How to Cite:

Fadhil, T. A., & AL-Hiti, W. F. (2022). Synthesis, characterization of new 3-Chloro-Azetidine-2-One and 1, 3-thiazinan-4-one derivatives from di imines. *International Journal of Health Sciences*, 6(S5), 5732–5747. https://doi.org/10.53730/ijhs.v6nS5.9950

Synthesis, characterization of new 3-Chloro-Azetidine-2-One and 1, 3-thiazinan-4-one derivatives from di imines

Tamarah A.Fadhil

Department of Chemistry, College of Education for Pure science, University of Al-Anbar

Prof. Dr. Waleed Faraj AL-Hiti

Department of Chemistry, College of Education for women, University of Al-Anbar

Abstract---The study Included synthesis of some new Derivatives of (benzylideneamino)-3-chloro-4-phenylazetidin-2-one and 3-(3-chloro-2-oxo-4-phenylazetidin-1-yl)-2-phenyl-1,3-thiazinan-4-one by tow steps; The first include amino group of the di amino was condensed with different aromatic aldehydes in the presence of absolute ethanol to give new Schiff bases derivatives [1-3] respectively. The second step , the resulting imines derivatives [1-3] were reacted with chloro acetyl chloride in presence of triethylamine in dry benzene by per cyclic reaction to give novel 3-(3-chloro-2-oxo-4-phenylazetidin-1-yl) derivatives (A₁-A₃) and reacted with 3- mercapto propanoic acid with (Schiff-base) in dry benzene to give1,3-thiazinan-4-one derivative's(Z₁-Z₉) The composites prepared were described by melting point .Most of these derivatives were confirmed by "FT-IR, ¹HNMR spectra.

Keywords---Schiff's bases, (benzylideneamino)-3-chloro-4phenylazetidin-2-one, 3-(3-chloro-2-oxo-4-phenylazetidin-1-yl)-2phenyl-1,3-thiazinan-4-one

Introduction

Azetidine, a four-member heterocyclic ring system with (N) as a heteroatom, is the parent heterocyclic ring of azetidinone. The second position of 2-azetidinone has a carbonyl group, which is one of the most prevalent heterocyclic rings found in many antibiotics [1]. Although the ring of azetidinone was known since (1907) but the realization of their chemistry began from (1947) only. These are presently used for chemotherapy of bacterial infections [2-4]. Realization of their chemistry began from (1947) only began from (1947) only. These are presently used for chemotherapy of bacterial infections [2-4]. Realization of their chemistry began from (1947) only. These are presently used for chemotherapy of bacterial infections [2-4]. Realization of their chemistry began from the standard for chemotherapy of bacterial infections [2-4]. Realization of the second presently used for chemotherapy of bacterial infections [2-4]. Realization of the second presently used for chemotherapy of bacterial infections [2-4]. Realization of the second presently used for chemotherapy of bacterial infections [2-4]. Realization of the second presently began from the second presently used for chemotherapy of bacterial infections [2-4]. Realization of the second presently began from the second presently used for chemotherapy of bacterial infections [2-4]. Realization of the second presently began from the second present second present

International Journal of Health Sciences ISSN 2550-6978 E-ISSN 2550-696X © 2022.

Manuscript submitted: 27 Feb 2022, Manuscript revised: 9 April 2022, Accepted for publication: 18 June 2022 5732

techniques for the synthesis of structurally diverse 2-azetidinone derivatives[5]. The Staudinger reaction is thermally or photochemically enhanced by utilizing acid chlorides in the presence of (Et3N) triethylamine or a-diazoketones as ketene precursors[6]. Azetidinone is a four-membered cyclic that has been used as a useful building block for the preparation of a variety of chemical compounds by utilizing the strain energy associated with it[7]. Sulfadiazine is a sulfonamide antibiotic that is listed on the WHO's "List of Essential Medicines." It kills bacteria that cause infections by preventing the bacterial cell from producing folic acid, and it's commonly used to treat "urinary tract infections" (UTIs) and burns[8,9]. The four-membered cyclic amide azetidinone, often known as "-lactam," is produced from 3-amino-propanoic acid [10,11]. Azetidine is the parent heterocyclic ring of azetidinone, which is a four-membered heterocyclic ring system with (N) as the heteroatom. The second position of 2-azetidinone has a carbonyl group, which is one of the most prevalent heterocyclic rings found in many antibiotics[10]. Although the ring of azetidinone has been known since 1907, its chemistry has only recently been discovered (1947) Azetidine, a fourmember heterocyclic ring system with (N) as a heteroatom, is the parent heterocyclic ring of azetidinone. The second position of 2-azetidinone has a carbonyl group, which is one of the most prevalent heterocyclic rings found in many antibiotics [12]. Although the ring of azetidinone has been known since 1907, the chemistry of the compound was finally discovered in 1947. These are currently being utilized to treat bacterial infections [13-15]. Thiazinanones (sixmembered heterocyclic) have not been extensively studied in the past, but they have important biological properties such as immunopotentiating [16], antiinflammatory [17], antimalarial [18], and antibacterial [19]. The current study additionally looked at how thiazolidinones have been synthesized in recent years [19, 20]. The methods utilized in nonconventional sonochemistry were of great interest to the researchers [21, 22]. The research is the first to look at the thiazinanone ring's chemistry. Thus, using 2-picolylamine, aldehydes, and MercaptoPropanoic acid, the current work produced 15 novel thiazinanones. The goal of this research is to look at the antioxidant properties of thiazolidinones [23] and novel thiazinanones that have been synthesized in the past. N-bromo compounds are antibacterial, antifungal, and anti-HIV chemicals that have a bromine atom linked to nitrogen [22-27]. The antibacterial activity of 2-(4-((1-aryl-1H-1, 2, 3-triazol-4-yl)methoxy)phenyl)2-(2-oxoazetidin-1-yl) acetamide against different G-positive (Staphylococcus aureus and Bacillus subtilis) acetates was investigated.The 2-(4-((1-aryl-1H-1, 2, 3-triazol-4-yl)methoxy)phenyl)2-(2oxoazetidin-1-yl) acetamide product was characterized and their antibacterial activities were evaluated against various G-positive (Staphylococcus aureus and Bacillus subtilis) and G-negative (Pseudomonas aeruginosa and Escherichia coli) bacteria, using minimal inhibition concentration.[28]

