

How to Cite:

Alshahri, S. S. M., Alanazi, A. T., Kilabi, K. M. H., Almutairi, F. K., Al Salloum, S. A. S., Alnajim, O. A., Aldhahri, A. S., Alzahrani, M. A., Alreshidi, M. S., Alshehri, A. F., Alqahtani, A. O., Alanazi, S. D. & Alsuwailem, A. M. (2024). Cervical Cancer: pathology, clinical records, and nursing contributions. *International Journal of Health Sciences*, 8(S1), 1624–1641. <https://doi.org/10.53730/ijhs.v8nS1.15346>

Cervical Cancer: pathology, clinical records, and nursing contributions

Sultan Saeed Mifrih Alshahri

KSA, National Guard Health Affairs

Abdulkarim Tirad Alanazi

KSA, National Guard Health Affairs

Khalid Mohammed Hamad Kilabi

KSA, National Guard Health Affairs

Faisal Khulaif Almutairi

KSA, National Guard Health Affairs

Saleh Ali Saleh Al Salloum

KSA, National Guard Health Affairs

Osama Abdullatif Alnajim

KSA, National Guard Health Affairs

Abeer Salah Aldhahri

KSA, National Guard Health Affairs

Mohanid Attiah Alzahrani

KSA, National Guard Health Affairs

Mohammad Saud Alreshidi

KSA, National Guard Health Affairs

Ahmed Faris Alshehri

KSA, National Guard Health Affairs

Ayed Obied Alqahtani

KSA, National Guard Health Affairs

Saud Dakhel Alanazi

KSA, National Guard Health Affairs

Abdullah Musaad Alsusailem

King Abdulaziz Medical City, Riyadh National Guard

Abstract---Background: Cervical cancer is a leading cause of cancer-related deaths among women worldwide, with over 600,000 new cases and 350,000 deaths annually. The disease disproportionately affects populations in lower-resource settings, where access to screening and vaccination programs is limited. Human Papillomavirus (HPV) is the primary etiological agent responsible for most cervical cancers. Vaccination and screening efforts, particularly HPV testing, are central to reducing the global burden of cervical cancer. **Aim:** This article aims to explore the pathology, epidemiology, and clinical management of cervical cancer, focusing on the roles of HPV in its development, the importance of vaccination, and advancements in screening technologies. Additionally, the contributions of nursing care in managing patients diagnosed with cervical cancer are discussed. **Methods:** This review synthesizes data from global epidemiological studies, clinical trials, and updated cervical cancer screening guidelines, focusing on HPV testing and vaccination. The article also examines advancements in screening technologies, including dual-stain tests and self-sampling methods, and how they impact early detection. **Results:** HPV infection is responsible for over 95% of cervical cancers, with HPV-16 and HPV-18 being the most prevalent high-risk strains. Vaccination has significantly reduced the incidence of cervical cancer, preventing up to 70% of cases globally. HPV DNA testing has surpassed traditional cytology in screening efficacy, and novel testing approaches, such as dual-stain testing and artificial intelligence, show promise in improving triage and early detection. **Conclusion:** Prevention and early detection are critical in reducing cervical cancer mortality. Vaccination programs and improved screening protocols, especially HPV DNA testing, have revolutionized cervical cancer management. Nurses play a pivotal role in patient education, screening, and supporting patients through diagnosis and treatment. Continued research and global policy efforts are essential to overcoming barriers to cervical cancer prevention, particularly in underserved populations.

Keywords---cervical cancer, HPV, vaccination, screening, nursing care, dual-stain testing, artificial intelligence, epidemiology.

Introduction

Cervical cancer ranks as the fourth most prevalent cancer globally, with over 600,000 new diagnoses and approximately 350,000 related deaths annually [1]. The distribution of this disease burden is uneven, with cancer-related mortality rates ranging from 5.2 deaths per 100,000 individuals in highly developed countries to 12.4 deaths per 100,000 in less developed nations [1].

Epidemiology

Even within developed nations such as the United States (US), significant disparities persist in the incidence and mortality of cervical cancer across various population groups. Hispanic and Black populations in the US experience considerable socioeconomic challenges compared to the White population [2], resulting in barriers to healthcare access and the ability to receive adequate screening and preventive services, which is reflected in US cervical cancer statistics. Among US women, Hispanic women exhibit the highest cervical cancer incidence rates, at 10 per 100,000, followed by American Indian, Alaskan Native, and Black women [3]. Black women also demonstrate the highest mortality rate related to cervical cancer, with 3 deaths per 100,000, compared to 2 per 100,000 in white, non-Hispanic women [3]. This disproportionate burden of disease is evident on both national and global scales [1,4]. The variations in disease distribution are multifactorial, encompassing differing prevalence of risk factors, levels of disease awareness, access to screening, treatment availability, and the implementation of vaccination programs.

Cervical Cancer, Human Papillomavirus (HPV), and Vaccination

Human Papillomavirus (HPV), a sexually transmitted viral infection, has a well-documented causative role in cervical cancer. HPV is the primary etiological agent for cancers of the cervix, vulva, vagina, penis, anus, and oropharynx. The risk factors for cervical cancer closely align with those associated with HPV exposure and persistence. These include multiple sexual partners, early onset of sexual activity, high parity, low socioeconomic status, and tobacco use [5,6]. Several of these risk factors increase the likelihood of HPV exposure, such as multiple sexual partners and early sexual initiation. Others, such as tobacco use and HIV infection, are linked to immune suppression, which may facilitate cervical carcinogenesis [7,8]. It is hypothesized that immune suppression impairs the ability to clear HPV infections, leading to persistent infection and an elevated risk of cervical dysplasia (cervical intraepithelial neoplasia, CIN) lesions [9]. Therefore, the unique interplay between HPV exposure, chronic infection, and a weakened immune response creates a predisposition for cervical cancer development.

HPV is a highly prevalent viral group, with estimates indicating that over 95% of cervical cancers are caused by HPV infection [10,11]. A 2018 global meta-analysis reported an HPV prevalence of 11.7%, with age-specific prevalence peaks at <25 years and ≥45 years of age [12]. The lifetime risk of HPV infection in sexually active women is approximately 80%; however, the majority of infections are cleared by a healthy immune system before persistent cervical dysplasia or neoplasia can occur [9]. More than 200 HPV variants have been identified, with high-risk HPV (HR-HPV) strains being most strongly associated with oropharyngeal and anogenital cancers, and low-risk HPV (LR-HPV) subtypes responsible for cutaneous and anogenital warts [13]. Certain HR-HPV subtypes account for up to 95% of squamous cell cervical cancers, with HPV-16, HPV-18, HPV-31, HPV-33, HPV-35, HPV-39, HPV-45, HPV-51, HPV-52, HPV-56, HPV-58, HPV-59, HPV-68, HPV-73, and HPV-82 identified as the most prevalent [14]. A study revealed that 50.5% of cervical cancers positive for HPV were associated with HPV-16, while 13.1% were positive for HPV-18, indicating that HPV-16 and

HPV-18 are primarily responsible for the majority of cervical cancers, despite the existence of numerous other HR-HPV subtypes [14]. LR-HPV types include HPV-6, HPV-11, HPV-40, HPV-42, HPV-43, and HPV-44, among others [14]. In 2018, the most common HPV subtypes globally were found to be HPV-16, HPV-18, HPV-31, HPV-52, and HPV-59, all of which are associated with cervical cancer and precursor lesions [12,15].

