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Abstract---A new series of urea derivatives containing benzimidazole 
group as potential anticancer agents have been designed and 
synthesized. The structures of the synthesized compounds were 
characterized and confirmed by spectroscopic techniques such as 1H 
NMR, and Mass spectrometry. A new series of urea derivatives 
containing benzimidazole group were design with an intention to 
search new antiproliferative lead compound. Drug like properties and 
bioactivity score for drug targets of designed compounds were 
calculated by molinspiration tool and obtained result found to obey 
/LSLQVNL·V� UXOH� WKDW� LQGLFDWHV� WKH compound are orally active 
molecules. Osiris property explorer was used for the prediction of drug 
relevant properties and toxicity of synthetic compounds. Pre ADMET 
server was also used to estimate ADME properties of synthetic 
compounds, results showed good to notable anticancer activity. So 
that, these new benzimidazole-urea compounds could serve as 
potential template to become leads in near future for the discovery 
and development of new effect orally drugs molecules. Two 
compounds, SRA13 [1-(2,3-Dimethylphenyl)-3-(1-methyl-1H-
benzo[d]imidazol-2-yl)urea ]  and SRA20[1-(3-Chloro-4-fluorophenyl)-
3-(1-methyl-1H-benzo[d]imidazol-2-yl)urea] were exhibited highest 
drug score and emerged as lead compounds and motivates for further 
development of more effective and safer compounds.Compound SRA20 
showed the most effective activity against the lungs cancer cell lines 
�,&���  � ���Í0�� DQG� (*)5� ELQGLQJ� �,&���  ����Í0�� DIILQLW\� DV�
compared to other members of the series. 
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1. Introduction 
 
Cancer affects both the well being and the capital of the person who has it. 
During the life of a nutrient dense species, cells die and divide to keep building up 
new tissue. To stay alive, it is important to maintain a careful balance between 
the two. Damage to the DNA can throw off the balance, leading to growths that 
don't belong. So, cancer is a word for a malady in which cells that shouldn't be 
dividing do so without regulation (uncontrolled cell proliferation). Cancer spreads 
to neighbouring tissues and other areas of the body through the circulating blood 
and lymph vessels (metastasis) [1-3]. In recent years, many cancer-fighting 
medications have been developed. Many present treatments are ineffective 
because they are toxic to typical fast-growing cells, leading to medication 
resistance. Most available drugs aren't specific [4]. Therefore, effective, less toxic 
anticancer drugs are needed. 
 

Molecular biology, empirical screening, and rational medication development have 
found many heterocyclic and fused heterocyclic compounds [5-6]. Nitrogen-
containing heterocyclic systems, such as azoles, are vital in the quest for 
anticancer drugs. Benzimidazole nuclei are important in biological and synthetic 
medicinal chemistry searches. It has long been known that benzimidazole 
derivatives have a variety of beneficial properties, including 
cancer/antitumor/antiproliferative [7²17], inflammatory [11], antifungal, 
antioxidant [19] and antiviral including anti-HIV [20], antibacterial, and cysticidal 
[22] activities. Based on earlier scientific journals, the current study project 
involves design, synthesis, characterisation, in-silico analysis, and in-vitro 
anticancer activity. (Figure 1). 
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Figure 1. Research Outline for the Discovery of Novel Anti-Cancer agents 

 

Urea and Thio-urea kinds of organic compound that can be used in many 
different ways. Their compounds have various pharmacological properties, 
including antibacterial, antidiabetic, analgesic, and anticancer effects[28-34]. 
Several anticancer drugs with urea and thiourea functional groups, like 
Tandutinib and Enzalutamide, have reached the clinical phase (Figure 1). In 
addition, a series of benzimidazole-urea [31]and benzimidazole-thiourea [32] 
derivatives were synthesized and showed strong antiproliferative activity against a 

subset of human tumor cells in comparison to gold-standard therapies. Powerful 
anticancer action was observed in hybrids of urea and benzimidazole, and several 
derivatives, including Glasdegib [33], are now available as drugs. (Figure 2). 
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Figure 2:  Rationally design and  template for synthetic Scheme from marketed 