Steps of the theoretical study to estimate the biological effectiveness

In this study, the structural formulas of the prepared compounds were drawn using ChemDraw Professional 16.0 program. After that, the structural formula was modified and the files were converted to mol format using Chem3D 16.0 program. In the next step, Discovery Studio 4.0 Client converted the files to pdb. The last step, the files of the structural formulas were uploaded to the website www.dockthor.com to complete the process of molecular docking of the compounds after specifying the email to which the results will be sent after the bond strength assessment is completed. After receiving the results, they were included in Table No. (7).

Materials and Methods

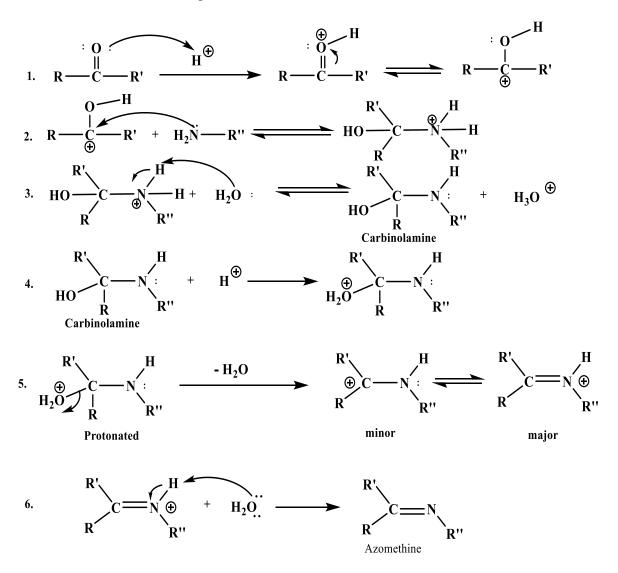
Using the electro thermal 9300 melting point LTD, UK, the melting points were recorded and reported in degrees (0c). TLC was carried out on aluminum and glass plates that were coated with a 0.25mm layer of silica gel (Fluka). Iodine vapor was used to detect some of the derivatives. Fourier transform infrared (SHIMADZU, 8400) spectrophotometer, Japan the prang 4000-600cm-1 FT-IR spectra The samples were put through their paces on a KBr disc. The 13c and 1H-NMR spectra were measured in (ppm) units in DMSO-d6 as the solvent (Bruker- Ultra Shield 300 MHz Switzerland).

Synthesis of Schiff-bases [1-9]:

Mixture of diamines (0.01 mol) and the corresponding aldehydes (0.02 mol) in ethanol (30ml) was treated with (3-5) drops glacial acetic acid and refluxed for (5h). The reaction of mixture was cooled and filtered. The final compounds were purified by recrystallization from ethanol [**29**]. The physical properties for these compounds are listed in table (): In the same way, the rest of Schiff's rules were prepared. (1-3)

Synthesis of Heterocyclic Compounds:-

Synthesis of 3-(3-chloro-2-oxo-4-phenylazetidin-1-yl) derivatives (A₁-A₉). A mixture of Schiff bases (0.001mol) with (0.002 mol) of chloroacetyl chloride in dry benzene (30ml) was added drop wise at room temperature. and (3-5) drops of triethyl amine .Content was stirred vigorously for 15 minutes and refluxed for 8hrs. Mixture was cooled at room temperature, filtered, washed with ice-cooled water, dried and recrystallized from ethanol [**30**]. In the same way, the rest of Schiff's rules were prepared. (1-8)Some of the physical properties and yield of compounds are listed in table ():


Synthesis of 1, 3-Thiazinane -6-one Derivatives (Z_1-Z_9)

"(0.01 mole) of Schiff bases (A1-A9) with (0.01 mole, 1.085 g) of (3-Mercaptopropanoic acid) in (20 mL)" dry benzene and two drops of ZnCl2, refluxed for 6 hours, then the solvent was dissolved. After that, 100% ethanol was used to recrystallize the molded precipitate. The rest of Schiff's regulations were prepared in the same way. (A1-A9) Table 1 shows the physical characteristics (3).