The understanding of the relationship between various HPV subtypes and carcinogenesis has led to the development of targeted vaccines against HR-HPV strains. The first prophylactic HPV vaccine, Gardasil®, was introduced in 2006, initially offering protection against four HPV types (6, 11, 16, and 18) [16]. Since then, several new vaccines have been developed, with six currently licensed HPV vaccines in use internationally, recommended by the World Health Organization (WHO). These include three bivalent vaccines (Cervarix® (GlaxoSmithKline Biologicals, Rixensart, Belgium), Cecolin® (Xiamen Innovax Biotech Co. Ltd., Xiamen, Fujian Province, China), and Walrinvax™ (Walvax Biotechnology Co., Kunming, Yunnan Province, China)), two quadrivalent vaccines (Gardasil® (Merck & Co, Rahway, NJ, USA) and Cervavac® (Serum Institute of India, Pune, India)), and one nonavalent vaccine (Gardasil9® (Merck & Co, Rahway, NJ, USA)). All vaccines provide protection against HR-HPV types 16 and 18, with quadrivalent vaccines also offering protection against types 6 and 11. The nonavalent vaccine additionally protects against HR-HPV types 31, 33, 45, 52, and 58. These vaccines are approved for use in females aged 9 years and older, with certain vaccines also authorized for use in males depending on the product [17]. The introduction of HPV vaccination has been pivotal in the primary prevention of cervical cancer globally, with up to 70% of HPV-related cervical cancers preventable through vaccination. This protection increases to 96.7% with the nonavalent vaccine, which covers a broader range of HR-HPV strains [18,19]. Consequently, vaccination has proven indispensable in the global effort to prevent cervical cancer.

Screening:

Vaccination represents the primary method for cervical cancer prevention, while screening remains critical for secondary prevention. The initial cervical cancer screening test was developed by George Papanicolaou and Herbert Traut, who described it in their 1943 publication *Diagnosis of Uterine Cancer by Vaginal Smear* [20]. Despite numerous advancements since the 1940s, the fundamental approach of the Pap smear, or cervical cytology analysis, remains integral to contemporary screening protocols. In the early 2000s, liquid-based cytology emerged as an alternative and increasingly preferred method for performing Pap smears [21]. This technique's widespread adoption was driven by several advantages, including cost-effectiveness, reduced frequency of unsatisfactory samples, and the ability to integrate high-risk HPV (HR-HPV) co-testing within the same sample [22,23]. The implementation of cytology-based screening has significantly decreased cervical cancer incidence, aided by escalating interventions such as colposcopy, loop electrosurgical excision procedure (LEEP), or cold knife conization when abnormal Pap smear results are obtained. Although a single Pap smear's sensitivity for detecting high-grade lesions (such as CIN2/CIN3) has been estimated at 50–55%, it remains a well-tolerated and swift

procedure with benefits that often outweigh its risks, contributing to its overall success as a screening tool when coupled with appropriate treatment [24,25]. In resource-limited or less conventional settings, other cervical cancer screening modalities, such as visual inspection with acetic acid (VIA) and visual inspection with Lugol's iodine (VILI), have been employed. VIA has demonstrated variable sensitivity, often comparable to or exceeding that of Pap smears, though it has relatively low specificity, leading to an increased rate of unnecessary referrals for further evaluation [26,27,28,29]. VILI is less widely studied but appears to be another reasonable option for screening in low-resource regions lacking access to cytology-based or HPV testing methods [29].

The introduction of HPV testing has strengthened cervical cancer screening protocols. Randomized controlled trials have demonstrated that HPV testing is more sensitive than cytology alone for detecting precancerous lesions and can extend the intervals between screenings in individuals at low risk [30,31,32,33]. Further evidence indicates that HPV testing provides 60–70% greater protection against cervical cancer compared to cytology alone, owing to its enhanced accuracy in assessing the risk of precancerous or cancerous lesions and facilitating timely interventions [34]. Consequently, the shift in cervical cancer screening has moved toward initial HPV testing, as opposed to relying solely on cytology in recent years. Several methods exist for testing HPV infection, including DNA, RNA, protein, or epigenetic biomarker testing [35]. The most widely used methods are DNA and mRNA testing, both of which have demonstrated sensitivities exceeding 0.90, making them suitable for screening applications [36,37,38]. These tests require endocervical or cervical samples, typically collected by trained healthcare providers [39]. Advances in HPV testing have led to the development of self-collection methods, which have been found to achieve similar accuracy to clinician-collected samples [40]. Self-sampling offers the potential to increase screening access for underserved populations, with emerging evidence supporting its effectiveness, particularly in groups with limited access to healthcare [41,42]. Additionally, self-sampling can be pivotal in providing trauma-informed care for individuals with histories of sexual assault or those from the transgender community.

A novel approach for assessing cancer risk in HPV-positive individuals is dual-stain testing, which measures the presence of p16 and Ki-67 proteins in cervical cells [43]. The presence of p16 correlates strongly with HPV infection, while Ki-67 is a biomarker for rapid cell division, a hallmark of precancers and cancers [44]. Dual-stain testing has proven to be useful in triaging HPV-positive patients, aiding in the determination of whether biopsy is required. A National Cancer Institute (NCI) study comparing standard cervical cytology with dual-stain testing for triaging HPV-positive patients found that dual-stain positivity was significantly associated with an increased risk of CIN2 lesions or worse within five years, while dual-stain negativity offered a significantly lower risk, coupled with a five-year screening interval, compared to the three-year interval recommended for cytology alone [45]. Dual-stain testing not only offers superior predictive capacity for the development of cervical lesions in HPV-positive patients but also supports a longer screening interval when negative, making it a valuable tool in cervical cancer prevention. Furthermore, artificial intelligence (AI) has emerged as a promising tool for interpreting dual-stain tests, showing comparable sensitivity

and enhanced specificity in preliminary studies [47]. Although dual-stain testing is still in its early stages of large-scale application, early findings suggest its potential for improving the triage of HPV-positive patients and streamlining the cervical cancer screening process. Current guidelines for cervical dysplasia and cancer prevention and screening have become increasingly complex, presenting challenges for healthcare providers. The following discussion aims to clarify the current state of cervical cancer screening guidelines, anticipate potential future changes, and examine the barriers to their implementation.