anticancer drug 
 
2. Material and Methods 
2.1. General information 
 
Melting points were measured using an uncorrected liquid paraffin bath in open 
capillary tubes. Toluene, ethyl acetate, and formic acid (5:3:2, v/v/v) and 
benzene, acetone (9:1, v/v) were utilized as solvents while TLC plates (silica gel 
G) were used to track the reactions' development. After exposing the skin to 
iodine vapors or ultraviolet light, the spots may be pinpointed. PerkinElmer 
Spectrum Version 10.4.00 FT-IR spectrophotometer was used to record the 
spectra (USA). Spectra were obtained using a Varian-400 MHz NMR 
spectrometer and a CDCl3 or DMSO-d6 solvent at room temperature for the 1H 
NMR spectra. Both the CDCl3 and DMSO-d6 solvent peaks were utilized as 
internal standards (7.26 [D] and 77.2 [C] ppm and 2.50 [D] and 39.7 [C] ppm, 
respectively). The chemical shifts are assigned using data from routine nuclear 
magnetic resonance (NMR) tests (1H and 13C). TLC tests were conducted on 
silica F254 using UV light at 254 nm for detection. By means of collision-
induced dissociation on a Bruker APEX-4 (7-Tesla) instrument, high resolution 
mass spectra (HRMS) were acquired (in positive or negative mode) using the 
electrospray ion trap (ESI) technique. Silica Gel 60 was used for the 
chromatographic column (230 mesh). Our chemistry supplies came from Sigma-
Aldrich Chemical Co. 
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2.2. Synthesis Compounds (SRA11-SRA20) by Scheme 1. 
 
We synthesized Benzimidazole-Urea derivatives [SRA11-SRA20] as follows. O-
Phenylene diamine [1] reacts with cyanogen bromide in methanol at room 
temperature and followed by ammonium hydroxide workout gives 2-amino 
benzimidazole [2] with 88% yield.  
 

Scheme 1:  Synthesis of Benzimidazole ²urea derivatives(SRA11-SR20) 
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Synthesis of 2-amino benzimidazole (2): 
To a mixture of methanol and water (1:1) cyanogen bromide (1.5 mol)and o-
phenylene diamine(1) (1.00 mol) and was stirred at room temperature for 24 h. 
After, the methanol was removed obtained oily residue was cooled using ice and 

treated with ammonia. Continuous stirring for 1 hour, solids precipitated were 
collected and recrystallized from ethanol/water. Yield 88 %, m.p. 234 °C; 1H NMR 
(400 MHz, CDCl3���Å������GG���+� J= 5.8), 6.9 (dd, 2H, J= 5.8), 5.4 (s, 2H), 4.8 (s, 
1H). We synthesized N-methylbenzimidazole derivatives [SRA11-SRA20] as follows 
:  O-Phenylene diamine [1] reacts with cyanogen bromide in methanol at room 
temperature and followed by ammonium hydroxide workout gives 2-amino 
benzimidazole [2] with 88% yield. 2-aminobenzimidazole on N-methylation with 
methyl iodide in acetone medium in presence of basic condition yielded 2-amino-
1-methyl benzimidazole [3]. In the last step compound 3 reacts with various 
substituted phenyl isocyanate in DMSO medium under room temperature gives 
target compounds [SRA11-A20] 
 
Preparation of 1-methyl-1H-benzo[d]imidazol-2-amine (3): 
2-Aminobenzimidazole (2) (1.00 equiv) in acetone mixed with KOH (5.00 equiv), to 
the above slurry methyl iodide (1.10 equiv) was added slowly at stirred at room 
temperature for one hour. Reaction mixture filtered through sintered funnel and 
filtrate concentrated and purified using column chromatography to afford 
compound 3 as brown solid. Yield 79%: 1H NMR (300 MHz, DMSO-d6��Å�������V��
3H), 6.34 (br s, 2H), 6.82-6.92 (m, 2H), 7.06-7.09 (m, 2H). 
 
