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Abstract 
The main tasks in coding theory are to find codes which detect and correct errors. The bounds 

are important in terms of error-detecting and -correcting capabilities of the codes. Solid Burst errors are the 
type of errors that occur in several communication channels. This paper obtains lower and upper bounds 
on the number of parity-check digits required for linear codes capable of detecting and correcting such 
errors. Illustrations of codes for detecting as well as correcting such errors are provided. 
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1.  Introduction 

Investigations in coding theory have been made in several directions but one of the 
most important directions has been the detection and correction of errors. It began with 
Hamming codes [12] for single errors, Golay codes ([8], [9]) for double and triple random errors 
and thereafter BCH codes ([10], [11], [13]) were studied for multiple error correction. There is a 
long history towards the growth of the subject and many of the codes developed have found 
applications in numerous areas of practical interest. One of the areas of practical importance in 
which a parallel growth of the subject took place is that of burst error detecting and correcting 
codes. It is because of the fact that in many communication channels, burst errors occur more 
frequently than random errors. A burst of length b may be defined as follows: 
 
Definition 1: A burst of length b is a vector whose only non-zero components are among 
some b consecutive components, the first and the last of which is non zero. 
 
When in a burst of length b, all the b components, in which the non-zero components are 
confined, are non zero i.e., all the digits among the b components are in error, such type of 
burst is known as solid burst. Such bursts are prevalent in channels viz. semiconductor memory 
data[14], supercomputer storage system [2]. A solid burst may be defined as follows: 
 
Definition 2: A solid burst of length b is a vector with non zero entries in some b consecutive 
positions and zero elsewhere. 
 

Schillinger [18] developed codes that correct solid burst error. Shiva and Cheng [20] 
produced a paper for correcting multiple solid burst error of length b in binary code with a very 
simple decoding scheme. Among many, some of the good research on solid burst can be 
mentioned such as Bossen [3], Sharma and Dass [19], Etzion [7], Argyrides et al. [1]. 

It is important to know the ultimate capabilities and limitation of error correcting codes. 
This information, along with the knowledge of what is practically achievable, indicates which 
problems are virtually solved and which needs further work. This was initiated by Hamming[12] 
who was concerned with both code constructions and bounds. The bounds on the number of 
parity check symbols are important from the point of efficiency of a code. The lesser of parity 
check symbols in a code, the more is the rate of information of the code.  

As the nature of error differs from channel to channel depending upon the behaviour of 
channels (or the kind of errors which occur during the process of transmission), there is a need 
to deal with many types of error patterns and accordingly codes are to be constructed to combat 
such error patterns. Though many works have been done on solid burst of length b or less, the 
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bounds on the number of parity checks for linear codes over GF(q) detecting and correcting 
such errors are not obtained properly.  

In this direction, the paper studies linear codes over GF(q) that detect and correct solid 
burst errors. Section 1 i.e., the Introduction gives brief view of the  importance of bounds on 
parity check digits of a code and the requirement for consideration of solid burst errors. In 
section 2, we obtain the lower and upper bounds on the number of parity check digits of linear 
codes that detect any solid burst of length b or less. The section 3 presents the similar bounds 
for codes correcting such errors.  In what follows a linear code will be considered as a subspace 
of the space of all n-tuples over GF(q). The distance between two vectors shall be considered in 
the Hamming sense. 
 
 
2.  Codes Detecting Solid Burst errors 

We consider linear codes over GF(q) that are capable of detecting any solid burst error 
of length b or less. Clearly, the patterns to be detected should not be code words. In other 
words we consider codes that have no solid burst error of length b or less as a code word. 
Firstly, we obtain a lower bound over the number of parity-check digits required for such a code. 
The proof is based on the technique used in theorem 4.13, Peterson and Weldon [16]. 
 
Theorem 1. Any (n, k) linear code over GF(q) that detects any solid burst of length b or less 
must have at least logq(1+b) parity-check digits. 
 
Proof.  The result will be proved on the basis that no detectable error vector can be a code 
word. 

Let V be an (n, k) linear code over GF(q). Consider a set X of all those vectors such that 
the some fixed non-zero components are in b or less consecutive positions starting from the first 
position. 

