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Abstract---Drug-induced cardio-hepatic toxicity is the foremost cause
of heart and liver damage, with the use of antimicrobial-agent. Most
patients, although recuperate after discontinuing the offending-agent,
severe cases may consequence in progressive disease. Azithromycin is
a rare cause of idiosyncratic drug-induced cardiac and liver injury. This
semi-synthetic macrolide has a substantial potency against both gram-
positive and gram-negative organisms due to the presence of a nitrogen
atom in its ring. A search was performed in PubMed, Scopus, Google
Scholar and Research Gate. Azithromycin divulges a lower number of
interactions with proteins, whereas, QTc prolongation with torsades de
pointes (Tdp) and polymorphic ventricular tachycardia are communally
occurred in cardiovascular system, due to dysregulation of intracellular
[Ca**] via the Na*-Ca** exchanger activity, leading to delayed after
depolarizations. In addition azithromycin-induced liver injury was
more cholestatic in nature, with an ALT/ALP ratio of <2 ULN,
contributing vanishing bile duct syndrome. This review hereafter
revealed the adverse effect of azithromycin in relation with cardio —
hepatic toxicity.
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Introduction

Macrolide derived from Streptomyces erythreus, a type of soil-borne bacteria, are
bacteriostatic antibiotic. It is a diverse class of hydrophobic compounds exemplified
by a macrocyclic lactone ring and discriminated by variable side chains (Lenz et al.,
2021). Macrolide has a broad spectrum of activity against many gram-positive
bacteria (cocci) (LiverTox, 2012). The mode of action of macrolide is to bind to the
large subunit of rRNA and slab the ‘tunnel’ through which the mounting peptide
chain exits (Swayze et al., 2007). Macrolides are widely used as antimicrobial agents
due to their anti-inflammatory, excellent tissue penetration, prolonged tissue
persistence and prokinetic properties (Kryfti et al., 2013, Suresh et al., 2013, Dhar
et al., 2021). Along with microbicidal properties, macrolides are also tied with
immunomodulatory action to suppress hyper-immunity and inflammation for
decreasing in bacterial virulence and biofilm formation as well as reduction of
mucus hypersecretion. These non-microbicidal actions of macrolides are
apparented in a period of several weeks and are bordered to the 14 to 15 member
macrolides, such as erythromycin, clarithromycin, and azithromycin etc. (Kryfti et
al., 2013, Dhar et al., 2021). According to US National Library Medicine, currently
available macrolides are able to tolerate orally and widely used to treat mild-to-
moderate contagions. However, it is reported that, several macrolides have been
linked to liver as well as cardiovascular toxicity (Viluksela et al., 1996, Vial et al.,
1997, Chitturi and Farrell, 2001, Zang et al., 2022, Kutlin et al., 2002, Rao et al.,
2014, Farang et al., 2021, Wu et al., 2023). Macrolides can exhibit toxic bioactivity,
which may be a root of the adverse side effects monitored in response to the
administration of macrolide drugs (Zang et al., 2021, Lenz et al., 2021). Modulation
of host immune responses may be the reason behind the toxicity (Parnham et al.,
2014, Lenz et al., 2021).

Azithromycin, like other macrolide antibiotics such as erythromycin and
clarithromycin, is bacteriostatic against many gram-positive bacteria as well as it
is more active than erythromycin against several gram-negative bacteria too
(LiverTox, 2012). This is a wellknown semisynthetic macrolide (Cambell, 2022).
Azithromycin is typically given in moderate-to-severe infections, generally well
tolerated, but side effects in addition to severe adverse reactions are observed,
including nausea, abdominal pain, dyspepsia, headache, dizziness, rashes,
diarrhea, hepatotoxicity, severe hypersensitivity, cardiovascular in tolerance etc
(Moy et al., 2015, Zang et al., 2022, Wu et al., 2023) shown in Figure 1. The focus
of this review hereafter was to state the adverse effects of a semisynthetic microlide,
named azithromycin in relation with liver and cardiovascular system.
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Figure 1. Classification of macrolides with special emphasis on azithromycin
Azithromycin