General procedure for the preparation of compounds SRA-11 to SRA-20: 
1-Methyl-1H-benzo[d]imidazol-2-amine (3)(1.00 mmol) was mixed to dimethyl 
sulfoxide  under nitrogen atmosphere, and then the corresponding (sub)phenyl 
isocyante (1.05 mmol) was added at room temperature and continued stirring for 
30 minutes. After the completion of reaction [TLC] reaction mixture mixed to 
water and extracted with dichloromethane. Organic layer washed with brine and 
separated the layers, organic layer concentrated to get crude compounds. Crude 
compounds purified using recrystallization in ethanol to afford final compounds 
(SRA-11 to SRA-20). 
1-(2-Chloro-5-methylphenyl)-3-(1-methyl-1H-benzo[d]imidazol-2-yl)urea (SRA-
12):Yield: 71%, 1H NMR (400 MHz, DMSO-d6��Å���������+��EU�V������������+��EU�V���
7.62 (1H, s), 7.39 (1H, d, J = 7.7 Hz), 7.22 ² 7.19 (2H, m), 7.14 (2H, m),  7.01 (1H, 
d, J = 7.6 Hz), 3.47 (3H, s), 2.38 (3H, s), 2.24 (3H, s). 
1-(2,3-Dimethylphenyl)-3-(1-methyl-1H-benzo[d]imidazol-2-yl)urea (SRA-
13):Yield: 82%, 1H NMR (400 MHz, DMSO-d6��Å���������+��EU�V������������+��EU�V���
7.29 (1H, m), 7.22 ² 7.19 (6H, m), 3.47 (3H, s), 2.32 (3H, s); 2.17 (3H, s). 
1-(2,5-Dimethylphenyl)-3-(1-methyl-1H-benzo[d]imidazol-2-yl)urea (SRA-
14):Yield: 81%, 1H NMR (400 MHz, DMSO-d6��Å���������+��EU�V������������+��EU�V���
7.31 (1H, s), 7.21 ² 7.19 (3H, m), 7.14 (2H, d, J = 7.6 Hz), 7.01 (1H, d, J = 7.6 Hz), 
3.47 (3H, s), 2.39 (3H, s); 2.28 (3H, s). 
1-(3-Chlorophenyl)-3-(1-methyl-1H-benzo[d]imidazol-2-yl)urea (SRA-15):Yield: 
79%, 1H NMR (400 MHz, DMSO-d6��Å���������+��EU�V������������+��EU�V����������+��
s), 7.40 (1H, d, J = 7.7 Hz), 7.37 (2H, m), 7.28 (1H, d, J = 7.7 Hz), 7.21 ² 7.19 (2H, 
m), 7.12 (1H, d, J = 7.6 Hz),3.47 (3H, s). 



 

 

5193 

1-(2-Fluorophenyl)-3-(1-methyl-1H-benzo[d]imidazol-2-yl)urea (SRA-16):Yield: 
64%, 1H NMR (400 MHz, DMSO-d6��Å���������+��EU�V������������+��EU�V����������+��
s), 7.73 (1H, t, J = 7.9 Hz), 7.28 ² 7.21 (5H, m), 7.16 (1H, m),3.47 (3H, s). 
1-(3,5-Dimethoxyphenyl)-3-(1-methyl-1H-benzo[d]imidazol-2-yl)urea (SRA-
17):Yield: 78%, 1H NMR (400 MHz, DMSO-d6��Å���������+��EU�V������������+��EU�V���
7.26 (2H, d, J = 7.7 Hz), 7.22 ² 7.19 (2H, m), 7.01 (2H, s),7.01 (1H, s)3.74 (6H, 
s),3.43 (3H, s). 
1-(1-Methyl-1H-benzo[d]imidazol-2-yl)-3-(3-(trifluoromethyl)phenyl)urea 
(SRA-18):Yield: 56%, 1H NMR (400 MHz, DMSO-d6��Å���������+��EU�V����������+��
br s), 8.24 (1H, s), 7.76 (1H, d, J = 7.9 Hz), 7.41 ² 7.39 (2H, m), 7.22 ² 7.19 (2H, 
m), 7.14 (2H, d, J = 7.7 Hz),3.51 (3H, s). 
1-(2-Methoxyphenyl)-3-(1-methyl-1H-benzo[d]imidazol-2-yl)urea (SRA-
19):Yield: 66%, 1H NMR (400 MHz, DMSO-d6��Å���������+��EU�V����������+��EU�V���
8.24 (1H, s), 7.91 (1H, d, J = 7.9 Hz), 7.33 (1H, m), 7.29 (1H, m), 7.26 (1H, d, J = 
7.9 Hz), 7.22 ² 7.19 (2H, m), 7.14 (2H, d, J = 7.7 Hz), 3.79 (3H, s),3.51 (3H, s). 
1-(3-Chloro-4-fluorophenyl)-3-(1-methyl-1H-benzo[d]imidazol-2-yl)urea (SRA-
20):Yield: 63%, 1H NMR (400 MHz, DMSO-d6��Å���������+��EU�V����������+��EU�V���
7.87 (1H, s), 7.38 (1H, d, J = 7.9 Hz), 7.32 (1H, d, J = 7.9 Hz), 7.22 ² 7.19 (2H, m), 
7.14 (2H, d, J = 7.7 Hz)3.51 (3H, s).  

 
 2.3     Study of in-silico assessment 
 2.3.1. Drug likeness and LiSLQVNL·V�UXOH 
 
Rule of molecular characteristics for predicting drug pharmacokinetics (ADME; 
Absorption, distribution, metabolism, and excretion) was developed in 1997 by 
Christopher A. Lipinski. The alteration of molecular structure frequently results 
in medications with a greater molecular weight, more rings, a greater number of 
rotatable bonds, and a greater lipophilicity. The rule is significant for drug 
development in which a pharmacologically active lead molecule is incrementally 
improved for greater activity, selectivity, and drug-like characteristics. The rule 
asserts that poor absorption or penetration is more likely if a ligand molecule 
violates the Lipinski rule of 5, that is, if it contains more than five hydrogen 
bond donors, a molecular weight more than 500, a log P greater than 5, and a 
total of nitrogen and oxygen greater than 10 [35]. A complicated balance of 
multiple chemical attributes and structural characteristics determines whether 
a specific molecule resembles established medications. This includes 
bioavailability, transport properties, affinity to proteins, reactivity, toxicity, and 
metabolic stability [36-38]. 
 