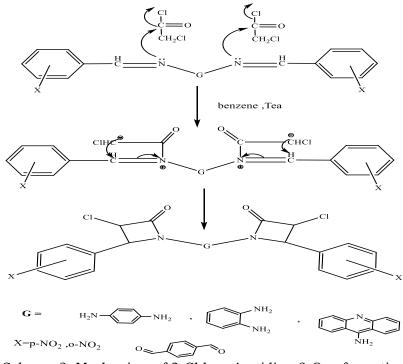
Results and Discussion

In this work, A number of diamines compounds which on condensation with various selected aromatic aldehydes in the presence of absolute ethanol and few drops of glacial acetic acid formed Schiff bases derivatives [1 -9]. The spectral data respectively. and is illustrated in scheme 1. Of FT.IR of [1 -9] shown band at (1620 – 1688) cm⁻¹ confirming the formation of imine (C=N) and disappearance of

NH₂ band of diamines compounds.

Scheme-(1): Mechanism of Imine formation

	OH,P-NG	н₂n-€nн 02,p-с1,p-он,	H_2 H_2 N	NH ₂ H ₂		н₂ ↓ _{он} €	NH ₂
Cod	Х	G	Molc.	M.Wt	m.p	Yelid	Colour
е			Formula			%	
1	o-OH	H ₂ N NH ₂	$C_{16}H_{16}N_2O_2$	268.31	128-126	60	Yellow
							<u> </u>
2	P-NO2	H ₂ N NH ₂	$C_{16}H_{14}N_4O_4$	326.31	184-186	80	Golden
3	P-B r	H ₂ N NH ₂	$C_{16}H_{14}Br_2N_2$	394.11	150-152	78	yellow
Ũ		1112	010-11-21-2	0,000	100 10		<i>j</i> 0220 ···
4	P-OH	H ₂ N NH ₂	$C_{16}H_{16}N_2O_2$	268,31	218-220	73	white
	D GI			205.00	150 154	70	1
5	P-C1	H ₂ N NH ₂	$C_{16}H_{14}Cl_2N_2$	305.20	172-174	70	brown
6	o-OH	H ₂ NNH ₂	$C_{14}H_{12}N_2O_2$	240	204-206	69	white
7	<i>P</i> -C1	H ₂ NNH ₂	C ₁₄ H ₁₀ Cl	277	212-214	70	Yellow
	D NO		2N2	200	070 075		0.11
8	P-NO ₂	H_2N $ NH_2$	$C_{14}H_{10}N_4O_4$	298	273-275	74	Golden
9	<i>P</i> -OH	H ₂ N—NH ₂	$C_{14}H_{12}N_2O_2$	240.26	272-274	70	orange
10	P-NO ₂		$C_{20}H_{14}N_4O_4$	374	206-208	75	Yellow
11	P-C1		$C_{20}H_{14}Cl_2N_2$	352	138-140	74	Orange


Table (1): values of FT-IR absorption bands for Schiff bases (1-9) measured in cm⁻

Comp.No	Nomenclature	Structural formula	Molec. formula	M.p. Co	Color
A ₁	(E)-3-chloro-1-(4-((4- chlorobenzylidene)ami no)phenyl)-4-(4- chlorophenyl)azetidin- 2-one	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ &$	C ₂₂ H ₁₅ N ₂ OCl ₃	208- 210	Green
A ₂	3 R,4R)-3-chloro-1-(4- (((E)-4- nitrobenzylidene)amin o)phenyl)-4-(4- nitrophenyl)azetidin-2- one	0 0 0 0 0 0 0 0 0 0	C ₂₂ H ₁₅ N ₄ O ₅ Cl	248- 246	yellow
A ₃	(Z)-1-(acridin-9-yl)-4- (4-((acridin-9- ylimino)methyl)phenyl) -3-chloroazetidin-2- one	$\begin{array}{c} & & O \\ & & & C \\ & & & & 1 \\ & & & & 1 \\ & & & & & 1 \\ & & & &$	C ₃₆ H ₂₃ N ₄ OC1	Dec.	yellow
A ₄	(E)-3-chloro-1-(2-((4- nitrobenzylidene)amin o)phenyl)-4-(4- nitrophenyl)azetidin-2- one	$\begin{array}{c} O \\ O \\ O \\ O \\ O \\ A \\ A \\ A \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 4 \\ 4 \\ 4 \\ 5 \\ 6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	C ₂₂ H ₁₅ N ₄ O ₅ Cl	206- 204	orange
A ₅	(Z)-3-chloro-1-(3- hydroxyphenyl)-4-(4- (((3- hydroxyphenyl)imino) methyl)phenyl)azetidin -2-one	$\begin{array}{c} C \\ 0 \\ \end{array} \\ 0 \\ \end{array} \\ \begin{array}{c} C \\ 0 \\ \end{array} \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 2 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 2 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 2 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 3 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 4 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 2 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 3 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 4 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 2 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 3 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 3 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 4 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 2 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	C ₂₂ H ₁₇ N ₂ O ₃ Cl	211- 213	red
A ₆	(S,E)-3-chloro-1-(4-((4- hydroxybenzylidene)a mino)phenyl)-4-(4- hydroxyphenyl)-114- azet-2(3H)-one		C ₂₂ H ₁₇ N ₂ O ₃ Cl	220- 219	yellow
A ₇	(Z)-3-chloro-1-(2- hydroxyphenyl)-4-(2- (((2- hydroxyphenyl)imino) methyl)phenyl)azetidin -2-one		C ₂₂ H ₁₇ ClN ₂ O ₃	162- 160	orange
A ₈	(4 S)-3-chloro-1-(((Z)-4- chlorobenzylidene)ami no)-4-(4- chlorophenyl)azetidin- 2-one	$Cl \xrightarrow{5}_{2} (l) \xrightarrow{6}_{2} (l) \xrightarrow{1}_{1} (l) \xrightarrow{6}_{1} (l) \xrightarrow{7}_{1} (l) $	C ₁₆ H ₁₁ N ₄ O ₅ Cl	222- 218	yellow

