Advancements in Feature Engineering for Enhanced Threat Detection in Cybersecurity

Sandeep Pochu ¹, Senior DevOps Engineer,psandeepaws@gmail.com

Srikanth Reddy Kathram 2, Sr. Technical Project Manager, Solware IT Technologies, United States, skathram@solwareittech.com

ARTICLEINFO

Keywords: *Hybrid Testing* Automation, Quality *Assurance (QA), Testing* Strategy, QA Evolution

Received: 01, November Revised: 23, November Accepted: 27, December

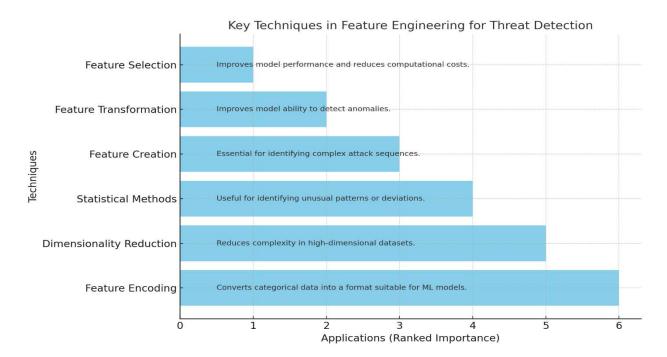
ABSTRACT

Feature engineering is an essential aspect of Frameworks, Software Testing, threat detection in cybersecurity, particularly when utilizing machine learning models to identify potential threats. In the article "Feature Engineering for Effective Threat Detection" by Parameshwar Reddy Kothamali, Subrata Banik, and Siddhartha Varma Nadimpalli, the authors discuss how strategic feature engineering can improve the performance of threat detection models by enhancing accuracy, reducing false positives, and providing actionable insights for cybersecurity professionals. This paper explores feature techniques such as selection, transformation, and creation, emphasizing their role in improving model performance. The authors also highlight the integration of domain knowledge in feature engineering and its relevance in handling sophisticated cyber threats.

Introduction

As cyber threats become more advanced, traditional detection methods often fail to effectively address new risks. Machine learning models have emerged as powerful tools for threat detection, but their performance is heavily influenced by the quality of the features used in the models. The paper "Feature Engineering for Effective Threat Detection" delves into the importance of feature engineering in cybersecurity, focusing on how selecting, transforming, and creating features can significantly impact threat detection models. The authors emphasize that a deep understanding of data, along with the

Sandeep, Srikanth


integration of domain knowledge, is crucial to enhance detection accuracy and reduce false positives.

Feature engineering involves several key steps, including selecting relevant features from raw data, transforming these features to improve model performance, and creating new features that better capture underlying attack patterns. Moreover, the paper discusses emerging trends in the field, such as the application of advanced machine learning techniques to address the evolving nature of cyber threats.

Analysis

Table: Key Techniques in Feature Engineering for Threat Detection

Technique	Description	Application
Feature Selection	The process of identifying and retaining the most relevant features while discarding irrelevant ones.	Improves model performance and reduces computational costs.
Feature Transformation	Modifying features to better capture patterns in data, such as normalization, scaling, or encoding.	Improves model ability to detect anomalies.
Feature Creation	Generating new features from existing data, such as interaction terms or temporal patterns, to improve model identification of attack patterns.	Essential for identifying complex attack sequences.
Statistical Methods	Techniques like mean, variance, and skewness to summarize and interpret data.	Useful for identifying unusual patterns or deviations.
Dimensionality Reduction	Techniques like PCA and t-SNE to reduce the number of features while preserving key information.	Reduces complexity in high-dimensional datasets.
Feature Encoding	Methods such as one-hot encoding, label encoding, or ordinal encoding to convert categorical data into numerical formats.	· ·

Here is a horizontal bar chart representing the key techniques in feature engineering for threat detection. Each bar corresponds to a technique, and its associated application is annotated alongside for clarity.

Integration of Domain Knowledge

Incorporating domain knowledge into feature engineering is a significant factor in improving the effectiveness of threat detection models. Security experts can engineer features based on known attack vectors or utilize threat intelligence feeds to create custom features. These features allow detection systems to respond faster and more accurately to emerging threats.