Guidelines for Cervical Cancer Screening

On an international scale, the World Health Organization (WHO) released an updated guideline in 2021 advocating for HPV DNA testing exclusively, rather than cytology or visual inspection with acetic acid (VIA), as the screening method for all women in the general population starting at age 30. The WHO suggests performing this screening every five to ten years, continuing until age 50, after which screening may cease following two consecutive negative results at the recommended intervals for the general population. For HIV-positive individuals, the WHO recommends initiating HPV DNA testing at age 25, with screenings every three to five years until age 50, when screening may be discontinued after two negative results at the HIV-specific intervals [48].

In November 2022, the European Commission published updated cervical cancer screening guidelines, advising HPV testing for women aged 30 to 65, with intervals of five years or longer, and considering self-sample kits for non-responders to screening invitations. The Commission also suggested adapting age and intervals based on HPV vaccination status. These recommendations are part of broader efforts to increase cancer screening across qualifying populations in European countries by 2025 [49,50]. The International Federation of Gynecology and Obstetrics (FIGO) promotes a more tailored approach to cervical cancer screening on a national or regional level, accounting for access, barriers, and resources available to specific populations [51]. Despite some variances in recommended screening ages and intervals, there has been a global shift towards HPV-DNA testing as the preferred method over the past two decades [48,59]. In countries such as the United States, cervical cytology remains prevalent, likely due to the infrastructure supporting this method [56,58,60]. As new systems are developed to support HPV testing, a global alignment with current screening recommendations is expected.

At the national level, guidelines vary significantly. Some countries implement unified national screening protocols, while others follow multiple sets of guidelines from different organizations. The implementation of these guidelines is also inconsistent, with some countries having well-established nationwide screening programs, while others delegate screening to regional or local programs, or lack organized screening efforts altogether [61]. In the United States, multiple organizations, such as the United States Preventive Services Task Force (USPSTF), the American College of Obstetricians and Gynecologists (ACOG), the American Cancer Society (ACS), the American Society of Clinical Oncology (ASCO), and the American Society for Colposcopy and Cervical Pathology (ASCCP), offer distinct screening guidelines. Despite extensive evidence supporting HPV

testing as the most effective screening method, global guidelines continue to diverge regarding screening approaches, intervals, and age. These discrepancies can be attributed to factors such as access challenges, delays in guideline updates, and varying population adherence to screening protocols [61]. The challenge of creating a universally accepted cervical cancer screening guideline may stem from unique barriers faced by different communities [62]. Given the complexity of implementing such guidelines across diverse populations, achieving universal adherence is a significant challenge.

Resource Accessibility: A Barrier to Implementation

A major barrier to the widespread implementation of cervical cancer screening is limited access to essential resources [63]. Even in developed countries, reaching the entire population remains a challenge due to the uneven distribution of resources [64]. Effective screening requires substantial infrastructure, including approved testing kits that comprise materials for sample collection, specimen storage, and transportation to laboratories [39]. HPV tests are conducted using various methods, such as genetic amplification through PCR or antibody hybridization and luminescence, to detect the virus [39]. Although an increasing number of HPV tests are approved for use, non-approved tests are also available, though their clinical validity is often uncertain. Providers are advised to use only approved HPV tests to ensure accurate results [36]. To accommodate large-scale testing, adequate infrastructure is needed for processing samples. An emerging alternative to laboratory-based HPV testing is point-of-care testing, where samples are processed in smaller, local clinic settings rather than central laboratories. This approach is beneficial in populations prone to loss to follow-up, offering immediate diagnosis and subsequent treatment or diagnostic steps [66]. A 2022 study in Papua New Guinea demonstrated the feasibility of a point-of-care HPV system, incorporating self-collection methods and same-day treatment, which proved both effective and safe [67]. This research holds promise for broader use in developing countries, but additional point-of-care platforms must undergo approval for large-scale use [66,68].

While HPV-only testing is central to new guidelines, cervical cytology remains common in many regions [17,48,69], and cotesting with both HPV testing and cytology persists. This may reflect the historical importance of the Pap smear, which has been the cornerstone of cervical cancer screening for decades [56,60,69]. The slow transition to HPV testing may be attributed to delays in developing the necessary infrastructure for HPV testing [65]. The transition to HPV-only testing requires significant investment in setting up new systems, particularly in regions where Pap smear testing is already well-established and supported [69]. Despite this, evidence supporting the efficacy of HPV testing as a primary screening method suggests that cotesting may eventually become obsolete. In resource-limited settings, the lack of infrastructure for HPV testing or cervical cytology often leads to the use of VIA as the primary screening method [71]. VIA offers the advantage of real-time results, allowing immediate colposcopy or intervention at the point of care without the need for laboratory analysis [72]. While VIA is useful in areas with limited access to lab-based tests, it has lower specificity, leading to potential overdiagnosis and overtreatment. Despite this

limitation, VIA remains an important tool in resource-constrained environments [27,71].

Screening Parameters: A Barrier to Implementation

Identifying the appropriate population for cervical cancer screening is crucial, particularly given resource limitations. Screening is appropriate for any individual with a cervix, but guidelines differ on the optimal age to begin screening. Some guidelines recommend screening to start as early as 21 years, despite the average age of cervical cancer diagnosis being 53 years globally [40,53]. HPV infections typically peak in the 20s, where they are often cleared by the immune system [12]. As a result, many guidelines now recommend starting screening at age 25 or 30. Most guidelines suggest ceasing screening by age 65, with the WHO recommending discontinuation after age 50, provided the individual has had two consecutive negative tests at 5- and 10-year intervals [48]. The recommended screening interval also varies across guidelines. Research indicates that longer intervals between screenings with HPV testing alone are effective compared to cytology alone, due to the reduced likelihood of developing cervical abnormalities after a negative HPV test [30]. HPV vaccination efforts further influence the prevalence of high-risk HPV strains, enabling longer screening intervals. Studies suggest that intervals of 5 to 10 years are sufficient for individuals who test negative for HPV, which reduces both patient burden and healthcare system strain, while still ensuring adequate protection [73,74]. In contrast, cytology-based screening suggests intervals of 3 years for patients with a history of negative results [75].

Sampling: A Barrier to Implementation:

The method of sampling plays a crucial role in enhancing the reach of cervical cancer screening, particularly in expanding access to larger patient populations. Historically, provider-collected sampling has been the predominant method for specimen collection in screening. This approach offers several benefits, including its integration with other aspects of the gynecological evaluation, such as symptom assessment, breast examination, visualization of anatomical structures, bimanual examination, and addressing additional healthcare concerns. However, the provider-collected method also presents significant barriers, such as the costs associated with travel to healthcare facilities and the establishment of care at an adequately equipped center. These financial and logistical hurdles often prevent regular or even any screening from occurring, particularly in underserved populations [76,77]. Furthermore, individual patient factors, such as a history of trauma or language barriers, can diminish engagement with the healthcare system or negatively influence the quality of the interaction [78,79].