Table (2): The chemical formula, molecular weights % yield, melting points, colours, of the azetidine compounds (A1-A9)

A9	(E)-3-chloro-1-(2-((4- nitrobenzylidene)amin o)ethyl)-4-(4- nitrophenyl)azetidin-2-		C ₁₆ H ₁₁ N ₂ OCl ₃	292- 290	orange
	one	6			

The four-membered β -lactam ring was introduced by the cycloaddition of [1-9] and chloroacetyl chloride in the presence of triethylamine catalyst to give (benzylideneamino)-3-chloro-4-phenylazetidin-2-one $[A_1 - A_{18}]$. Title compounds $[A_1 - A_9]$ shown IR bands at (1695 – 1799) cm-1 confirming the formation of (C=O) β -lactam and appearance of the vibration between (702 – 784) cm-1 was due to the (C-Cl) β -lactam which was further substantiated with the help of ¹H-NMR data with the signals at δ (5.09 – 5.16) shown the presence of (N-CH) β -lactam(4.8-6.50),(5.93-5.95) , and signal was observed for δ ppm for (HC-Cl) β -lactam (6.48-6.50),(6.08-6.10)

Scheme-2: Mechanism of 3-Chloro-Azetidine-2-One formation

5738

Comp.No	Nomenclature	Structural formula	Molec. formula	M.p. Co	Color
A ₁₀	- '1,1(1,4 - phenylene)bis(3-chloro- 4-(4- chlorophenyl)azetidin-2- one)		$C_{24}H_{16}N_2O_2Cl_4$	212-210	green
A ₁₁	(4 S)-3-chloro-1-(4- ((2R,3S)-3-chloro-2-(4- nitrophenyl)-4- oxoazetidin-1-yl)phenyl)- 4-(4- nitrophenyl)azetidin-2- one	$C = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	C ₂₄ H ₁₆ N ₄ O ₆ Cl ₂	240-238	yellow
A ₁₂	(3 R,4S)-3-chloro-1-(2- ((2S)-3-chloro-2-(4- nitrophenyl)-4- oxoazetidin-1-yl)phenyl)- 4-(4- nitrophenyl)azetidin-2- one		C ₂₄ H ₁₆ N ₄ O ₆ Cl ₂	222-220	orange
A ₁₃	(4 S)-1-(acridin-9-yl)-4- (4-((2R,3S)-1-(acridin-9- yl)-3-chloro-4- oxoazetidin-2-yl)phenyl)- 3-chloroazetidin-2-one	$\begin{array}{c} 5 & 10 & 4 \\ 7 & 108 & 38 & 3 \\ 9 & 1 & 13 & 2 \\ 0 & 2 & 3 & 5 & 68 & 9 & 1 \\ CI & 7 & 68 & 9 & 1 \\ 0 & 2 & 108 & 28 & 28 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	C ₃₈ H ₂₄ N ₄ O ₂ Cl ₂	Dec.	yellow
A ₁₄	-' 4,4(1,4 - phenylene)bis(3-chloro- 1-(3- hydroxyphenyl)azetidin- 2-one)	$O \xrightarrow{CI}_{1} \xrightarrow{2} \xrightarrow{3} \xrightarrow{4} \xrightarrow{4} \xrightarrow{N}_{1} \xrightarrow{2} \xrightarrow{3} \xrightarrow{4} \xrightarrow{4} \xrightarrow{N}_{2} \xrightarrow{2} \xrightarrow{0} \xrightarrow{1} \xrightarrow{N} \xrightarrow{1} \xrightarrow{2} \xrightarrow{1} \xrightarrow{N} \xrightarrow{2} \xrightarrow{1} \xrightarrow{N} \xrightarrow{1} \xrightarrow{2} \xrightarrow{1} \xrightarrow{N} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} 1$	C ₂₄ H ₁₈ N ₂ O ₄ Cl2	250-252	red
A ₁₅	- '4,4(1,2 - phenylene)bis(3-chloro- 1-(4- hydroxyphenyl)azetidin- 2-one)	$HO = \begin{pmatrix} 0 & 2 & CI & CI & 2 & O \\ 0 & 1 & N & 4 & 3 \\ HO = 4 & 3 & 2 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	C ₂₄ H ₁₈ N ₂ O ₂ Cl ₂	226-224	brown
A ₁₆	- '3,3 dichloro-4,4'-bis(4- nitrophenyl)-[1,1'- biazetidine]-2,2'-dione	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	C ₁₈ H ₁₄ N ₂ O ₆ Cl ₂	290-288	yellow