2.3.2. Drug-likeness Prediction  
This screening approach was performed to assess the drug-likeness of suggested 
ligands as it affects the behavior of molecules in live organisms, including 
bioavailability, transport characteristics, affinity to proteins, reactivity, toxicity, 
and metabolic stability [35-36]. Pre ADMET provides a module for predicting 
drug-likeness based on Lipinski's criteria. In addition, a number of drug-like 
criteria, such as the Ghose filter [39], CMC [40], WDI [41], and MDDR DB [42], 
can be used to identify drug-like properties. Ghose filter establishes drug-
likeness limitations as follows: computed log P is between -0.4 and 5.6, 
molecular weight is between 160 and 480, molar refractivity is between 40 and 
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130, and the number of total atoms is between 20 and 70 [38]. The developed 
filter differentiates between drug-like and non-drug-like chemical substances. 
  
2.3.3. Molinspiration and Prediction of Drug likeness 

The molecular structures and smiles notations of synthesized substances were 
derived using Chem. Bio draw Ultra (11.0 versions) program (Table 1). Smiles 
notations of benzimidazole derivatives were then fed into Molinspiration (2018.02 
version) and drug likeness tool to calculate numerous molecular properties 
(Tables 3 & 4) and to predict bioactivity score for drug targets, such as enzymes 
and nuclear receptors, kinase inhibitors, GPCR ligands, and ion channel 
modulators (Table 5). To evaluate the drug-likeness of the synthesized 
compounds, molecular properties such as partition coefficient (Log P), topological 
polar surface area (TPSA), hydrogen bond donors and acceptors, rotatable bonds, 
number of atoms, molecular weight, and violations of Lipinski's rule of five were 
calculated and displayed in Table 3. percent Ab was also determined using the 
following formula: percent Ab = 109 - [0.345 x TPSA] (Table 3). These properties 
are calculated according to Lipinski's rule of five, which states that any compound 
considered to be a drug must have a partition coefficient of less than 5, a polar 
surface area within 1402, a H bond acceptor of less than 10, a H bond donor of 

less than 5, and a molecular weight within 500 dalton [43-48]. 
 

Table 1: Compound names  and their smiles of Benzimidazole Urea derivatives 
(SRA11-20).  

 
Compound                                          Smiles 

Notation 
SRA11 Cc3ccc(Cl)c(NC(=O)Nc2nc1ccccc1n2C)c3 
SRA12 Cc3ccc(NC(=O)Nc2nc1ccccc1n2C)c(C)c3 
SRA13 Cc3ccc(NC(=O)Nc2nc1ccccc1n2C)cc3C 
SRA14 Cc3ccc(C)c(NC(=O)Nc2nc1ccccc1n2C)c3 
SRA15 Cn3c(NC(=O)Nc1cccc(Cl)c1)nc2ccccc23 
SRA16 Cn3c(NC(=O)Nc1ccccc1F)nc2ccccc23 
SRA17 COc3cc(NC(=O)Nc2nc1ccccc1n2C)cc(OC)c3 
SRA18 Cn3c(NC(=O)Nc1cccc(C(F)(F)F)c1)nc2ccccc23 

SRA19 COc1ccccc1NC(=O)Nc3nc2ccccc2n3C 
SRA20 Cn3c(NC(=O)Nc1ccc(F)c(Cl)c1)nc2ccccc23 
 
Molinspiration is used to calculate the subsequent molecular characteristics. 
LogP: The total of fragment-based contributions and correction factors. 
Topological Polar Surface Area (TPSA): The total of fragment contributions. O- and 
N-centered polar pieces are taken into account. It has been demonstrated that 
TPSA is an excellent descriptor for describing drug absorption, including 
intestinal absorption, bioavailability, Caco-2 permeability, and blood-brain barrier 
penetrance. Molecular volume is the total of fragment contributions to the true 3D 
volume for a training set of over 12,000 molecules, the vast majority of which are 
drug-like. Five Property Precepts: The rule specifies that the majority of drug-like 
compounds have logP = 5, molecular weight =500, and the number of hydrogen 
bond acceptors = 10 and the number of hydrogen bond donors = 5. Molecules 
breaching many of these principles may have bioavailability issues. The rule is 