In response to these barriers, self-sampling kits have emerged as a promising alternative, particularly for individuals who do not regularly engage in formal healthcare settings. Studies have shown that self-collected samples yield results that are moderately to substantially concordant with those collected by providers, with sensitivities and specificities approaching 0.90 [80]. Research across several low-resource regions, including sub-Saharan Africa, Latin America, and China, has demonstrated the potential utility of self-sampling, with initial findings

indicating its viability for widespread use in these settings [41,42,65,81]. The benefits of self-sampling include enhanced accessibility through mail-in options, reduced need for in-facility visits, and increased patient comfort, with high rates of acceptance [82]. Evidence also suggests that offering self-sampling increases patient participation in screening programs, thereby capturing a previously underserved cohort of individuals who might not have otherwise sought screening [83,84]. However, this method does present challenges, such as the need for patients with positive results to attend in-person follow-up visits for further evaluation, which may be complicated by a lack of an established provider-patient relationship. Ensuring appropriate follow-up in cases of positive test results will be crucial for the success of this screening approach [82]. In the future, it is anticipated that advancements in molecular triage, such as extended genotyping or methylation testing, will further enhance the effectiveness of self-sampling methods.

Provider Buy-In: A Barrier to Implementation:

Whether utilizing provider-collected or self-collected samples, successful implementation of cervical cancer screening requires significant attention to provider education and integration into clinical practice. Support at a systems level is equally vital; a Cochrane systematic review from 2011 highlighted the effectiveness of mailed invitations in boosting screening uptake rates [85]. Healthcare institutions, practices, and professionals must ensure that ongoing medical education (CME) is available to facilitate access to the latest and most accurate screening guidelines. In the United States, healthcare systems often support provider participation in CME programs, which helps to disseminate updated guidelines and ensures adherence to the latest recommendations. The importance of such educational initiatives is underscored by data revealing a notable increase in the percentage of U.S. women with overdue cervical cancer screenings, rising from 14.4% in 2005 to 23.0% in 2019 [86]. Gaining provider buy-in is a critical component of any effort to update guidelines and ensure their global implementation.

Diagnostic Tools:

Diagnostic tools are essential instruments in healthcare, providing clinicians with valuable information to accurately identify and treat medical conditions. These tools range from simple, non-invasive procedures to advanced technologies that require specialized training. Common diagnostic tools include blood tests, imaging techniques (such as X-rays, MRIs, CT scans), and biopsies. Blood tests are widely used for detecting infections, organ function, and genetic conditions, offering quick results for initial assessments. Imaging techniques allow healthcare providers to visualize the internal structures of the body, aiding in the diagnosis of conditions like fractures, tumors, or cardiovascular diseases. For example, MRI scans offer detailed images of soft tissues, while CT scans provide comprehensive cross-sectional images of organs and bones. Biopsies, which involve the extraction of tissue samples, are used for diagnosing cancers and other diseases that require microscopic analysis. Additionally, rapid diagnostic tests, such as those used for detecting viral infections (e.g., HIV or COVID-19), have gained prominence due to their convenience and speed. The advancement of molecular

diagnostic tools, like PCR (polymerase chain reaction) testing, has revolutionized diagnostics by enabling precise identification of pathogens at a genetic level. These tools are increasingly integrated into healthcare workflows, ensuring timely diagnosis and improving patient outcomes. However, the choice of diagnostic tool depends on the clinical context, the condition being evaluated, and available resources, making the expertise of healthcare providers crucial in determining the appropriate method.

Nursing Care Plan:

A Nursing Care Plan (NCP) is a critical component of patient-centered care, ensuring that nursing interventions are systematically organized and tailored to meet an individual's healthcare needs. The NCP follows a structured format that typically includes assessment, diagnosis, planning, implementation, and evaluation. In the assessment phase, nurses gather comprehensive data from patient interviews, physical examinations, and diagnostic results to identify health problems. The nursing diagnosis is derived from this data, highlighting issues such as impaired mobility, ineffective breathing patterns, or risk for infection. The planning stage involves setting measurable and achievable goals for the patient's care, prioritizing interventions based on the severity of the health condition. For example, a goal for a patient with impaired mobility might be to demonstrate increased independence in movement by the end of the week. In the implementation phase, nurses carry out the prescribed interventions, which can range from administering medications to providing emotional support. Collaboration with other healthcare team members, including physicians and physical therapists, may also be necessary. Finally, in the evaluation phase, the nurse assesses the patient's progress toward achieving the goals set in the planning phase. This may involve revising the care plan if the patient's condition does not improve or if new issues arise. The NCP is a dynamic tool that evolves as the patient's needs change, fostering effective communication and continuity of care across all healthcare providers.

Documentation and Medical Records:

Documentation and medical records are foundational to the delivery of quality healthcare, ensuring accurate communication between healthcare providers and protecting both patient and provider interests. A medical record is a detailed, chronological record of a patient's health history, diagnosis, treatment, and outcomes. It serves as a legal document, an essential tool for clinical decision-making, and a means for monitoring patient progress. The primary types of medical records include electronic health records (EHRs), paper charts, and hybrid systems, with EHRs becoming the standard due to their accessibility, efficiency, and integration with other healthcare systems. Accurate documentation is vital for continuity of care, as it allows healthcare providers to track the patient's history, detect changes in their condition, and make informed decisions regarding treatment. Furthermore, medical records ensure that patients receive appropriate care, preventing duplication of services, medication errors, and adverse events. In addition to clinical data, the medical record includes communication logs, patient preferences, and consent forms, all of which are integral to the patient's care plan. The process of documenting patient

interactions, assessments, and treatment plans is also essential for maintaining legal and ethical standards, as it can serve as evidence in the case of disputes or audits. Timely and precise documentation is critical to ensure that the healthcare system operates smoothly, supporting clinical, operational, and financial functions. Accurate medical records enhance the quality of care, patient safety, and overall healthcare outcomes.