Table (4): Show the nomenclature, melting points, structural and molecular formula for compounds $(A_{10}-A_{18})$.

A ₁₇	- '3,3 dichloro-4,4'-bis(4- chlorophenyl)-[1,1'- biazetidine]-2,2'-dione	$CI \xrightarrow{\begin{array}{c} c \\ c$	$C_{18}H_{12}N_2O_2Cl_4$	210-208	Light green
A ₁₈	-' 1,1 (ethane-1,2- diyl)bis(3-chloro-4-(4- nitrophenyl)azetidin-2- one)	$O = N_{+4}^{O} + 6 + 2 + 1 + 4 + 0$	C24H16N4O6Cl2	222-220	orange

Table (5): Wave numbers in cm-1 of I.R spectrum for prepared compounds: (A1-A9)

Comp. NO.	ν C-H arom.	v C-H (Asym	(-CH ₂ -) aliphatic Sym.	ν C=O lactam	v C=N	ν	C=C ring	νC-N	v C-Cl	Others
A1	3081	2991	-	1668	1612	1582	1485	1270	680	766 C-Cl
A ₂	3081	2853	-	1670	1621	1593	1492	1265	648	1415,1339 C- NO ₂
A ₃	3100	2913	-	1670	1647	1586	1480	1263	679	
A ₄	3040	2884	-	1680	1635	1594	1511	1275	684	1446,1340 C- NO _{2.}
A ₅	3000	2950	-	1686	1686	1597	1505	1280	688	3594 О-Н
A ₆	3030	2922	-	1654	1654	1594	1463	1241	740	3237 О-Н
A ₇	3068	2985	-	1675	1620	1609	1474	1234	734	3465 O-H
A ₈	3052	2986	_	1670	1635	1605	1491	1278	748	1457,1320 C- NO ₂
A9	3046	2997	-	1660	1618	1590	1483	1285	708	780 C-Cl

Comp. No.	ν C-H arom.	v C-H Asym.	(-CH ₂ -) aliphatic Sym.	v C=O	νC	e=C _{ring}	νC-N	ν C-Cl	Others
A ₁₀	3102	2939	2848	1635	1597	151 4	1205	742	,-NO2 Asy 1514 , 1514
A ₁₁	3053	2987	-	1670	1585	148 8	1271	681	740C-C1
A ₁₂	3082	2853	-	1688	1592	149 3	1190	683	1414,1338 C-NO _{2 Asy.}
A ₁₃	3063	2933	-	1680	1590	148 8	1270	688	1435, 1347C-NO _{2 Asy.}
A ₁₄	3136	2945	-	1648	1588	148 0	1265	755	

5740

A ₁₅	3165	2988	-	1684	1604	150 3	1236	717	3387 О-Н
A ₁₆	3060	2945	-	1665	1590	147 0	1256	735	3457 О-Н
A ₁₇	3092	2990	-	1680	1601	147 8	1245	727	1430,1335 C-NO _{2 Asy.}
A ₁₈	3086	2956	-	1684	1590	151 8	1238	718	734C-C1

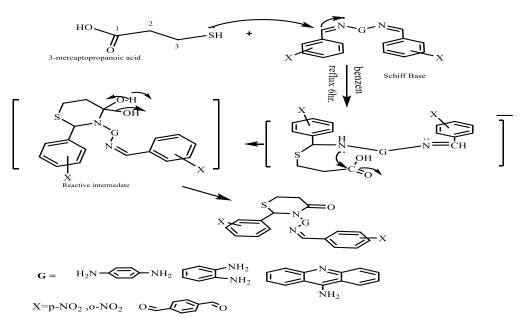

Table (5): Wave numbers in cm $^{-1}$ of I.R spectrum for prepared compounds: (A_{10}-A_{18})

Table (3): Show the nomenclature, melting points, structural and molecular formula for Compounds (Z_1 - Z_9).