Case Studies and Real-World Applications

Several case studies show the impact of feature engineering on the performance of threat detection models. By strategically selecting and transforming features, models have been able to detect advanced persistent threats and zero-day vulnerabilities more accurately. Additionally, the integration of real-time threat intelligence has significantly reduced false positive rates, enhancing overall system efficiency.

Feature Engineering for Threat Detection:

Table: Challenges and Opportunities in Feature Engineering for Threat Detection

Challenge	Description	Opportunity
Data Quality and Availability	Incomplete, noisy, or unstructured data can hinder effective feature engineering.	Leveraging data augmentation and cleaning techniques can improve data quality and make features more reliable.
High Dimensionality	Large datasets with many features can lead to computational inefficiencies and overfitting.	Dimensionality reduction methods, like PCA, can reduce complexity while retaining essential information.
Evolving Threat Landscape	The continuous emergence of new attack techniques requires models to adapt quickly to new data types and feature sets.	Continuous learning and real- time data integration can help models adapt to emerging threats more efficiently.
Domain Expertise	Lack of deep domain knowledge can lead to missing key features specific to certain attack vectors or industry-specific threats.	Collaboration between cybersecurity experts and data scientists can ensure that the most relevant and discriminative features are engineered.
False Positives and Alert Fatigue	A high volume of false positives can overwhelm security teams, leading to reduced effectiveness in threat response.	Improved feature selection and transformation techniques can help reduce false positives and improve actionable insights.
Real-Time Processing Requirements	Many threat detection systems need to process data in real-time, which requires optimized feature extraction to meet speed and efficiency standards.	Implementing optimized algorithms and feature extraction pipelines can help meet real-time processing demands without compromising accuracy.

This table adds a layer of depth to the paper by outlining common challenges in feature engineering for threat detection, alongside potential opportunities for improving those areas.

Conclusion

Effective feature engineering is vital for improving the performance of threat detection models in cybersecurity. The paper by Kothamali, Banik, and Nadimpalli outlines key techniques and methodologies that can enhance the accuracy and efficiency of machine learning models. As cyber threats continue to evolve, the ability to adapt feature engineering strategies will remain crucial for the success of threat detection systems. By integrating domain knowledge and applying advanced techniques, security professionals can improve detection capabilities and reduce the risks posed by sophisticated attacks.

References

- 1. Kothamali, P. R., Dandyala, S. S. M., & Kumar Karne, V. (2019). Leveraging edge AI for enhanced real-time processing in autonomous vehicles. *International Journal of Advanced Engineering Technologies and Innovations*, 1(3), 19-40. https://ijaeti.com/index.php/Journal/article/view/467
- 2. Kothamali, P. R., & Banik, S. (2020). The Future of Threat Detection with ML. *International Journal of Advanced Engineering Technologies and Innovations*, 1(2), 133-152.
- 3. Dandyala, S. S. M., kumar Karne, V., & Kothamali, P. R. (2020). Predictive Maintenance in Industrial IoT: Harnessing the Power of AI. *International Journal of Advanced Engineering Technologies and Innovations*, 1(4), 1-21. https://ijaeti.com/index.php/Journal/article/view/468
- 4. Kothamali, P. R., Banik, S., & Nadimpalli, S. V. (2020). Challenges in Applying ML to Cybersecurity. Revista de Inteligencia Artificial en Medicina, 11(1), 214-256.
- 5. Kothamali, P. R., & Banik, S. (2021). Data Sources for Machine Learning Models in Cybersecurity. *Revista de Inteligencia Artificial en Medicina*, 12(1), 358-383.
- 6. Kothamali, P. R., & Banik, S. (2022). Limitations of Signature-Based Threat Detection. *Revista de Inteligencia Artificial en Medicina*, 13(1), 381-391.
- 7. Kothamali, P. R., Mandaloju, N., & Dandyala, S. S. M. (2022). Optimizing Resource Management in Smart Cities with AI. *Unique Endeavor in Business & Social Sciences*, 1(1), 174-191. https://unbss.com/index.php/unbss/article/view/54