Conclusion

Cervical cancer remains a significant public health issue globally, especially in low-resource regions where the disease burden is highest. Despite the ongoing challenges, substantial progress has been made in the prevention, detection, and management of cervical cancer through advances in HPV vaccination and screening technologies. The discovery of HPV as the causative agent has been pivotal in reshaping preventive strategies, with vaccination programs now serving as the primary tool for reducing the incidence of cervical cancer. Vaccines targeting high-risk HPV strains, particularly HPV-16 and HPV-18, have been shown to prevent up to 70% of cervical cancers, and newer vaccines that cover additional HPV types offer even greater protection. These vaccines have the potential to significantly reduce cervical cancer rates, especially in populations with limited access to traditional screening methods. Screening has also evolved significantly over the years, with HPV testing emerging as the most effective method for early detection of precancerous lesions. Unlike traditional Pap smears, which have relatively low sensitivity for detecting high-grade lesions, HPV testing has shown greater sensitivity, leading to earlier identification of at-risk individuals. This shift toward HPV-based screening allows for longer intervals between screenings, reducing the burden on healthcare systems while maintaining efficacy in detecting cervical abnormalities. Additionally, dual-stain testing, which identifies the p16 and Ki-67 proteins in cervical cells, provides a more accurate method for triaging HPV-positive individuals and determining the need for biopsy. The introduction of artificial intelligence (AI) in the interpretation of these tests holds promise for further improving the precision of cervical cancer screening. Nurses play a crucial role in cervical cancer prevention and management, from educating patients about the importance of vaccination and screening to providing support throughout the diagnosis and treatment process. Their involvement is essential in ensuring that women from diverse socio-economic backgrounds are aware of and can access these preventive measures. Given the persistence of disparities in cervical cancer incidence and outcomes, particularly among minority populations, it is crucial for healthcare systems to implement tailored strategies that address access issues and promote awareness of cervical cancer prevention. Efforts to expand access to HPV vaccines, improve screening programs, and provide trauma-informed care for underserved populations are essential for reducing cervical cancer morbidity and mortality worldwide. Ultimately, the key to combatting cervical cancer lies in a multifaceted approach that includes education, vaccination, improved screening practices, and global cooperation. Efforts to overcome barriers such as geographic location, socio-economic status, and cultural differences must continue to be a priority for healthcare systems worldwide. With continued advancements in technology and public health policies, there is hope for further reducing the incidence of cervical cancer and improving outcomes for women globally.

References

1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. *CA Cancer J. Clin.* 2021, *71*, 209–249.
2. Donovan, S.A.; Labonte, M.; Dalaker, J.; Romero, P.D. *The U.S. Income Distribution: Trends and Issues.* 2021. Available online: <https://sgp.fas.org/crs/misc/R44705.pdf> (accessed 2023).
3. USCS Data Visualizations. Available online: <https://gis.cdc.gov/grasp/USCS/DataViz.html> (accessed 2023).
4. Bouvard, V.; Wentzensen, N.; Mackie, A.; Berkhof, J.; Brotherton, J.; Giorgi-Rossi, P.; Kupets, R.; Smith, R.; Arrossi, S.; Bendahhou, K.; et al. The IARC Perspective on Cervical Cancer Screening. *N. Engl. J. Med.* 2021, *385*, 1908–1918.
5. Cohen, P.A.; Jhingran, A.; Oaknin, A.; Denny, L. Cervical cancer. *Lancet* 2019, *393*, 169–182.
6. Zhang, S.; Xu, H.; Zhang, L.; Qiao, Y. Cervical cancer: Epidemiology, risk factors and screening. *Chin. J. Cancer Res.* 2020, *32*, 720–728.
7. Roura, E.; Castellsagué, X.; Pawlita, M.; Travier, N.; Waterboer, T.; Margall, N.; Bosch, F.X.; de Sanjosé, S.; Dillner, J.; Gram, I.; et al. Smoking as a major risk factor for cervical cancer and pre-cancer: Results from the EPIC cohort. *Int. J. Cancer* 2014, *135*, 453–466.
8. Stelzle, D.; Tanaka, L.F.; Lee, K.K.; Khalil, A.I.; Baussano, I.; Shah, A.; McAllister, D.; Gottlieb, S.; Klug, S.; Winkler, A.; et al. Estimates of the global burden of cervical cancer associated with HIV. *Lancet Glob. Health* 2021, *9*, e161–e169.
9. Narisawa-Saito, M.; Kiyono, T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: Roles of E6 and E7 proteins. *Cancer Sci.* 2007, *98*, 1505–1511.
10. Okunade, K.S. Human papillomavirus and cervical cancer. *J. Obstet. Gynaecol. J. Inst. Obstet. Gynaecol.* 2020, *40*, 602–608.
11. Walboomers, J.M.; Jacobs, M.V.; Manos, M.M.; Bosch, F.X.; Kummer, J.A.; Shah, K.V.; Snijders, P.J.; Peto, P.; Meijer, C.J.; Muñoz, N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. *J. Pathol.* 1999, *189*, 12–19.
12. Bruni, L.; Diaz, M.; Castellsagué, X.; Ferrer, E.; Bosch, F.X.; de Sanjosé, S. Cervical human papillomavirus prevalence in 5 continents: Meta-analysis of 1 million women with normal cytological findings. *J. Infect. Dis.* 2010, *202*, 1789–1799.
13. Kombe Kombe, A.J.; Li, B.; Zahid, A.; Mengist, H.M.; Bounda, G.; Zhou, Y.; Jin, T. Epidemiology and Burden of Human Papillomavirus and Related Diseases, Molecular Pathogenesis, and Vaccine Evaluation. *Front. Public Health* 2020, *8*, 552028.
14. Muñoz, N.; Bosch, F.X.; de Sanjosé, S.; Herrero, R.; Castellsagué, X.; Shah, K.V.; Snijders, P.J.; Meijer, C.J. Epidemiologic classification of human papillomavirus types associated with cervical cancer. *N. Engl. J. Med.* 2003, *348*, 518–527.
15. Burd, E.M. Human Papillomavirus and Cervical Cancer. *Clin. Microbiol. Rev.* 2003, *16*, 1–17.