Comp.No	Nomenclature	Structural formula	Mole. formula	M.p.	Color
Z ₁	(S)-3-(4-((2S,3R)-3- chloro-2-(4- chlorophenyl)-4- oxoazetidin-1- yl)phenyl)-2-(4- chlorophenyl)-1,3- thiazinan-4-one		$C_{25}H_{19}N_2O_2Cl_3S$	208-210	yellow
Z ₂	(S)-3-(4-((2S,3R)-3- chloro-2-(4- nitrophenyl)-4- oxoazetidin-1- yl)phenyl)-2-(4- nitrophenyl)-1,3- thiazinan-4-one		$C_{25}H_{19}N_4O_6ClS$	248-246	yellow
Z ₃	(R)-3-(acridin-9-yl)-2- (4-((2R,3S)-1-(acridin- 9-yl)-3-chloro-4- oxoazetidin-2- yl)phenyl)-1,3- thiazinan-4-one	$\begin{array}{c} 0 & 100 \\ 0 & 100 \\ 0 & 0 \\ 0 &$	C ₃₉ H ₂₇ N ₄ O ₂ ClS	Dec.	yellow
Z4	(R)-3-(2-((2S,3R)-3- chloro-2-(4- nitrophenyl)-4- oxoazetidin-1- yl)phenyl)-2-(4- nitrophenyl)-1,3- thiazinan-4-one	$O_{i} = (1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	$C_{25}H_{19}N_4O_6ClS$	206-204	orang e
Z ₅	(2 S)-2-(4-((2S)-3-chloro- 1-(3-hydroxyphenyl)-4- oxoazetidin-2- yl)phenyl)-3-(3- hydroxyphenyl)-1,3-	$ \begin{array}{c} 5 \\ 6 \\ 3 \\ 1 \\ 22 \\ 3 \\ 4 \\ 6 \\ 5 \\ 6 \\ 1 \\ 6 \\ 6 \\ 1 \\ 6 \\ 6 \\ 1 \\ 6 \\ 6 \\ 1 \\ 6 \\ 6 \\ 1 \\ 6 \\ 6 \\ 1 \\ 6 \\ 6 \\ 1 \\ 6 \\ 1 \\ 6 \\ 1 \\ 6 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	C ₂₅ H ₂₁ N ₂ O ₄ Cl S	211-213	red

	thiazinan-4-one				
Z ₆	(((3 R,4S)-3-chloro-1-(2- (((E)-4- hydroxybenzylidene)am ino)phenyl)-4-(4- hydroxyphenyl)azetidin -2-one	$HO = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	C ₂₅ H ₂₁ N ₂ O ₄ ClS	220-219	yellow
Z ₇	-3(2-((2S,3R)-3-chloro- 2-(4-hydroxyphenyl)-4- oxoazetidin-1- yl)phenyl)-2-(4- hydroxyphenyl)-1,3- thiazinan-4-one	$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	C ₁₉ H ₁₅ N ₄ O ₆ ClS	162-160	orang e
Z ₈	- 3(3 -chloro-2-(4- nitrophenyl)-4- oxoazetidin-1-yl)-2-(4- nitrophenyl)-1,3- thiazinan-4-one	$\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	$C_{19}H_{15}N_2O_2Cl_2S$	222-218	yellow
Z9	- 3(3 -chloro-2-(4- chlorophenyl)-4- oxoazetidin-1-yl)-2-(4- chlorophenyl)-1,3- thiazinan-4-one	$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	C ₂₁ H ₁₉ N ₄ O ₆ ClS	292-290	orang e

1,3-Thiazinan-6-one compounds $[Z_1-Z_9]$ prepared by reaction of 3mercaptopropanoic acid compound with $[A_1-A_9]$ by using dry benzene as a solvent and ammonia. FT-IR spectrum showed bands at (3020 –3055) cm-1 for benzene ring, at (1640-1674) cm-1 for(C=O) lactone and lactam compounds, at (1360-1385) cm⁻¹ for (C-N) and (1587–1592) cm-1 for (C=C) aromatic ring. and appearance of band at (684-692) cm⁻¹to C-S.

Scheme-2: Mechanism of 1,3-Thiazinan-6-one formation

Table (5): Wave numbers in cm-1 of I.R spectrum for prepared compounds: (Z_1-Z_9)

Comp. N.O	ν C-H arom.		(-CH ₂ -) hatic Sym.	v C=O	v C=O lacta m	ν C=0	C ring	ν C-N	ν C-Cl	v C-S	Others
Z_1	3050	2978	2845	1650	1635	1598	1478	1265	740	682	755 =C-Cl
Z_2	3065	2985	2875	1678	1620	1589	1485	1275	729	681	1430 =C-NO _{2 Asy.} 1345 =C-NO _{2 sy.}
Z3	3048	2965	2890	1666	1640	1592	1465	1255	735	692	
Z 4	3044	2968	2838	1648	1622	1587	1495	1248	727	684	1432 =C-NO _{2 Asy.} 1350 =C-NO _{2 sy}
Z 5	3070	2976	2865	1645	1643	1592	1475	1269	718	695	3394 О-Н
Ζ6	3025	2985	2895	1635	1607	1586	1468	1238	708	682	3347 О-Н
Z 7	3035	2980	2845	1670	1645	1601	1488	1285	735	697	3365 О-Н
Z 8	3064	2990	2866	1665	1634	1592	1487	1278	740	685	1436 =C-NO _{2 Asy.} 1340 =C-NO _{2 sy.}
Z 9	3075	2946	2878	1652	1632	1589	1478	1257	738	678	743=C-Cl