- 8. Munagandla, V. B., Dandyala, S. S. V., & Vadde, B. C. (2019). Big Data Analytics: Transforming the Healthcare Industry. *International Journal of Advanced Engineering Technologies and Innovations*, 1(2), 294-313.
- 9. Munagandla, V. B., Vadde, B. C., & Dandyala, S. S. V. (2020). Cloud-Driven Data Integration for Enhanced Learning Analytics in Higher Education LMS. *Revista de Inteligencia Artificial en Medicina*, 11(1), 279-299.
- 10. Vadde, B. C., & Munagandla, V. B. (2022). AI-Driven Automation in DevOps: Enhancing Continuous Integration and Deployment. *International Journal of Advanced Engineering Technologies and Innovations*, 1(3), 183-193.
- 11. Munagandla, V. B., Dandyala, S. S. V., & Vadde, B. C. (2022). The Future of Data Analytics: Trends, Challenges, and Opportunities. *Revista de Inteligencia Artificial en Medicina*, 13(1), 421-442.
- 12. Kothamali, P. R., Banik, S., & Nadimpalli, S. V. (2023). Recent Advancements in Machine Learning for Cybersecurity. *Unique Endeavor in Business & Social Sciences*, 2(1), 142-157.
- 13. Kothamali, P. R., Srinivas, N., & Mandaloju, N. (2023). Smart Grid Energy Management: The Role of AI in Efficiency and Stability. *International Journal of Advanced Engineering Technologies and Innovations*, 1(03), 332-352. https://ijaeti.com/index.php/Journal/article/view/475
- 14. Kothamali, P. R., Mandaloju, N., Srinivas, N., & Dandyala, S. S. M. (2023). Ensuring Supply Chain Security and Transparency with Blockchain and AI. *International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence*, 14(1), 165-194. https://ijmlrcai.com/index.php/Journal/article/view/53
- 15. Kothamali, P. R., Srinivas, N., Mandaloju, N., & Karne, V. K. (2023, December 28). Smart Healthcare: Enhancing Remote Patient Monitoring with AI and IoT. https://redcrevistas.com/index.php/Revista/article/view/43
- 16. Munagandla, V. B., Dandyala, S. S. V., Vadde, B. C., & Dandyala, S. S. M. (2023). Leveraging Cloud Data Integration for Enhanced Learning Analytics in Higher Education. *International Journal of Advanced Engineering Technologies and Innovations*, 1(03), 434-450.
- 17. Vadde, B. C., & Munagandla, V. B. (2023). Security-First DevOps: Integrating AI for Real-Time Threat Detection in CI/CD Pipelines. *International Journal of Advanced Engineering Technologies and Innovations*, 1(03), 423-433.
- 18. Munagandla, V. B., Dandyala, S. S. V., Vadde, B. C., & Dandyala, S. S. M. (2023). Enhancing Data Quality and Governance Through Cloud Data Integration. *International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence*, 14(1), 480-496.
- 19. Munagandla, V. B., Dandyala, S. S. V., Vadde, B. C., & Dandyala, S. S. M. (2023). Cloud-Based Real-Time Data Integration for Scalable Pooled Testing in Pandemic Response. *Revista de Inteligencia Artificial en Medicina*, 14(1), 485-504.