known as the "Rule of 5" because to the fact that the boundary values are 5, 500, 
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2*5, and 5. n-rotb stands for the number of rotatable bonds. A rotatable bond is 
any non-ring bond attached to a nonterminal heavy (non-hydrogen) atom and a 
measure of molecular flexibility. Due to their high rotational energy barrier, C-N 
amide bonds are disregarded [36, 49-53]. Similarity to pharmaceuticals may be 
characterized as a complex balance of multiple chemical attributes and structural 
characteristics that determine whether a molecule is comparable to recognized 
medications. These properties, specifically hydrophobicity, electronic distribution, 
hydrogen bonding characteristics, molecule size, flexibility, and the presence of 
various pharmacophoric features, influence the behavior of a molecule in a living 
organism, including bioavailability, transport properties, affinity to proteins, 
reactivity, toxicity, and metabolic stability, among others [35-36, 51-53]. 
 
2.3.4. Osiris Property Explorer and Drug Relevant Properties Prediction 
Property Explorer is a free tool that can be used to predict the physicochemical 
and toxicological properties of molecules. These properties need to be optimized 
when making compounds that are used in healthcare. It was created by T. Sander 
and implemented by Actelion Pharmaceutical Ltd. as an integral part of the 
compound licensing system in the drug development division. It is now the de 
facto standard for predicting physicochemical properties and indicating toxicity 

risk. For anticipating drug-relevant characteristics of a chemical compound, just 
sketch its structure; property explorer will begin calculating properties as soon as 
a valid chemical structure has been drawn. Prediction findings are assigned a 
numerical value and color coding [54- 55]. 
 
Properties having a high risk of adverse consequences, such as mutagenicity or 
poor intestinal absorption, are displayed in red. In contrast, green represents 
stimulant behavior. Charges should be equalized, and atom valances should not 

be exceeded. Nitro-groups, for example, must be shown with a positive charge on 
nitrogen and a negative charge on one of the oxygen atoms, with a single bond 
joining these two atoms. The OSIRIS property explorer drug-relevant properties 
and toxicity risk evaluation are shown in Tables 6 and 7. These are the important 
features and toxicity risk of the medication. Compounds having greater weights 
are less likely to be absorbed and, hence, to ever reach the site of action. lopP 
forecast: Low hydrophilicity and hence high logP values result in inefficient 

absorption or penetration. It has been demonstrated that for chemicals to have a 
decent chance of being adequately absorbed, their logP value cannot exceed 5.0. 
Aqueous Solubility: The aqueous solubility of a substance has a substantial 
impact on its absorption and distribution properties. It demonstrates that the 
computed logS value of more than 80 percent of commercially available 
medications is more than -4. Topological polar surface area: If the contributions 
among all polar atoms exposed on a molecule's surface add up to an area more 
than 80 or 100 2, the possibility of the molecule easily passing through 
membranes is diminished. There are a number of methods that evaluate the 
drug-likeness of a chemical based in part on topological descriptors, fingerprints 
of MDL structure keys, or other features such as cLogP and molecular weights. 
The drug score integrates drug similarity, cLogP, logS, molecular weight, and 
toxicity concerns into a single number that may be used to evaluate a 
compound's overall ability to qualify as a medicine [56-62]. 
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2.3.5. Toxicity Assessment 
As long as the structure being drawn represents a real chemical entity, the 
toxicity risk predictor will immediately begin searching for any possible toxicity 
issues. Toxicity risk alerts show that the structure that was drawn could be 

harmful based on the risk category that was given. But risk alerts are not meant 
to be a 100% accurate way to predict how dangerous something is. The results of 
predictions are looked at and given colors. Red shows properties that aren't good 
or that have a high risk of side effects, like mutagenicity or poor absorption in the 
gut. Instead, drug-conform behavior is shown by the color green. To make sure 
that no harmful substances are used in the next steps of preclinical studies, the 
toxicity risk assessment must be done. The risks of mutagenic, tumorigenic, 
irritant, and reproductive toxicity were measured using a set of pre-calculated 
structural fragments that were made based on how compounds were categorized 
in the Registry of Toxic Effects of Chemical Substances (RTECS) database. With a 
color code, the risks of toxicity can be estimated. The effects of the molecule that 
are not wanted (toxic risks) are shown in red, while the effects that are wanted are 
shown in green [58²62, 63²64]. 
 