Azithromycin, a part of the azalide subclass of macrolide, contains a 15 membered
ring with a methyl substituted nitrogen (Fohner et al., 2017). According to
pharmacokinetic properties, azithromycin is more stable at low pH, resulting in a
longer serum half-life and enhanced concentrations in tissues compared to
erythromycin (Zuckerman et al., 2011). As a result of the better constancy at low
pH, azithromycin has an oral bioavailability of 37% (Tsai et al., 2015, Fohner et al.,
2017). Consequently, the pharmacodynamic property of azithromycin shows
significantly augmented potency against gram-negative bacteria.

Macrolides are lipophilic and are widely allocated in blood and tissues (Zuckerman
et al., 2004, Tsai et al., 2015, Fohner et al., 2017). Once in the bloodstream,
macrolides preferentially bind alpha-1-acid glycoprotein (AGP) encoded by the gene
orosomucoid 1 (ORM1). The binding protein institutes in the highest concentration
after albumin (Tsai et al., 2015). Erythromycin is 70-80% bound to AGP in the
plasma. However, azithromycin is 93% unbound in the plasma, but only 16%
unbound in liver tissue (Sugie et al., 2004, Fohner et al., 2017). Azithromycin
concentrates in phagocytes, which then transport the drug to the site of infection
(Parnham et al., 2014). According to Zuckerman et al (2004), concentrations of
azithromycin are 800 times in phagocytes which are doubled from erythromycin,
found in the serum. Azithromycin accumulated in the liver, are 50 times higher
than in the serum (Sharma and Mullangi, 2013, Derendorf 2020). After 2-3 hours,
peak plasma concentrations are attained. Due to its wide tissue dispersion,
azithromycin has a lengthy half-life (2-4 days) (Lalak and Morris, 1993, Idkaidek et
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al., 2014). These elevated levels may result in cholestasis and damage to the bile
ducts as well as cardiovascular injury (Chandrupatla et al., 2002, Martinez et al.,
2015, Ray et al., 2012, Giudicessa and Ackerman, 2012).

Dose and mode of administration

Azithromycin is accessible for both oral and intravenous administration. Sandman
and Igbal (2024) stated that the usual dose is 250 mg or 500 mg, specified once
daily for 3 to 5 days. In severe infections, a higher dose is exploited. Oral
formulations comprise tablets (250 mg, 500 mg), packets (1 gram dissolved in %
cup or 60 ml of water) and suspension for reconstitution (100 mg/5 ml, 200 mg/5
ml). Dosing can be administered with or without food. Intravenous (IV) azithromycin
is available in a 500 mg solution for reconstitution. It should be infused over at
least 60 minutes. Azithromycin administration should not be via intramuscular
injection or IV bolus. The ophthalmic solution (1%) is available in a 2.5 ml bottle
which is used in bacterial conjunctivitis (Drew et al., 1992). Azithromycin
demonstrates excellent tissue penetration and intracellular accretion (Sandman
and Igbal, 2024).

Adverse effects

Azithromycin is usually regarded as a safe antimicrobial mediator. Nevertheless,
there are adverse effects of azithromycin in regards with cardio-hepatic toxicity
(Ioannidis et al., 2001, Sandman and Igbal, 2023).