- 20. Vadde, B. C., & Munagandla, V. B. (2023). Integrating AI-Driven Continuous Testing in DevOps for Enhanced Software Quality. *Revista de Inteligencia Artificial en Medicina*, 14(1), 505-513.
- 21. Kothamali, P. R., Banik, S., Mandaloju, N., & Srinivas, N. (2024). Real-Time Translation in Multilingual Education: Leveraging NLP for Inclusive Learning. *Journal Environmental Sciences And Technology*, 3(1), 992-116.
- 22. Banik, S., Kothamali, P. R., & Dandyala, S. S. M. (2024). Strengthening Cybersecurity in Edge Computing with Machine Learning. *Revista de Inteligencia Artificial en Medicina*, 15(1), 332-364.
- 23. Kothamali, P. R., Karne, V. K., & Dandyala, S. S. M. (2024, July). Integrating AI and Machine Learning in Quality Assurance for Automation Engineering. In *International Journal for Research Publication and Seminar* (Vol. 15, No. 3, pp. 93-102). https://doi.org/10.36676/jrps.v15.i3.1445
- 24. Kothamali, P. R., Banik, S., Dandyala, S. S. M., & kumar Karne, V. (2024). Advancing Telemedicine and Healthcare Systems with AI and Machine Learning. *International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence*, 15(1), 177-207. https://ijmlrcai.com/index.php/Journal/article/view/54
- 25. Vadde, B. C., & Munagandla, V. B. (2024). DevOps in the Age of Machine Learning: Bridging the Gap Between Development and Data Science. *International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence*, 15(1), 530-544.
- 26. Vadde, B. C., & Munagandla, V. B. (2024). Cloud-Native DevOps: Leveraging Microservices and Kubernetes for Scalable Infrastructure. *International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence*, 15(1), 545-554.
- 27. Munagandla, V. B., Dandyala, S. S. V., & Vadde, B. C. (2024). Improving Educational Outcomes Through Data-Driven Decision-Making. *International Journal of Advanced Engineering Technologies and Innovations*, 1(3), 698-718.
- 28. Munagandla, V. B., Dandyala, S. S. V., & Vadde, B. C. (2024). AI-Powered Cloud-Based Epidemic Surveillance System: A Framework for Early Detection. *Revista de Inteligencia Artificial en Medicina*, 15(1), 673-690.
- 29. Munagandla, V. B., Dandyala, S. S. V., & Vadde, B. C. (2024). AI-Driven Optimization of Research Proposal Systems in Higher Education. *Revista de Inteligencia Artificial en Medicina*, 15(1), 650-672.
- 30. Tamraparani, Venugopal. (2024). Al and Gen AI application for enterprise modernization from complex monolithic to distributed computing in FinTech and HealthTech organizations. Journal of Artificial Intelligence Machine Learning and Data Science. 2. 1611-1617. 10.51219/JAIMLD/venugopal-tamraparani/361.
- 31. Tamraparani, Venugopal. (2022). Ethical Implications of Implementing AI in Wealth Management for Personalized Investment Strategies.

- International Journal of Science and Research (IJSR). 11. 1625-1633. 10.21275/SR220309091129.
- 32. Tamraparani, V., & Islam, M. A. (2021). Improving Accuracy of Fraud Detection Models in Health Insurance Claims Using Deep Learning/AI. *International Journal of Advanced Engineering Technologies and Innovations*, 1(4).
- 33. Tamraparani, V. (2019). DataDriven Strategies for Reducing Employee Health Insurance Costs: A Collaborative Approach with Carriers and Brokers. *International Journal of Advanced Engineering Technologies and Innovations*, 1(1), 110127.
- 34. Tamraparani, V. (2021). Cloud and Data Transformation in Banking: Managing Middle and Back Office Operations Using Snowflake and Databricks. *Journal of Computational Analysis and Applications*, 29(4).
- 35. Tamraparani, V. (2020). Automating Invoice Processing in Fund Management: Insights from RPA and Data Integration Techniques. *Journal of Computational Analysis and Applications*, 28(6).
- 36. Tamraparani, V. (2019). A Practical Approach to Model Risk Management and Governance in Insurance: A Practitioner's Perspective. *Journal of Computational Analysis and Applications*, 27(7).
- 37. Tamraparani, V., & Islam, M. A. (2023). Enhancing data privacy in healthcare with deep learning models & AI personalization techniques. *International Journal of Advanced Engineering Technologies and Innovations*, 1(01), 397418.
- 38. Tamraparani, V. (2022). Enhancing Cybersecurity and Firm Resilience Through Data Lineage: Best Practices and ML Ops for AutoDetection. *International Journal of Advanced Engineering Technologies and Innovations*, 1(2), 415427.
- 39. Tamraparani, V. (2024). Applying Robotic Process Automation & AI techniques to reduce time to market for medical devices compliance & provisioning. *Revista de Inteligencia Artificial en Medicina*, 15(1).
- 40. Tamraparani, V., & Dalal, A. (2023). Self generating & self healing test automation scripts using AI for automating regulatory & compliance functions in financial institutions. *Revista de Inteligencia Artificial en Medicina*, 14(1), 784-796.
- 41. Tamraparani, V. (2023). Leveraging AI for Fraud Detection in Identity and Access Management: A Focus on Large-Scale Customer Data. *Journal of Computational Analysis and Applications*, 31(4).
- 42. Tamraparani, V., & Dalal, A. (2022). Developing a robust CRM Analytics strategy for Hedge Fund institutions to improve investment diversification. *Unique Endeavor in Business & Social Sciences*, 5(1), 110.
- 43. Tamraparani, V. (2024). Revolutionizing payments infrastructure with AI & ML to enable secure cross border payments. *Journal of Multidisciplinary Research*, 10(02), 49-70.
- 44. Tarafder, M. T. R., Mohiuddin, A. B., Ahmed, N., Shihab, M. A., & Kabir, M. F. (2022). Block chain-Based Solutions for Improved Cloud Data Integrity and Security. *BULLET: Jurnal Multidisiplin Ilmu*, 1(04), 736-748.