2.3.6. Pre ADMET 
Unfortunately, ADME/Toxicity issues accounted for the failure of over half of the 
choices. The majority of pharmaceutical firms have established a series of in-vitro 
ADME/Toxicity screens with the intention of rejecting compounds in the 
discovery process that are prone to failure further down the road. Even though 
early stage in-vitro ADME testing makes it less likely that a drug will fail during 
development, it still takes a lot of time and resources. Pre-ADMET is made up of 
the following four main parts. Molecular descriptor calculation: Properties like 
lipophilicity (logP), molecular weight, polar surface area, and water solubility are 
closely related to ADME/toxicity properties. How a drug will be liked: Pre ADMET 
has a module that predicts how similar a drug is to Lipinski's and Lead-like. 
ADME Prediction: The Caco2 cell model and the MDCK (Madin Darby canine 
kidney) cell model have been suggested as reliable in-vitro models for predicting 
how drugs will be absorbed when taken by mouth. Also, the in-silico HIA (human 
intestinal absorption) model and the skin permeability model can predict and find 
potential drugs for oral delivery and transdermal delivery. Blood-brain barrier 

(BBB) penetration can disclose details about a therapeutic drug's effect on the 
central nervous system (CNS) and its effectiveness [38, 41, 64, 65]. 
 
2.3.7. Acute toxicity prediction 
Toxicity prediction is becoming more and more important in the early stages of 
drug discovery, since it is the reason why 30% of active compounds fail. The 
mutagenicity of the Ames test and the T.E.S.T. tool (Version 4.2.1), which is a 
program from the US Environmental Protection Agency, were used to figure out 
how dangerous something was. Ames test: Dr. Ames came up with the Ames test, 
which is a simple way to find out if a compound can cause mutations. Several 
strains of the bacterium Salmonella typhimurium are used. These strains have 
mutations in genes that make histidine, so they need histidine to grow. Ames 
TA100 (+S9); An Ames test done in a lab showed that the TA100 strain (Metabolic 
activation by rat liver homogenate). Ames TA100 (-S9); An in-vitro test of Ames 
showed that the TA100 strain (No metabolic activation). Ames TA1535 (+S9); 
Ames tests done in a lab showed that the TA1535 strain (Metabolic activation by 
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rat liver homogenate). Ames TA1535 (-S9); An Ames test done in a lab showed 
that the TA1535 strain (No metabolic activation) [64-66]. Tool of the T.E.S.T 
program: This is a software program made by the US Environmental Protection 
Agency to figure out how dangerous a compound is in the short term. 
QSAR/QSPR (Quantitative structure² activity relationship/Quantitative 
structure²property relationship) representation was being used in tool for the 
estimation of toxicity of synthetic as well as natural compounds. The tool uses 
different types of descriptors that are based on the structural features of 
compounds [69²71].  
 
3. Result and Discussion  
 
The purity of compounds was checked by single-spot TLC using Toluene: Ethyl 
acetate: Formic acid (5:4:1) and Benzene: Acetone (9:1) solvent systems and spots 
located under iodine vapors/UV light. The structures of the synthesized 
compounds were established on the basis of modern analytical techniques; 1H-
NMR, Mass spectral data and elemental analysis. The title compounds were 
synthesized in three steps, as outlined in Scheme 1. o-phenylene diamine and 
Cyanogen bromide were added to methanol and water and mixed for 24 hours at 

room temperature. The oily residue was chilled with ice and then treated with 
ammonia after the methanol was extracted. After the mixture of ethanol and 
water was stirred continuously for an hour, the solids that had precipitated out 
were collected and recrystallized from ethanol/water mixture.  The purity of the 
prepared compound is confirmed by recrystallization,its melting point, 
chromatographic technique, and spectroscopy. The newly synthesized compounds 
(SRA11-20) were characterized by MS, 1H NMR,spectral data. These data, detailed 
in the experimental part, are consistent with the suggested structures. The HRMS 

of the synthesized compounds are in good agreement with the calculated 
values.The diversity of the proposed compounds in Scheme 1 is evident from the 
urea functional group substitution on the phenyl ring including activating and 
deactivating groups data and deactivating groups. These structure variations can 
help investigating the structure²activity relationship.  
 
3.1. In-silico data prediction 
3.1.1. Prediction of Physicochemical properties  
 
Depending on Lipinski's rules of five, the Molinspiration server was used to look 
at the molecular descriptors and drug-likeness of compounds. Pharmaceutical 
chemists often use Lipinski's rule of five to figure out how well a possible future 
lead or drug molecule will work when taken orally. The rule says that most 
molecules that look like drugs have a logP of less than 5, a molecular weight of 
less than 500 daltons, and fewer than 10 hydrogen bond acceptors and fewer 
than 5 hydrogen bond donors. Molecules that break more than a few of these 
rules might have trouble being absorbed by the body. Physical and chemical 
parameters are very important in creating and increasing the bioactivity of a 
chemical [35,36]. 
 