$\begin{array}{ c c c } \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $									
Comp. No.	$\delta(\underline{CH}_{2 \text{ Thiazine}})$	δ(HC-Cl)	δ(CH-Aromatic)	δ(HC-N)	δ (CH-S)				
	ppm	β-lactam	ppm	lactam	Ppm				
	4H,t	ppm	nH,m	ppm	1H,s				
		1H,s		3H,m					
A1	-	d6.48-6.50	dd8.00-8.76	d.4.8-6.50	-				
A ₃	-	d6.08-6.10	m6.44-8.02	d5.93-5.95	-				
Z_1	1.72-1.74	5.60-5.56	7.26-7.98	4.06-4.07	6.79				
Z ₃	.48-2.61	5.45-5.47	6.38-7.58	5.30-5.32	6.79				

Table (6): ¹H-NMR Data of 3-Chloro-1-(Pyrimidin-2-Yl) Azetidin-2- One and thiazinan-4-One Compounds (A₁, A₃, Z₁, Z₃).

Applied efficacy

It has been found from the results that we obtained from the compounds prepared in the laboratory as in the table (), which are expressed in the unit (Kcal/mole), some of them have varying effectiveness,. Lung and chest cancer and with the anti-fungal, as well as with the bacteria E coli, Staphyll l, so it can be considered in the future as good pharmaceutical medical compounds, especially that some of them have carcinogenic activity. it was effective with all except with breast cancer Compound A_2 (it gave good efficacy with all except for E coli bacteria and compound A_4 , A_8 , Z_8) gave good efficacy with all, especially with breast cancer, but it did not give with anti-fungal type.

Table (7):- Represents the applied effectiveness of some prepared compounds with the values of some drugs

Code	Breast cancer	Lung cancer	Anti-Fungal	E. coli	Staphyll
A ₂	-	-6.217	-3.223	-	-
A 4	-12.687	-5.943	-8.074	-	-9.736
A 8	-11.908	-7.022	-	-8.505	-8.79
A ₁₁	-	-	-	-4.256	-7.288
A ₁₂	-	-8.312	-	-	-10.421
A 14		-4.61	-	-5.428	-5.533
A 15			-3.959	-	-
Z1				-4.212	
Z4		-6.733		-6.593	
Z8	-11.55				
Tamoxifen	-11.361				

Fulvestrant	-12.882				
Raloxifene	-9.483				
Toremifene	-11.683				
Gefitinib		-8.382			
Erlotinib		-8.83			
Terbinafine			-8.687		
Fluconazole			-5.723		
Miconazole			-8.597		
Econazole			-9.317		
Clotrimazole			-8.842		
Cephalexin				-6.472	
Trimethoprim				-5.971	
Trimethoprim					-9.486
Cephalexin					-5.361

References

- 1. A.A.Ashokrao, "Synthesis And Biological Activities Of Some Substituted Azetidinones" (dissertation), (2006) Rajiv Gandhi University of health sciences, Karnataka, 23.
- Block JH, Beale JM, [2004]:Wilson and Gisvolds textbook of Organic Medicinal and Pharmaceutical Chemistry, 11th edition; Lippincott Company, 299.
- 3. Faikong K., Schneper L. and Mathee K.,"Beta-lactam Antibiotics: from Antibiosis to Resistance and Bacteriology", [2009] .*The Authors Journal Compilation*, APMIS, 1-36.
- Muthanna D. Saud, Muna .I. Khalaf, Huda.A.Hassan and Ikbal .R.Hanna.,"Synthesis of New Derivatives of β - Lactam Antibiotics",[2014].International Journal of Pharm Tech Research,6(3), pp 1018-1027.
- 5. Jiaxi Xu, "Stereo selectivity in the synthesis of 2-azetidinones from ketenes and imines via the Staudinger reaction". [2009]. *ARKIVOCix* Pp. 21-44.
- 6. Singh, G.S., Recent progress in the synthesis and chemistry of azetidinones. [2003]. *Tetrahedron* 59: 7631–7649.
- Radhiyah A. Khdur and Ezzat H. Zimam, Synthesis, Characterization And Study Biological Screening Of Some New Azetidinone Derivatives From Azo-Sulphadiazine.[2018]. Pak. J. Biotechnol. Vol. 15 (1) 201-217.
- 8. A. Salim Mohammed and Y. S. HaseebZebary;"Spectrophotometric Determination of Sulfadiazine via Diazotization and Coupling Reaction Application to Pharmaceutical Preparations",[2013].*Raf. J. Sci*,24(6),pp.61-73,.
- Who Model List of Essential Medicines;" World Health Organization.October (2013), Retrieved 22 April (2014). Synthesis And Characterization Of .,"Dujaili-Rawi, J. H. Tomma, A. H. Al-A. A. Mukhlus, M. S. Al-Journal for Pure and -Ibn Al-Haitham.[2012]",Erythroascorbic Acid –New Oxazepines Derived From D.)25 2, eApplied Scienc Oxazepine Derivative as an Antitumor Agent," Dhanya Sunil, Ranjitha C, Rama M,
- 10. KSR Pai-7International .[2014]August ",and Snail1 Inhibitor against Human Colorectal Adenocarcinoma .3(8), Technology Journal of Innovative Research