- 45. Hossain, M. E., Tarafder, M. T. R., Ahmed, N., Al Noman, A., Sarkar, M. I., & Hossain, Z. (2023). Integrating AI with Edge Computing and Cloud Services for Real-Time Data Processing and Decision Making. *International Journal of Multidisciplinary Sciences and Arts*, 2(4), 252-261.
- 46. Tarafder, M. T. R., Mohiuddin, A. B., Ahmed, N., Shihab, M. A., & Kabir, M. F. (2023). The Role of AI and Machine Learning in Optimizing Cloud Resource Allocation. *International Journal of Multidisciplinary Sciences and Arts*, 2(1), 262-27.
- 47. Ahmed, N., Hossain, M. E., Rishad, S. S. I., Rimi, N. N., & Sarkar, M. I. Server less Architecture: Optimizing Application Scalability and Cost Efficiency in Cloud Computing.. *BULLET: Jurnal Multidisiplin Ilmu*, 1(06), 1366–1380.
- 48. Ahmed, N., Hossain, M. E., Rishad, S. S. I., Mohiuddin, A. B., Sarkar, M. I., & Hossain, Z. Leveraging Reinforcement Learning for Autonomous Cloud Management and Self-Healing Systems. *JURIHUM : Jurnal Inovasi Dan Humaniora*, 1(6), 678–689.
- 49. Hossain, M. E., Kabir, M. F., Al Noman, A., Akter, N., & Hossain, Z. (2022). ENHANCING DATA PRIVACY AND SECURITY IN MULTI CLOUD ENVIRONMENTS. *BULLET: Jurnal Multidisiplin Ilmu*, 1(05), 967-975.
- 50. Dalal, A., & Mahjabeen, F. (2011). Strengthening Cybersecurity Infrastructure in the US and Canada: A Comparative Study of Threat Detection Models. *International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence*, 2(1), 19.
- 51. Dalal, A., & Mahjabeen, F. (2011). Public Key Infrastructure for Enhanced Enterprise Security: Implementation Challenges in the US, Canada, and Japan. *Revista de Inteligencia Artificial en Medicina*, 2(1), 110.
- 52. Dalal, A., & Mahjabeen, F. (2012). Managing Bring Your Own Device (BYOD) Security: A Comparative Study in the US, Australia, and Asia. Revista de Inteligencia Artificial en Medicina, 3(1), 1930.
- 53. Dalal, A., & Mahjabeen, F. (2012). Cloud Storage Security: Balancing Privacy and Security in the US, Canada, EU, and Asia. *Revista de Inteligencia Artificial en Medicina*, 3(1), 19-27.
- 54. Dalal, A., & Mahjabeen, F. (2012). Cybersecurity Challenges and Solutions in SAP ERP Systems: Enhancing Application Security, GRC, and Audit Controls. *Revista de Inteligencia Artificial en Medicina*, 3(1), 1-18.
- 55. Dalal, A., & Mahjabeen, F. (2013). Strengthening SAP and ERP Security for US and European Enterprises: Addressing Emerging Threats in Critical Systems. *International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence*, 4(1), 1-17.
- 56. Dalal, A., & Mahjabeen, F. (2013). Securing Critical Infrastructure: Cybersecurity for Industrial Control Systems in the US, Canada, and the EU. *International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence*, 4(1), 18-28.

