with w induce $C_4 \vee K_1$. But, $\langle u, v, w, x, y \rangle$ is a gem, a contradiction.

By lemma 7.1, it now follows that each triangle in the root graph of a DHL graph is attached to the graph by sharing at the most one vertex. Let \mathcal{T} be the family of trees. Let \mathcal{T}_{\triangle} be the family of graphs obtained by attaching some triangles to some vertices in a tree T, for each $T \in \mathcal{T}$.

Theorem 7.6. A graph G is a root graph of a C_4 -free DHL graph if and only if $G \in \mathcal{T}_{\triangle}$.

Proof. The proof is by induction on the number of edges in a $T \in \mathcal{T}_{\triangle}$. It can be verified that the root graphs of distance-hereditary graphs of size ≤ 3 are in \mathcal{T}_{\triangle} and hence the theorem is true for all $m \leq 3$.

Let $T \in \mathcal{T}_{\triangle}$ has m edges and T is a root graph of a DHL graph. Let T' be a graph in \mathcal{T}_{\triangle} with $E(T') = E(T') \cup \{e\}$. Since T' must be connected, there can be two cases: either (i) the edge e is added as a pendent edge to T or (ii) the edge e is formed by joining two vertices in T.

Let l_e be the vertex in L(T') corresponding to the edge e in T'. In case(i), since e is a pendant edge in T', l_e is simplicial in L(T'). We can now show that L(T') is gem-free. If possible let a gem

is there in L(T'). Since L(T) is distance-hereditary and C_4 -free, it is chordal. By Theorem 7.2 L(T) is gem-free, l_e must be a vertex in the induced gem. But, $N(l_e)$ is complete so that l_e is one of the degree two vertices in the gem. Now l_e is in a $K_4 - e$. By Lemma 7.1, one of the two triangles in the $K_4 - e$ must be an anti-Gallai triangle. But the triangle containing l_e cannot be so, as e is a pendant edge in T'. But the other triangle has no vertex of degree 2 in the induced gem. This is a contradiction, by Lemma 7.1, to the assumption that L(T') contains a gem.

In case(ii), as T is connected, adding an edge e joining two vertices of T makes a cycle in T'. But $T \in \mathcal{T}_{\triangle}$ is C_n -free, $n \geq 4$, and contains no $K_4 - e$. Hence e joins two pendant vertices of T, forming a triangle and has end vertices of degree two. Therefore in L(T'), the corresponding vertex l_e is in an anti-Gallai triangle and has degree two. It now follows that l_e is simplicial. If L(T') contains a gem, l_e must be one of the degree two vertices in the induced gem. But in this case the anti-Gallai triangle containing l_e do not satisfy Theorem 3.1 with the other vertex of degree two in the induced gem, which is again a contradiction.

In both the cases we have a one-vertex extension L(T') of a gem-free chordal graph L(T) and hence L(T') is a DHL graph.

Corollary 7.3. A graph L(G) is Ptolemaic if and only if $G \in \mathcal{T}_{\triangle}$

Corollary 7.4. Let $\mathcal{T}^c_{\triangle}$ be the family of graphs obtained by attaching some triangles to some vertices in a tree T and identifying each edge of T by an edge of at most one triangle, for each $T \in \mathcal{T}$. Then L(G) is a chordal graph if and only if $G \in \mathcal{T}^c_{\triangle}$

Acknowledgment: The authors thank the referee for some suggestions towards the improvement of the paper.

References

- [1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, *The design and analysis of computer algorithms*, Addison Wesley, (1976).
- [2] P. Anand, et al., On the hardness of recognizing triangular line graphs, *Discrete Math.* **312** (2012), 2627–2638.
- [3] L.S. Aparna, S.B. Rao and A. Vijayakumar, Gallai and anti-Gallai graphs of a graph, *Math. Bohem.* **132** (2007), 43–54.
- [4] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, second edition, Heidelberg: Springer (2012).
- [5] H.J. Bandelt and H.M. Mulder, Distance-hereditary graphs, *J. Combin. Theory Ser.* **B 41** (1986), 182–208.
- [6] L.W. Beineke, On derived graphs and digraphs, *Beitrage zur Graphentheorie*, Leipzig (1968), 17–23.
- [7] F. Buckley and F. Harary, *Distance in Graphs*, Addison-Wesley, Redwood City, CA (1990).

- [8] A. D'Atri and M. Moscarini, Distance hereditary graphs, Steiner trees, and connected domination, SIAM J. Comput. 17 (1988), 521–538.
- [9] D.R. Fulkerson and O.A. Gross, Incidence matrices and interval graphs, *Pacific J. Math.* 15 (1965), 835–855.
- [10] T. Gallai, Transitiv Orientierbare Graphen, Acta math. Acad. Sci. Hung. 18 (1967), 25–66.
- [11] E. Howorka, A characterization of distance-hereditary graphs, Quart. J. Math. Oxford. Ser. **28** (1977), 417–420.
- [12] J. Krausz, Démonstration nouvelle d'une théorème de Whitney sur les réseaux, Mat. Fiz. Lapok **50** (1943), 75–85.
- [13] V.B. Le, Gallai graphs and anti-Gallai graphs, Discrete Math. 159 (1996), 179–189.
- [14] P.G.H. Lehot, An optimal algorithm to detect a line graph and output its root graph, J. ACM **21** (1974), 569–575.
- [15] L. Sun, Two classes of perfect graphs, J. Combin. Theory Ser. B 53 (1991), 273–292.
- [16] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932), 150-168.