Molinspiration was used to find parameters like Log P, TPSA, and drug likeness. 
LogP (octanol/water partition coefficient) is a measure of how hydrophobic a 
molecule is. It is used in QSAR studies and rational drug design. Hydrophobicity 
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affects how drugs are absorbed, their bioavailability, how they interact with 
hydrophobic receptors, how molecules are broken down, and how toxic they are. 
It is found by adding up the contributions of each fragment and the correction 
factors being used predict how easily a molecule can pass through the cell 

membrane. This method was developed by Molinspiration. Topological polar 
surface area (TPSA) is a really beneficial parameter for predicting how drugs move 
through cells. The polar surface area of a molecule is the sum of the surfaces of 
its polar atoms, which are usually oxygen, nitrogen, and hydrogen atoms that are 
attached. The following formula was also used to figure out the absorption 
percentage (percent Ab): percent Ab = 109 - [0:345 x TPSA] (Table 3) [38-42]. 
 
Lipinski's rule of five was used to test the molecular descriptions of synthetic 
compounds. It's interesting that all of the ligands have molecular weights between 
330 and 450 (500). Drug molecules with a low molecular weight (less than 500) 
are easy to move. Unlike heavy molecules, light molecules are spread out and 
taken in. Molecular weight is an important part of how therapeutic drugs work, 
and if it goes up, it changes how the drug works. The amount of hydrogen bond 
donors (NH and OH) in the tested samples was less than 5, and the number of 
hydrogen bond acceptors (O and N atoms) was also less than 10, with the 

exception of compounds SRA15, SRA16,SRA17,SRA20 and SRA19. The logP value 
and the TPSA value are two significant properties that can be used to predict how 
well a drug will work when taken by mouth. Topological polar surface area (TPSA) 
has been determined to be within the range. As polar fragments, O- and N- 
oriented ones were looked at. TPSA has been shown to be a very good way to 
describe drug absorption, including intestinal absorption, bioavailability, Caco-2 
permeability, and BBB penetration. The compounds were found to have the 
highest level of lipophilicity. This means that they are good at dissolving in lipids, 
which will help the drug interact with membranes. TPSA was found by adding up 
the surface areas of the oxygen, nitrogen, and hydrogen atoms that are attached 
to them. So, the TPSA is strongly connected to a compound's ability to form 
hydrogen bonds. Except for compounds SRA15, SRA16, SRA17, and SRA19, all of 
the compounds in this study had a TPSA value between 87.92 and 139.45, which 
shows that they are well absorbed when taken orally. Compounds with less than 
10 rotatable bonds and a TPSA of less than 140 are more likely to be well 

absorbed by the body. As the quantity of bonds that can be rotated goes up, the 
substance becomes more adaptable and better able to fit into a binding pocket. 
All compounds are interesting because they have 7-8 bonds that can be rotated 
and are adaptable within the Lipinski threshold [43²46]. 
 
Tables 3 and 4 show the calculated molecular properties of drugs (SRA11-20). The 
compounds didn't break Lipinski's rule of five or the Ghose filter, but only 
compounds SRA15, SRA16,SRA17,SRA19 and SRA20. were found to have no 
violations (one violation detected). The compounds had 0²1 violations, so it is 
likely that they can be taken by mouth. The hydrophobicity or lipophilicity of a 
molecule is shown by the Log P or partition coefficient. The Log P values of the 
substances were noticed to be less than 5, and they don't break Lipinski's rule of 
five or the Ghose filter. This suggests that the compounds can pass through cell 
membranes easily. Compounds were found to have a molecular weight of less 
than 500. This means that these molecules should be easier to move, spread, and 
absorb than large molecules. Lipinski's rule of five says that the number of 
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hydrogen bond donors (NH and OH) in the man-made compounds should be less 
than 5. The TPSA of the compound was found to be between 87.92 and 139.45, 
which is less than 160. Absorption percentages measured using TPSA ranged 
from 51.38 to 78.67, indicating high oral absorption (Table 2). For all compounds 
SRA12(134.53), where the molar refractivity falls inside the Ghose filter, the range 
was determined to be 93.94-107.09. (Table 3). 
 