- 57. Dalal, A., & Mahjabeen, F. (2014). Enhancing SAP Security in Cloud Environments: Challenges and Solutions. *Revista de Inteligencia Artificial en Medicina*, 5(1), 1-19.
- 58. Dalal, A., & Mahjabeen, F. (2015). Securing Cloud-Based Applications: Addressing the New Wave of Cyber Threats.
- 59. Dalal, A., & Mahjabeen, F. (2015). The Rise of Ransomware: Mitigating Cyber Threats in the US, Canada, Europe, and Australia. *International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence*, 6(1), 21-31.
- 60. Dalal, A., Abdul, S., Kothamali, P. R., & Mahjabeen, F. (2015). Cybersecurity Challenges for the Internet of Things: Securing IoT in the US, Canada, and EU. *International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence*, 6(1), 53-64.
- 61. Dalal, A., Abdul, S., & Mahjabeen, F. (2016). Leveraging Artificial Intelligence for Cyber Threat Intelligence: Perspectives from the US, Canada, and Japan. *Revista de Inteligencia Artificial en Medicina*, 7(1), 1828.
- 62. Dalal, A., Abdul, S., & Mahjabeen, F. (2016). Ensuring ERP Security in Edge Computing Deployments: Challenges and Innovations for SAP Systems. *Revista de Inteligencia Artificial en Medicina*, 7(1), 1-17.
- 63. Dalal, A., Abdul, S., Kothamali, P. R., & Mahjabeen, F. (2017). Integrating Blockchain with ERP Systems: Revolutionizing Data Security and Process Transparency in SAP. *Revista de Inteligencia Artificial en Medicina*, 8(1), 66-77.
- 64. Dalal, A., Abdul, S., & Mahjabeen, F. (2018). Blockchain Applications for Data Integrity and Privacy: A Comparative Analysis in the US, EU, and Asia. *International Journal of Advanced Engineering Technologies and Innovations*, 1(4), 2535.
- 65. Dalal, A., Abdul, S., Mahjabeen, F., & Kothamali, P. R. (2018). Advanced Governance, Risk, and Compliance Strategies for SAP and ERP Systems in the US and Europe: Leveraging Automation and Analytics. *International Journal of Advanced Engineering Technologies and Innovations*, 1(2), 30-43.
- 66. Dalal, A. (2018). Cybersecurity And Artificial Intelligence: How AI Is Being Used in Cybersecurity To Improve Detection And Response To Cyber Threats. *Turkish Journal of Computer and Mathematics Education* (*TURCOMAT*), 9(3), 1416-1423.
- 67. Dalal, A., Abdul, S., & Mahjabeen, F. (2019). Defending Machine Learning Systems: Adversarial Attacks and Robust Defenses in the US and Asia. *International Journal of Advanced Engineering Technologies and Innovations*, 1(1), 102109.
- 68. Dalal, A., Abdul, S., Mahjabeen, F., & Kothamali, P. R. (2019). Leveraging Artificial Intelligence and Machine Learning for Enhanced Application Security. *International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence*, 10(1), 82-99.
- 69. Dalal, A., Abdul, S., & Mahjabeen, F. (2020). AI Powered Threat Hunting in SAP and ERP Environments: Proactive Approaches to Cyber