We claim that no two vectors of the set X can belong to the same coset of the standard 
array; else a code word shall be expressible as a sum or difference of two error vectors. 
Assume on the contrary that there is a pair, say x1, x2 in X belonging to the same coset of the 
standard array. Their difference viz. x1 – x2 must be a code vector. But x1 – x2 is a vector all of 
whose non zero components are in b or less consecutive components i.e., x1 – x2 is a solid 
burst of length b or less, which is a contradiction. Thus all the vectors in X must belong to 
distinct cosets of the standard array. The number of such vectors over GF(q), including the 
vector of all zero, is clearly  
 

1+b. 
 

The theorem follows since there must be at least this number of cosets.      
In the following theorem, an upper bound on the number of check digits required for the 

construction of a linear code considered in theorem 1 is provided. This bound assures the 
existence of a linear code that can detect all solid burst error of length b or less. The proof is 
based on the well known technique used in Varshomov-Gilbert Sacks bound by constructing a 
parity check matrix for such a code (refer Sacks[17], also theorem 4.7 Peterson and Weldon 
[16]). 
 
Theorem 2.  There exists an (n, k) linear code over GF(q) that has no solid burst of length b 
or less as a code word provided that  
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Proof.   The existence of such a code will be shown by constructing an appropriate (n-k)×n 
parity-check matrix H. The requisite parity-check matrix H shall be constructed as follows:  
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Select any non-zero (n-k)-tuples as the first j-1 columns h1, h2, ..., hj-1 appropriately, we lay down 
the condition to add jth column hj such that hj should not be a linear sum of immediately 
preceding consecutive upto b-1 columns. In other words, 
 

hj ≠ uj-1 hj-1 + uj-2 hj-2 + ……..+ uj-s+2 hj-s+2 + uj-s+1 hj-s+1 , 
 
where s ≤ b, j ≥ s, the coefficients ui ∈GF(q) are non zero. 
 

This condition ensures that no solid burst of length b or less will be a code word which 
thereby means that the code shall be able to detect solid bursts of length b or less. The number 
of ways in which the coefficients ui can be selected, including the vector of all zeros, is 
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At worst, all these linear combinations might yield a distinct sum. 
Therefore a column hj can be added to H provided that 
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Or, 
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Example 1. Consider a (4, 2) binary code with the 2×4 matrix H which has been constructed 
by the synthesis procedure given in the proof of theorem 2 by taking b = 3,  n = 4. 
 

H= 








1010

0101
 

 
The null space of this matrix can be used to detect all solid bursts of length 3 or less. It may be 
verified from error pattern-syndromes table 1 that the syndromes of all solid bursts of length 3 or 
less are non zero. 

 
Table 1 

    Error patterns       Syndromes  
   Solid bursts of length 1 
   1000                    10 
   0100             01 
   0010                         10 

 0001                         01 
Solid bursts of length 2 

   1100             11 
   0110            11 
    0011           11 
   Solid bursts of length 3 
    1110            01 
    0111            10 
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3.  Codes correcting solid burst errors 
Out of the two results obtained in this section, the first result gives a lower bound on the 

number of check digits required for the existence of a linear code over GF(q) that corrects all 
solid bursts of length b or less. The second result gives an upper bound on the number of check 
digits which ensures the existence of such a code. The proof of the first result is based on the 
technique used in theorem 4.16, Peterson and Weldon[16]. The proof of the second result is 
based on the same well known technique used in Varshomov-Gilbert Sacks bound by 
constructing a parity check matrix for such a code (refer Sacks[17], also theorem 4.7 Peterson 
and Weldon [16]). 
 
Theorem 3.  An (n, k) linear code over GF(q) that corrects all solid bursts of length b or less 
must have at least: 
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Proof.   The proof is based on counting the number of correctable error vectors and comparing 
it with the available number of cosets. 
 
We have, 

the number of solid bursts of length 1 = n(q-1). 
the number of solid bursts of length 2 = (n-1)(q-1)2. 
the number of solid bursts of length 3 = (n-2)(q-1)3. 
. . . . . . . . 
. . . . . . . . 
the number of solid bursts of length b = (n-b+1)(q-1)b. 

 
So, the total number of correctable error vectors including the vector of all zero’s is 
 

1 + ∑
=

−+−
b

i

iqin
1

)1)(1( . 

  
For correction, all these vectors must belong to different cosets. The total number of cosets 
available is qn-k . Therefore we must have 
 

qn-k ≥ 1+ ∑
=

−+−
b

i

iqin
1

)1)(1( . 

Or, 

    n-k  ≥ 






 −+−+∑
=

b

i

i
q qin

1

)1)(1(1log .        

 
Now what follows is an upper bound on the number of check digits required for the construction 
of a linear code discussed in theorem 3. This bound assures the existence of a linear code that 
can correct all solid burst error of length b or less. 
 