16. Ljubojević, S. The human papillomavirus vaccines. *Acta Dermatovenerol. Croat. ADC* 2006, *14*, 208.
17. Human Papillomavirus Vaccines: WHO Position Paper. 2022. Available online: <https://www.who.int/publications-detail-redirect/who-wer9750-645-672> (accessed 2023).
18. Zhang, S.; Batur, P. Human papillomavirus in 2019: An update on cervical cancer prevention and screening guidelines. *Cleve. Clin. J. Med.* 2019, *86*, 173–178.
19. Joura, E.A.; Giuliano, A.R.; Iversen, O.E.; Bouchard, C.; Mao, C.; Mehlsen, J.; Moreira, E.; Ngan, Y.; Petersen, L.K.; Lazcano-Ponce, E.; et al. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. *N. Engl. J. Med.* 2015, *372*, 711–723.
20. Chandrasekhar, V.; Krishnamurti, C. George Papanicolaou (1883–1962): Discoverer of the Pap Smear. *J. Obstet. Gynaecol. India* 2018, *68*, 232–235.
21. Karnon, J.; Peters, J.; Platt, J.; Chilcott, J.; McGoogan, E.; Brewer, N. Liquid-Based Cytology in Cervical Screening: An Updated Rapid and Systematic Review and Economic Analysis; NIHR Journals Library: 2004. Available online: <https://www.ncbi.nlm.nih.gov/books/NBK62300/> (accessed 2023).
22. Pankaj, S.; Nazneen, S.; Kumari, S.; Kumari, A.; Kumari, A.; Kumari, J.; Choudhary, V.; Kumar, S. Comparison of conventional Pap smear and liquid-based cytology: A study of cervical cancer screening at a tertiary care center in Bihar. *Indian J. Cancer* 2018, *55*, 80.
23. Hashmi, A.A.; Naz, S.; Ahmed, O.; Yaqueen, S.R.; Irfan, M.; Asif, M.G.; Kamal, A.; Faridi, N. Comparison of Liquid-Based Cytology and Conventional Papanicolaou Smear for Cervical Cancer Screening: An Experience From Pakistan. *Cureus* 2020, *12*, e12293.
24. Thaxton, L.; Waxman, A.G. Cervical cancer prevention: Immunization and screening 2015. *Med. Clin. N. Am.* 2015, *99*, 469–477.
25. Cuzick, J.; Clavel, C.; Petry, K.U.; Meijer, C.; Hoyer, H.; Ratnam, S.; Szarewski, A.; Birembaut, P.; Kulasingam, S.; Sasieni, P.; et al. Overview of the European and North American studies on HPV testing in primary cervical cancer screening. *Int. J. Cancer* 2006, *119*, 1095–1101.
26. Zawua, Z.; Omietimi, J.E.; Jeremiah, I.; Aigere, S.; Musa, S.; Osegi, N.; Oweisi, P.W. 872P Comparison of colposcopy, pap smear test and visual inspection with acetic acid (VIA) as screening tests for precancer of the cervix (CIN2+) in high risk patients. *Ann. Oncol.* 2020, *31*, S642.
27. Vahedpoor, Z.; Behrashi, M.; Khamehchian, T.; Abedzadeh-Kalahroudi, M.; Moravveji, A.; Mohmadi-Kartalayi, M. Comparison of the diagnostic value of the visual inspection with acetic acid (VIA) and Pap smear in cervical cancer screening. *Taiwan. J. Obstet. Gynecol.* 2019, *58*, 345–348.
28. Egede, J.; Ajah, L.; Ibekwe, P.; Agwu, U.; Nwizu, E.; Iyare, F. Comparison of the Accuracy of Papanicolaou Test Cytology, Visual Inspection With Acetic Acid, and Visual Inspection With Lugol Iodine in Screening for Cervical Neoplasia in Southeast Nigeria. *J. Glob. Oncol.* 2018, *4*, 1–9.
29. Catarino, R.; Petignat, P.; Dongui, G.; Vassilakos, P. Cervical cancer screening in developing countries at a crossroad: Emerging technologies and policy choices. *World J. Clin. Oncol.* 2015, *6*, 281–290.
30. Ronco, G.; Giorgi-Rossi, P.; Carozzi, F.; Confortini, M.; Palma, P.D.; Del Mistro, A.; Ghiringhelli, B.; Girlando, S.; Gillio-Tos, A.; De Marco, L.; et al. Efficacy of human papillomavirus testing for the detection of invasive cervical

cancers and cervical intraepithelial neoplasia: A randomised controlled trial. *Lancet Oncol.* 2010, *11*, 249–257.

31. Bulk, S.; Bulkman, N.W.J.; Berkhof, J.; Rozendaal, L.; Boeke, A.J.; Verheijen, R.; Snijders, P.; Meijer, C. Risk of high-grade cervical intraepithelial neoplasia based on cytology and high-risk HPV testing at baseline and at 6-months. *Int. J. Cancer* 2007, *121*, 361–367.

32. Dillner, J.; Reboul, M.; Birembaut, P.; Petry, K.U.; Szarewski, A.; Munk, C.; de Sanjose, S.; Nacler, P.; Lloveras, B.; Kjaer, S.; et al. Long term predictive values of cytology and human papillomavirus testing in cervical cancer screening: Joint European cohort study. *BMJ* 2008, *337*, a1754.

33. Porras, C.; Wentzensen, N.; Rodriguez, A.C.; Morales, J.; Burk, R.D.; Alfaro, M.; Hutchinson, M.; Herrero, R.; Hildesheim, A.; Sherman, M.E.; et al. Switch from cytology-based to human papillomavirus test-based cervical screening: Implications for colposcopy. *Int. J. Cancer* 2012, *130*, 1879–1887.

34. Ronco, G.; Dillner, J.; Elfström, K.M.; Tunesi, S.; Snijders, P.J.; Arbyn, M.; Kitchener, H.; Segnan, N.; Gilham, C.; Giorgi-Rossi, P.; et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: Follow-up of four European randomised controlled trials. *Lancet* 2014, *383*, 524–532.

35. Wang, X.; Huang, X.; Zhang, Y. Involvement of Human Papillomaviruses in Cervical Cancer. *Front. Microbiol.* 2018, *9*, 2896.

36. Arbyn, M.; Simon, M.; Peeters, E.; Xu, L.; Meijer, C.J.L.M.; Berkhof, J.; Cuschieri, K.; Bonde, J.; Vanlencak, A.O.; Zhao, F.; et al. 2020 list of human papillomavirus assays suitable for primary cervical cancer screening. *Clin. Microbiol. Infect.* 2021, *27*, 1083–1095.

37. Zhang, S.K.; Guo, Z.; Wang, P.; Kang, L.; Jia, M.; Wu, Z.; Chen, Q.; Cao, X.; Zhao, D.; Guo, P.; et al. The Potential Benefits of HPV E6/E7 mRNA Test in Cervical Cancer Screening in China. *Front. Oncol.* 2020, *10*, 533253. Available online: <https://www.frontiersin.org/articles/10.3389/fonc.2020.533253>

38. Meijer, C.J.L.M.; Berkhof, J.; Castle, P.E.; Hesselink, A.T.; Franco, E.L.; Ronco, G.; Arbyn, M.; Bosch, F.X.; Cuzick, J.; Dillner, J.; et al. Guidelines for human papillomavirus DNA test requirements for primary cervical cancer screening in women 30 years and older. *Int. J. Cancer* 2009, *124*, 516–520.

39. Pan American Health Organization. *Integrating HPV Testing in Cervical Cancer Screening Programs: A Manual for Program Managers*; Pan American Health Organization: Washington, DC, USA, 2016; Available online: <https://www.paho.org/hq/dmdocuments/2016/manual-VPH-English---FINAL-version.pdf> (accessed 2023).

40. Arbyn, M.; Smith, S.B.; Temin, S.; Sultana, F.; Castle, P. Detecting cervical precancer and reaching underscreened women by using HPV testing on self samples: Updated meta-analyses. *BMJ* 2018, *363*, k4823.

41. Holme, F.; Jeronimo, J.; Maldonado, F.; Camel, C.; Sandoval, M.; Martinez-Granera, B.; Montenegro, M.; Figueroa, J.; Slavkovsky, R.; Thomson, K.A.; et al. Introduction of HPV testing for cervical cancer screening in Central America: The Scale-Up project. *Prev. Med.* 2020, *135*, 106076.