- Defense. International Journal of Advanced Engineering Technologies and Innovations, 1(2), 95-112.
- 70. Dalal, A., & Paranjape, H. Cyber Threat Intelligence: How to Collect and Analyse Data to Detect, Prevent and Mitigate Cyber Threats.
- 71. Dalal, A., Abdul, S., & Mahjabeen, F. (2021). Quantum Safe Strategies for SAP and ERP Systems: Preparing for the Future of Data Protection. *International Journal of Advanced Engineering Technologies and Innovations*, 1(2), 127141.
- 72. Dalal, A., & Roy, R. (2021). CYBERSECURITY AND PRIVACY: BALANCING SECURITY AND INDIVIDUAL RIGHTS IN THE DIGITAL AGE. JOURNAL OF BASIC SCIENCE AND ENGINEERING, 18(1).
- 73. Muhammad, S., Meerjat, F., Meerjat, A., Dalal, A., & Abdul, S. (2023). Enhancing cybersecurity measures for blockchain: Securing transactions in decentralized systems. *Unique Endeavor in Business & Social Sciences*, 2(1), 120-141.
- 74. Muhammad, S., Meerjat, F., Meerjat, A., Naz, S., & Dalal, A. (2023). Strengthening Mobile Platform Cybersecurity in the United States: Strategies and Innovations. *Revista de Inteligencia Artificial en Medicina*, 14(1), 84-112.
- 75. Muhammad, S., Meerjat, F., Meerjat, A., Naz, S., & Dalal, A. (2024). Enhancing Cybersecurity Measures for Robust Fraud Detection and Prevention in US Online Banking. *International Journal of Advanced Engineering Technologies and Innovations*, 1(3), 510-541.
- 76. Venaik, U., Dalal, A., Mittal, M., Kushwaha, A., & Kumar, L. (2024). NLP Project Report: Textual Emotion-Cause Pair Extraction in Conversations. *Journal of Computational Analysis and Applications*, 33(7).
- 77. Habib, H., & Janae, J. (2024). Breaking Barriers: How AI is Transforming Special Education Classrooms. Bulletin of Engineering Science and Technology, 1(02), 86-108.
- 78. Habib, H., Jelani, S. A. K., Numair, H., & Mubeen, S. (2019). Enhancing Communication Skills: AI Technologies for Students with Speech and Language Needs. Journal of Multidisciplinary Research, 5(01).
- 79. Habib, H. (2015). Awareness about special education in Hyderabad. International Journal of Science and Research (IJSR), 4(5), 1296-1300.
- 80. Habib, H., Jelani, S. A. K., Alizzi, M., & Numair, H. (2020). Personalized Learning Paths: AI Applications in Special Education. Journal of Multidisciplinary Research, 6(01).
- 81. Habib, H., Jelani, S. A. K., Ali, S. S., & Kadari, J. (2023). From Assessment to Empowerment: The Role of AI in Special Education Progress Monitoring. Journal of Multidisciplinary Research, 9(01), 67-98.
- 82. Omolara, J., & Ochieng, J. (2024). Occupational health and safety challenges faced by caregivers and the respective interventions to improve their wellbeing. *International Journal of Innovative Science and Research Technology (IJISRT)*, 9(6), 3225-3251.

- 83. Phiri, A. K., Juba, O. O., Baladaniya, M., Regal, H. Y. A., & Nteziryayo, T. (2024). *Strategies for quality health standards*. Cari Journals USA LLC.
- 84. Juba, O. O., Olumide, A. O., & Azeez, O. (2023). The influence of family involvement on the quality of care for aged adults: A comparative study. *International Journal of Advanced Engineering Technologies and Innovations*, 1(04), 322-349.
- 85. Juba, O. O. (2024). Impact of workplace safety, health, and wellness programs on employee engagement and productivity. *International Journal of Health, Medicine and Nursing Practice*, 6(4), 12-27.
- 86. Juba, O. O., Olumide, B. F., David, J. I., Olumide, A. O., Ochieng, J. O., & Adekunle, K. A. (2024). Integrating mental health support into occupational safety programs: Reducing healthcare costs and improving well-being of healthcare workers post-COVID-19. *Revista de Inteligencia Artificial en Medicina*, 15(1), 365-397.
- 87. Juba, O. O., Olumide, A. F., Idowu David, J., & Adekunle, K. (2024). The role of technology in enhancing domiciliary care: A strategy for reducing healthcare costs and improving safety for aged adults and carers. *Available at SSRN 5023483*.
- 88. Juba, O. O., Lawal, O., David, J. I., & Olumide, B. F. (2023). Developing and assessing care strategies for dementia patients during unsupervised periods: Balancing safety with independence. *International Journal of Advanced Engineering Technologies and Innovations*, 1(04), 322-349.
- 89. Juba, O. O., Olumide, A. O., Ochieng, J. O., & Aburo, N. A. (2022). Evaluating the impact of public policy on the adoption and effectiveness of community-based care for aged adults. *International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence*, 13(1), 65-102.
- 90. RASEL, M., Bommu, R., Shovon, R. B., & Islam, M. A. (2023). Ensuring Data Security in Interoperable EHR Systems: Exploring Blockchain Solutions for Healthcare Integration. International Journal of Advanced Engineering Technologies and Innovations, 1(01), 212-232.
- 91. Rasel, M., Salam, M. A., & Mohammad, A. (2023). Safeguarding Media Integrity: Cybersecurity Strategies for Resilient Broadcast Systems and Combatting Fake News. Unique Endeavor in Business & Social Sciences, 2(1), 72-93.
- 92. RASEL, M., Bommu, R., Shovon, R. B., & Islam, M. A. (2022). Blockchain-Enabled Secure Interoperability: Advancing Electronic Health Records (EHR) Data Exchange. International Journal of Advanced Engineering Technologies and Innovations, 1(2), 193-211.