5745

in Science, Engineering and Fred. van der Steen and Gerard van Koten ,"Syntheses of 3-Amino-2-azetidinones: A Literature Survey", [1991].*Tetrahidron*41(36), Pp. 7503-7524.

- 11. R. Deshmukh , A. Kumar Jha , A. Singh Thakur and P.SudhirKumar., "Synthesis And Biological Activity Of Some Thiazole Compounds Containing Azetidinone And Thiazolidinones Derivatives ",[2014]. World Journal of Pharmaceutical research,3(2),
- 12. A.A.Ashokrao, "Synthesis And Biological Activities Of Some Substituted Azetidinones"(dissertation), (2006) Rajiv Gandhi University of health sciences, Karnataka, 23.
- 13. Block JH, Beale JM, [2004]:Wilson and Gisvolds textbook of OrganicMedicinal and Pharmaceutical Chemistry, 11th edition; Lippincott Company,
- 14. Faikong K., Schneper L. and Mathee K.,"Beta-lactam Antibiotics: from Antibiosis to Resistance and Bacteriology", [2009] .*The Authors Journal Compilation,APMIS*,1-36
- 15. Muthanna D. Saud, Muna .I. Khalaf, Huda.A.Hassan and Ikbal R.Hanna.,"Synthesis of New Derivatives of β Lactam Antibiotics",[2014].*International Journal of Pharm Tech Research*,6(3), pp 1018-1027.
- Zebardast T, Zarghi A, Daraie B, Hedayati M, Dadrass OG.Design and Bioorg Med Chem Lett 2009;19:3162–3165.
- 17. Rudrapal M, Chetia D, Prakash A. Med Chem Res2013;22:3703-3711.
- 18. [Neuenfeldt PD, Drawanz BB, Siqueira GM, Gomes CRB, Wardell SMSV, Flores AFC, Cunico W. Efficient. Tetrahedron Lett 2010;51:3106–3108.
- 19. Neuenfeldt PD, Drawanz BB, Aguiar ACC, Figueiredo F Jr, Krettli AU,Cunico W. Synthesis2011:3866–3870.
- 20. Neuenfeldt PD, Duval AR, Drawanz BB, Rosales PF, Gomes CRB,Pereira CMP, Cunico W Ultrason Sonochem 2011;18:65–67.
- 21. Gouv[•]ea DP, Bare [•]no VDO, Bosenbecker J, Drawanz BB, Neuenfeldt PD, Siqueira GM, Cunico W.Ultrason Sonochem2012;19:1127–1131
- 22. B.K.Magar, V.N.Bhosale, A.S.Kirdant, T.K.Chondhekar, J.Che.Bio.phy.Sci., 2012, 2(1),127.
- 23. J.B.Jiang, D.P.Hesson, B.A.Dusak, D.L.Dexter, G.J.Kang, E.Hamel, J.MedChem., 1999, 33,1721.
- 24. Chanana, M. (2018). Empirical study: relationship between self efficacy and academic performance. International Journal of Health & Medical Sciences, 1(1), 28-34. https://doi.org/10.31295/ijhms.v1n1.36
- 25. Y.Xia, Z.N.Yang, M.J.Hourand et al, Med.Chem.Lett., 2001, 11,1193.
- 26. P.B.Trivedi, N.K.Undavia, A.M.Dave, K.N.Bhatt, N.C.Desai, Ind.J.chem., 1993, 497.
- 27. N.A.Gangwal, U.R.Kothawade et al, Indian. J. Het. Chem., 2001, 10, 291.
- 28. J.Bartoli, E.Turmo, M.Alguero et al, J.Med.Chem., 1998, 41, 1869.
- 29. Nyandra, M., Suryasa, W. (2018). Holistic approach to help sexual dysfunction. Eurasian Journal of Analytical Chemistry, 13(3), pp. 207–212.
- 30. Samaneh Zarei1. Et.al. J Heterocyclic Chem. 2020;1–8 (Design, synthesis and antibacterial activity evaluation of novel 2-(4-((1-aryl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)2- (2-oxoazetidin-1-yl)acetamide derivatives.
- 31. Ghames, A., Douadi, T., Issaadi, S., Sibous, L., Alaoui, K. I., Taleb, M., & Chafaa, S. (2017).

32. Askar, F. W., Ali, R. A., & Al-Mouamin, T. M. (2016). Synthesis of New Some Imidazole Derivatives Containing β-Lactam Ring. Baghdad Science Journal, 13(2).