42. Zhao, X.L.; Xu, X.Q.; Duan, X.Z.; Rezhake, R.; Hu, S.; Wang, Y.; Xia, C.; Zhang, X.; Qiao, Y.; Sankaranarayanan, R.; et al. Comparative performance evaluation of different HPV tests and triaging strategies using self-samples and feasibility assessment of thermal ablation in “colposcopy and treat” approach: A population-based study in rural China. *Int. J. Cancer* 2020, *147*, 1275–1285.

43. Ikenberg, H.; Bergeron, C.; Schmidt, D.; Griesser, H.; Alameda, F.; Angeloni, C.; Bogers, J.; Dachez, R.; Denton, K.; Hariri, J.; et al. Screening for Cervical Cancer Precursors With p16/Ki-67 Dual-Stained Cytology: Results of the PALMS Study. *JNCI J. Natl. Cancer Inst.* 2013, **105**, 1550–1557.
44. Hebbar, A.; Murthy, V.S. Role of p16/INK4a and Ki-67 as specific biomarkers for cervical intraepithelial neoplasia: An institutional study. *J. Lab. Physicians* 2017, **9**, 104–110.
45. Clarke, M.A.; Cheung, L.C.; Castle, P.E.; Schiffman, M.; Tokugawa, D.; Poitras, N.; Lorey, T.; Kinney, W.; Wentzensen, N. Five-Year Risk of Cervical Precancer Following p16/Ki-67 Dual-Stain Triage of HPV-Positive Women. *JAMA Oncol.* 2019, **5**, 181–186.
46. For HPV-Positive Women, Test Can Guide Screening Follow-Up—NCI. 2018. Available online: <https://www.cancer.gov/news-events/cancer-currents-blog/2018/dual-stain-test-cervical-hpv-positive> (accessed 2023).
47. Wentzensen, N.; Lahrmann, B.; Clarke, M.A.; Kinney, W.; Tokugawa, D.; Poitras, N.; Locke, A.; Bartels, L.; Krauthoff, A.; Walker, J.; et al. Accuracy and Efficiency of Deep-Learning-Based Automation of Dual Stain Cytology in Cervical Cancer Screening. *JNCI J. Natl. Cancer Inst.* 2021, **113**, 72–79.
48. WHO Guideline for Screening and Treatment of Cervical Pre-Cancer Lesions for Cervical Cancer Prevention, Second Edition. Available online: <https://www.who.int/publications-detail-redirect/9789240030824> (accessed 2023).
49. European Commission. European Health Union: New Approach on Cancer Screening. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_7548
50. Council of the European Union. Council Recommendation on Strengthening Prevention through Early Detection: A New EU Approach on Cancer Screening Replacing Council Recommendation 2003/878/EC. *Off. J. Eur. Union* 2022, C 473/1, 1–10. Available online: [https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022H1213\(01\)](https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022H1213(01))
51. Figo. Project to Eliminate Cervical Cancer. 2021. Available online: <https://www.figo.org/project-eliminate-cervical-cancer>
52. Sankaranarayanan, R. Screening and Early Detection of Cervical Cancer. 2020. Available online: <https://www.figo.org/sites/default/files/2020-07/FIGO%20Gyn%20Onc%20Screening%20and%20Early%20detection.pdf>
53. United States Preventive Services Taskforce. Recommendation: Cervical Cancer: Screening. Available online: <https://www.uspreventiveservicestaskforce.org/uspstf/draft-update-summary/cervical-cancer-screening-adults-adolescents> (accessed 2023).
54. United States Preventive Services Taskforce. Draft Research Plan: Cervical Cancer: Screening. Available online: <https://www.uspreventiveservicestaskforce.org/uspstf/document/draft-research-plan/cervical-cancer-screening-adults-adolescents> (accessed 2023).
55. Updated Cervical Cancer Screening Guidelines. Available online: <https://www.acog.org/en/clinical/clinical-guidance/practice-advisory/articles/2021/04/updated-cervical-cancer-screening-guidelines> (accessed 2023).
56. Fontham, E.T.H.; Wolf, A.M.D.; Church, T.R.; Etzioni, R.; Flowers, C.R.; Herzig, A.; Guerra, C.E.; Oeffinger, K.C.; Shih, Y.C.T.; Walter, L.C.; et al.

Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society. *CA Cancer J. Clin.* 2020, *70*, 321–346. [Google Scholar] [CrossRef] [PubMed]

57. Shastri, S.S.; Temin, S.; Almonte, M.; Basu, P.; Campos, N.G.; Gravitt, P.E.; Gupta, V.; Lombe, D.; Murillo, R.; Nakisige, C.; et al. Secondary Prevention of Cervical Cancer: ASCO Resource–Stratified Guideline Update. *JCO Glob. Oncol.* 2022, *8*, e2200217.

58. Marcus, J.Z.; Cason, P.; Downs, L.S.J.; Einstein, M.H.; Flowers, L. The ASCCP Cervical Cancer Screening Task Force Endorsement and Opinion on the American Cancer Society Updated Cervical Cancer Screening Guidelines. *J. Low. Genit. Tract. Dis.* 2021, *25*, 187.

59. Gakidou, E.; Nordhagen, S.; Obermeyer, Z. Coverage of Cervical Cancer Screening in 57 Countries: Low Average Levels and Large Inequalities. *PLoS Med.* 2008, *5*, e132.

60. US Preventive Services Task Force; Curry, S.J.; Krist, A.H.; Owens, D.K.; Barry, M.J.; Caughey, A.B.; Davidson, K.W.; Doubeni, C.A.; Epling, J.W., Jr.; Kemper, A.R.; et al. Screening for Cervical Cancer: US Preventive Services Task Force Recommendation Statement. *JAMA* 2018, *320*, 674.

61. Wang, W.; Arcà, E.; Sinha, A.; Hartl, K.; Houwing, N.; Kothari, S. Cervical cancer screening guidelines and screening practices in 11 countries: A systematic literature review. *Prev. Med. Rep.* 2022, *28*, 101813.

62. Akinlotan, M.; Bolin, J.N.; Helduser, J.; Ojinnaka, C.; Lichorad, A.; McClellan, D. Cervical Cancer Screening Barriers and Risk Factor Knowledge Among Uninsured Women. *J. Community Health* 2017, *42*, 770–778.

63. Gupta, R.; Gupta, S.; Mehrotra, R.; Sodhani, P. Cervical Cancer Screening in Resource-Constrained Countries: Current Status and Future Directions. *Asian Pac. J. Cancer Prev. APJCP* 2017, *18*, 1461–1467.

64. National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Population Health and Public Health Practice; Committee on Community-Based Solutions to Promote Health Equity in the United States; Baciu, A.; Negussie, Y.; Geller, A.; Weinstein, J.N. Communities in Action: Pathways to Health Equity. National Academies Press (US): Washington, DC, USA, 2017. Available online: <https://www.ncbi.nlm.nih.gov/books/NBK425845/> (accessed 2023).