Cardiac damage

There is escalating evidence that cytochrome P450 (CYP) plays a role in the onset,
progression and prognosis of cardiovascular disease, particularly, heart failure
(Elbekai and Kadai, 2006, Aspromonte et al., 2014, Ong et al., 2017). Azithromycin
has been shown to be a weak substrate for CYP3A4 (cytochrome P450 family 3
subfamily A member 4) and to neither induce nor inhibit CYP3A4 activity (He et al.,
2009). Only about 6% of azithromycin is recovered in the urine, with most being
excreted unaltered in the bile, through both multidrug resistance-associated
protein-2 (MRP2) (encoded by the gene ATP- binding cassette sub-family C member
2, ABCC2) and ATP- binding cassette sub-family B member 1 (ABCB1) (Tsai et al.,
2015, Fohner et al., 2017). Sugie et al. (2004) stated that MRP2 is considered to
play a smaller role in excretion of azithromycin into the bile than ABCBI.
Henceforth, it is revealed that azithromycin divulges a lower number of interactions
with proteins, likely is less affected by genetic variation and has enhanced activity
against gram negative bacteria due to higher tissue concentrations (Fohner et al.,
2017). However, azithromyocin can cause QTc prolongation and has been
associated with torsades de pointes (Tdp) and polymorphic ventricular tachycardia
(Kezerashvili et al., 2007, Huang et al., 2007, Ray et al., 2012, Chorin et al., 2020).
TdP, a rare polymorphic ventricular tachycardia, is considered by a gradual amend
in the amplitude and twisting of the QRS complexes around the isoelectric line on
an electrocardiogram (Drew et al., 2010). TdP is associated with QTc prolongation,
which is the heart-rate-attuned lengthening of the QT interval. QT prolongation is
one of the most infamous adverse drug reactions leading to sudden cardiac death
(Yap et al., 2003). Drug-induced prolonged depolarisation (a prolonged QT interval)
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of the heart can predispose a patient to develop this life-threatening arrhythmia (Li
et al., 2017). Azithromycin is proarrhythmic (Ray et al., 2012, Yang et al., 2017),
which led us to hypothesize that it would increase the risk of sudden cardiovascular
toxicity and cardiac death. After administration of azithromycin, cardiac Na*
current, upsurges intracellular [Na*] and subsequently endorse dysregulation of
intracellular [Ca**] via the Na*-Ca** exchanger activity, leading to delayed after
depolarizations (DADs) and triggered arrhythmias (Mitchell et al., 1998, Dzhura et
al., 2000, Yang et al., 2017). This is the hallmark of catecholaminergic polymorphic
ventricular tachycardia (CPVT). However, arrhythmias can lead to complications
with cardiomyopathy in which high SGOT activity is observed (Kallip and Payne
1960). The whole aspect is graphically documented in Figure 2.
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Figure 2. Azithromycin and cardiovascular adverse effect
Hepatotoxicity

Drugs are an imperative cause of liver injury and manifestations may array from
asymptomatic elevation of liver enzymes to fulminant hepatic failure (Das, 2011).
Drug-induced hepatotoxicity is an acute or chronic reaction to a natural or
manufactured compound (Fisher et al., 2015, Francis and Navarro, 2022). The two
types of hepatotoxic mechanisms are intrinsic (dose-dependent) and idiosyncratic
(more unpredictable) (Chalasani et al., 2015, Katarey and Verma, 2016, Francis
and Navarro, 2022). Quantitative systems toxicology (QST) is a discipline of
pharmacology, hunts for to comprehend and ultimately envisage the toxic effects of
drugs by integrating computational and experimental methods (Bloomingdale et al.,
2017, Woodhead et al., 2019). Drug induced liver injury (DILI), a QST model of liver
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injury, incorporates the results from in vitro mechanistic toxicity assays with
estimations of in vivo exposure and known biochemistry to realise biochemically
induced hepatotoxicity (Howell et al., 2012, Shoda et al., 2014, Woodhead et al.,
2017, Woodhead et al., 2019). DILI is a diagnosis of segregation, relying on
obtaining a detailed history along with extensive blood work, hepatobiliary imaging
and a liver biopsy (Lewis 2013, Liang and Ramdass, 2022). Hepatotoxicity
mechanisms represent in DILIsym comprises oxidative stress, mitochondrial
dysfunction and bile acid transport inhibition (Yang et al., 2015). Identification of
the type of DILI is imperative to detect whether it is hepatocellular, cholestatic or
mixed to narrow down differential diagnoses (Chalasani et al., 2014). Hepatocellular
DILI has a ratio of the serum alanine aminotransferase (ALT) and alkaline
phosphatase (ALP) > 5 upper limit of normal (ULN), cholestatic DILI has a ratio < 2
ULN, and mixed DILI has a ratio between 2 and 5 ULN (Francis and Navarro, 2022).
These are mechanistically connected to cell death and transaminase elevation
(Yang et al., 2015, Woodhead et al., 2019).