Theorem 4.  There shall always exist an (n, k) linear code over GF(q) that corrects all bursts 
of length b or less (n > 2b) provided that 
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Proof.   The existence of such a code will be proved by constructing an (n-k)×n parity check 
matrix H for the desired code as follows. 
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Select any non zero (n-k) tuple as the first column h1 of the matrix H. After having selected the 
first j-1 columns h1, h2, . . ,hj-1 appropriately, we lay down the condition to add jth column hj as 
follows: 
 
hj should not be a linear sum of immediately preceding upto b-1 consecutive columns 
hj-1, hj-2, . . ., hj-b+1, together with any b or fewer consecutive columns from amongst the first j-b 
columns h1, h2, . . . , hj-b i.e., 
 

hj   ≠  (uj-1 hj-1 + uj-2 hj-2 + ……..+ uj-s+1 hj-s+1 + uj-s hj-s ) 
+(vi hi + vi+1 hi+1 + ……..+ vi+s'-2 h i+s'-2 + v i+s'-1 h i+s'-1 ) 

  

where ui,vi∈GF(q) are non zero coefficients, s ≤ b-1, s' ≤  b  and the columns hi in the 
second bracket are any b or less consecutive columns among the first (j-1-s) columns. 

 
This condition ensures that there shall not be a code vector which can be expressed as sum 
(difference) of two solid bursts of length b or less each. Thus, the coefficients ui form a solid 
burst of length s and the coefficients vi form a solid burst of length b or less in a (j-1-s)-tuple. 

The number of choices of these coefficients can be calculated as follows: 
If ui is chosen to be a solid burst of length (b-1), then the number of solid bursts of length b or 
less in a (j-b)-tuple, corresponding to the coefficient vi , is given by   
   

∑
=

−+−−
b

i

iqibj
1

)1)(1(  (refer theorem 3). 

 
If ui is chosen to be a solid burst of length (b-2), then the number of solid bursts of length b or 
less in a (j-b+1)-tuple, corresponding to the coefficient vi , is given by 
 

   ∑
=

−+−+−
b

i

iqibj
1

)1)(11( . 

 
Continuing the process, if ui is chosen to be a solid burst of length 0, then the number of solid 
bursts of length b or less in a (j-1)-tuple, corresponding to the coefficient vi , is  
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Therefore, the total number of possible choices of the coefficients ui and vi is 
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which can be written as 
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Thus the column hj can be added provided 
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Example 2. Consider a (9, 3) binary code with the 6×9 matrix H which has been constructed 
by the synthesis procedure given in the proof of theorem 4 by taking b = 3, n = 9. 
 

H=



























100100000

010010000

001001000

100000100

010000010

001000001

 

 

The null space of this matrix can be used to correct all solid bursts of length 3 or less. It may be 
verified from error pattern-syndromes table 2 that the syndromes of all solid bursts of length 3 or 
less are non zero and distinct. 
 

Table 2 
Error patterns       Syndromes  

  Solid bursts of length 1 
  100000000           100000 
   010000000            010000 
   001000000           001000 
   000100000           000100 
  000010000           000010 
   000001000           000001 
   000000100           100100 
   000000010           010010 
   000000001           001001 
 
   Solid bursts of length 2 
   110000000           110000 
   011000000           011000 
   001100000           001100 
   000110000           000110 
   000011000           000011 
  000001100           100101 
   000000110           110110 
   000000011           011011 
 
   Solid bursts of length 3 
   111000000           111000 
   011100000           011100 
   001110000           001110 
   000111000           000111 
   000011100           100111 
   000001110           110111    
   000000111           111111 
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4.  Discussion and Conclusion 
This paper presents the bounds on parity checks for codes capable of detecting and 

correcting solid burst errors, also deals with the construction of such codes. The bounds will 
determine the capability of error-detecting and -correcting of the codes. The papers ([4], [5], [6]) 
obtain bounds for codes dealing with burst error. The bounds derived in this paper are 
exclusively for solid burst error. If the types of errors occurred are known to be solid burst, 
these bounds will be more useful. 

The optimal codes are useful from application point of view in communication as having 
minimum redundancy and improving the rate of transmission. Therefore optimal codes that 
correct all solid burst errors of length b or less and no other errors can be good work. Bounds 
similar to the ones obtained in this paper w.r.t. the metric studied by Kitakami et al. [15] may 
also be derived. 
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