65. Rol, M.L.; Picconi, M.A.; Ferrera, A.; Sánchez, G.I.; Hernández, M.D.L.L.; Lineros, J.; Peraza, A.; Brizuela, M.; Mendoza, L.; Mongelós, P.; et al. Implementing HPV testing in 9 Latin American countries: The laboratory perspective as observed in the ESTAMPA study. *Front. Med.* 2022, *9*, 1006038.

66. Campos, N.G.; Tsu, V.; Jeronimo, J.; Mvundura, M.; Kim, J.J. Estimating the value of point-of-care HPV testing in three low- and middle-income countries: A modeling study. *BMC Cancer* 2017, *17*, 791.

67. Vallely, A.J.B.; Saville, M.; Badman, S.G.; Gabuzzi, J.; Bolnga, J.; Mola, G.D.L.; Kuk, J.; Wai, M.; Munnell, G.; Garland, S.M.; et al. Point-of-care HPV DNA testing of self-collected specimens and same-day thermal ablation for the early detection and treatment of cervical pre-cancer in women in Papua New Guinea: A prospective, single-arm intervention trial (HPV-STAT). *Lancet Glob. Health* 2022, *10*, e1336–e1346.

68. Sayed, S.; Chung, M.; Temmerman, M. Point-of-care HPV molecular diagnostics for a test-and-treat model in high-risk HIV populations. *Lancet Glob. Health* 2020, *8*, e171–e172.

69. Delpero, E.; Selk, A. Shifting from cytology to HPV testing for cervical cancer screening in Canada. *CMAJ Can. Med. Assoc. J.* 2022, *194*, E613–E615.

70. Pereira, C.R.; Gebbers, J.O. Establishing a cytology laboratory in a low-resource setting for cervical cancer screening. *Riv. Ital. Della Med. Lab.—Ital. J. Lab. Med.* 2012, *8*, 239–244.

71. IARC. Cervical Cancer Screening. Available online: <https://publications.iarc.fr/Book-And-Report-Series/Iarc-Handbooks-Of-Cancer-Prevention/Cervical-Cancer-Screening-2022> (accessed 2023).

72. Awolude, O.A.; Oyerinde, S.O.; Ayeni, A.O.; Adewole, I.F. Human papillomavirus-based cervical precancer screening with visual inspection with acetic acid triage to achieve same-day treatments among women living with human immunodeficiency virus infection: Test-of-concept study in Ibadan, Nigeria. *Pan. Afr. Med. J.* 2021, *40*, 48.

73. Rebolj, M.; Cuschieri, K.; Mathews, C.S.; Pesola, F.; Denton, K.; Kitchener, H. Extension of cervical screening intervals with primary human papillomavirus testing: Observational study of English screening pilot data. *BMJ* 2022, *377*, e068776.

74. Dijkstra, M.G.; Zummeren, M.V.; Rozendaal, L.; Kemenade, F.J.V.; Helmerhorst, T.J.M.; Snijders, P.J.; Meijer, C.J.L.M.; Berkhof, J. Safety of extending screening intervals beyond five years in cervical screening programmes with testing for high risk human papillomavirus: 14 year follow-up of population based randomised cohort in the Netherlands. *BMJ* 2016, *355*, i4924.

75. NEJM. Risk of Cervical Cancer Associated with Extending the Interval between Cervical-Cancer Screenings. Available online: <https://www.nejm.org/doi/10.1056/NEJMoa035419> (accessed 2023).

76. Ndejjo, R.; Mukama, T.; Kiguli, J.; Musoke, D. Knowledge, facilitators and barriers to cervical cancer screening among women in Uganda: A qualitative study. *BMJ Open* 2017, *7*, e016282.

77. Munthali, A.C.; Ngwira, B.M.; Taulo, F. Exploring barriers to the delivery of cervical cancer screening and early treatment services in Malawi: Some views from service providers. *Patient Prefer. Adherence* 2015, *9*, 501–508.

78. Al Shamsi, H.; Almutairi, A.G.; Al Mashrafi, S.; Al Kalbani, T. Implications of Language Barriers for Healthcare: A Systematic Review. *Oman Med. J.* 2020, *35*, e122.

79. Ades, V.; Goddard, B.; Ayala, S.P.; Greene, J.A. Caring for long term health needs in women with a history of sexual trauma. *BMJ* 2019, *367*, 15825.

80. Sy, F.; Greuel, M.; Winkler, V.; Bussmann, H.; Bärnighausen, T.; Deckert, A. Accuracy of HPV testing on self-collected and clinician-collected samples for different screening strategies in African settings: A systematic review and meta-analysis. *Gynecol. Oncol.* 2022, *166*, 358–368.

81. Joseph, J.; Demke, O.; Ameyan, L.; Bitilinyu-Bango, J.; Bourgoin, B.; Diop, M.; Guèye, B.; Kama, J.; Lubega, M.; Madzima, B.; et al. Human papillomavirus testing using existing nucleic acid testing platforms to screen women for cervical cancer: Implementation studies from five sub-Saharan African countries. *BMJ Open* 2023, *13*, e065074.

82. Arrossi, S.; Paolino, M.; Laudi, R.; Gago, J.; Campanera, A.; Marín, O.; Falcón, C.; Serra, V.; Herrero, R.; Thouyaret, L. Programmatic human papillomavirus testing in cervical cancer prevention in the Jujuy Demonstration Project in

Argentina: A population-based, before-and-after retrospective cohort study. *Lancet Glob. Health* 2019, *7*, e772–e783.

- 83. Racey, C.S.; Withrow, D.R.; Gesink, D. Self-collected HPV Testing Improves Participation in Cervical Cancer Screening: A Systematic Review and Meta-analysis. *Can. J. Public Health Rev. Can. Santé Publique* 2013, *104*, e159–e166.
- 84. Ejegod, D.M.; Pedersen, H.; Tonnes Pedersen, B.; Serizawa, R.; Bonde, J. Operational experiences from the general implementation of HPV self-sampling to Danish screening non-attenders. *Prev. Med.* 2022, *160*, 107096.
- 85. Everett, T.; Bryant, A.; Griffin, M.F.; Martin-Hirsch, P.P.; Forbes, C.A.; Jepson, R.G. Interventions targeted at women to encourage the uptake of cervical screening. *Cochrane Database Syst. Rev.* 2011, *2011*, CD002834.
- 86. Suk, R.; Hong, Y.R.; Rajan, S.S.; Xie, Z.; Zhu, Y.; Spencer, J.C. Assessment of US Preventive Services Task Force Guideline-Concordant Cervical Cancer Screening Rates and Reasons for Underscreening by Age, Race and Ethnicity, Sexual Orientation, Rurality, and Insurance, 2005 to 2019. *JAMA Netw. Open.* 2022, *5*, e2143582.