Azithromycin persuades liver injury (hepatocellular or cholestatic in nature) usually
occurs within 1-3 weeks after drug instigation (Martinez et al., 2015, Park et al.,
2020). Azithromycin-induced liver injury was more cholestatic in nature, with an
ALT/ALP ratio of <2 ULN (Chalasani et al., 2014, Han et al., 2017, Park et al., 2020,
Francis and Navarro, 2022). This semisynthetic macrolide is a rare cause of
cholestatic liver injury and an inaccessible cause of vanishing bile duct syndrome
(VBDS) owing to rapidly progressive nature, with complete irreversible ductopenia
within only 20 days (Devarbhav, 2012, National Institute of Diabetes and Digestive
and Kidney Diseases, 2012, Dawkins et al., 2023). VBDS is pigeonholed by
progressive ductopenia as well as portal tract fibrosis via immune, toxic and
idiosyncratic mechanisms, with complete small bile duct destruction leading to
cirrhosis (Bessone et al., 2021). Moreover, prompt recognition of the adverse effect
of azithromycin is hyperbilirubinemia due to underlying DILI (Dawkins et al., 2023).
This semisynthetic macrolide henceforth is associated with an asymptomatic
elevation of liver transaminases (Wong et al., 2021). Typically, azithromycin can
cause cholestatic hepatitis, as well as hepatocellular injury with jaundice too
(Lockwood et al., 2010, LiverTox, 2012, Wong et al., 2021).

The rationale behind azithromycin tempted hepatotoxicity depends on the basis of
the structural characteristics. The structure-toxicity relationship combined with in
silico ADMET (absorption, distribution, metabolism, excretion and toxicity data)
parameters evaluation and structure based computations can be used to predict
drug impurity toxicity (Han et al., 2019, Zhang et al., 2022). According to Zhang et
al (2022), the structure of impurities of azithromycin has mainly changed in the
side chain (C5 position) of the lactone rings. The construction of impurities F, L and
H are different only in the nitrogen (N)-linked substituents on the side chain group
at C5 position. The N-linked substituents in impurity F is an electron-withdrawing
aldehyde group from N atom, while the N-connected substituents in impurity H and
impurity L are electron-donating groups, leading to different charges of N atoms.
The charge of N atoms on the side chain group at C5 position of azithromycin
analysed by in silico ADMET predictions (Zhang et al., 2022), henceforth are the
main culprit to provoke type two DILI, cholestatic hepatotoxicity which may upshot
in the elevation of transaminase, leading to cirrhosis and jaundice, depicted in
Figure 3.
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Figure 3. Azithromycin and hepatotoxicity
Conclusions

In summary, this review comprehended that azithromycin has enhanced activity
against gram negative bacteria owing to the higher tissue concentrations. All
documents evaluate the adverse effect of azithromycin in relation with cardio —
hepatic toxicity. QTc prolongated DADs is the outcome in cardiovascular toxicity.
Hepatotoxicity due to extensive structural impurities of this semisynthetic
macrolide antibiotic will endow with a theoretical basis for quality consistency
assessment and manufacturing process. A multidisciplinary collaborative approach
with clinicians, pharmacists and nursing is entailed for superiority of overall
therapeutic success to focus on the antimicrobial stewardship leading to proactively
optimizing medication effectiveness and safety.
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