Table 2: Lipinski's rule of five predicted the physicochemical characteristics of 
compounds. (SRA11-20) 
 

Compd. % 
Abs 

miLog 
P o/w 

TPSA 
(A0) 

n 
atoms 

MW n-
ON 

n-
OHNH 

n-
violation 

n-
rotb 

MV 

RO5  <5   <500 <10 <5 ��   

SRA11 78.57 
          

 

0.73 87.95 22 314 6 2 0 8  
 271.10 
 

SRA12 78.67 
 

3.39 87.92 31 294 7 1 0 8  274.18 
 

SRA13 74.68 
 

-0.35 102.18 27 294 9 2 0 7  274.18 
 

SRA14 62.15 
 

0.31 138.78 31 294 10 3 0 7 274.18 

SRA15 56.70 
 

-1.45 151.57 28 300 11 3 1 7 257.62 

SRA16 51.48 
 

-0.31 166.34 30 284 12 4 1 7 245.99 

SRA17 53.66 
 

-1.25 160.28 30 326 12 3 1 7 292.15 

SRA18 65.09 
 

-1.13 127.42 26 334 10 2 0 7 272.30 

SRA19 54.64 
 

-1.37 139.45 28 296 11 3 1 7 266.61 

SRA20 59.62 
 

-1.05 157.62 29 318 11 3 1 7 259.53 

 
%Abs: Percentage of absorption, TPSA: Topological polar surface area, n atoms: 

Number of atoms, n-rotb: Number of rotatable bonds, MW: Molecular weight, MV: 
Molecular volume, miLogP: Logarithm of partition coefficient between n-octanol 
and water, n-OHNH: Number of hydrogen bond donors, n-ON: Number of 
K\GURJHQ�ERQG�DFFHSWRUV��Q�YLRODWLRQV��1XPEHU�RI� ´5XOH-of-ILYH� µ� YLRODWLRQ��52���
Rule of five. 
 
Table 3: Ghose filter predicted drug likeness properties of compounds (SRA11-
SRA20). 
 

 
Compd. 

 
logP 

 
Molar 

Refractivity 

 
Number 
of atoms 

 
Polar 

Surface Area 

 
Color 

Indication 

Ghose filter -0.4-5.6 40-130 20-70 <140 Green 

SRA11 1.883 93.94 24 66.62 Green 

SRA12 3.431 134.53 32 66.62 Pink 

SRA13 0.606 104.71 27 69.86 Green 
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SRA14 1.506 116.21 31 100.76 Green 

SRA15 1.227 98.73 28 100.76 Green 

SRA16 -0.576 108.15 30 103.7 Green 

SRA17 0.806 107.09 30 108.41 Green 

SRA18 1.038 91.77 25 91.34 Green 

SRA19 0.722 99.79 28 96.07 Green 

SRA20 1.235 103.31 29 100.76 Green 

 
3.2.2.  Score of biological efficiency 
In addition, the compounds' bioactivity was evaluated by computing their activity 
scores as GPCR (G-protein coupled receptor) ligands, ion channel modulators, 
kinase inhibitors, and nuclear receptor ligands [31, 47, 48]. The compounds had 
good affinity for GPCR ligands, and compounds SRA13,SRA16,SRA20 had 
excellent affinity for GPCR ligands. Compounds also exhibited remarkable enzyme 
inhibitor activity, and compounds SRA14,SRA16,SRA18,SRA19 found to have 
amazing enzyme inhibitor activity. Compounds 4k and 4l were good at stopping 
proteases from working, and compounds 4f were better at stopping kinases from 
working. The results show that compound SRA16is better than Nuclear receptor 
ligand and compound 4k are better ligands for GPCR ligand > Protease inhibitor > 
Kinase inhibitor > Ion channel modulator > Nuclear receptor ligand. Predictions 
based on in-silico data show that compound SRA13 is also a superior ligand for 
enzyme inhibition and GPCR (Enzyme inhibitor > GPCR > Kinase inhibitor > 
Protease inhibitor > Ion channel modulator > Nuclear receptor ligand). If a 
molecule's bioactivity score is more than 0, it's likely to have a lot of biological 
activities. If the score is between -0.50 and 0, it's likely to be only moderately 
active, and if it's less than -0.50, it's likely to be inactive [47²50]. Based on the 
bioactivity scores, the most promising compounds, like SRA13,SRA20, were 
found. These compounds are thought to work in more than three ways (Table 4). 
 

Table 4: Predicted bioactivity score of compounds (SRA11-20). 
 

 
Compd. 

 
3D Structure 

GPCR 
ligand 

Ion 
channel 
modulator 

Kinase 
inhibitor 

 Nuclear 
receptor 
ligand 

Protease 
inhibitor 

Enzyme 
inhibit
or 

 
SRA1

1 

 

 

 
0.15 

 
-

0.1
4 

 
-

0.15 

 
-
0.
52 

 
0.05 

 
0.12 

 
 

SRA1
2 

 

 

 
 

0.13 
 

 
 
-

0.0
5 

 
 
-

0.05 

 
 
-
0.
15 

 
 
0.03 

 
 

0.18 



 

 

5201 

 
SRA1

3 

 

 
0.25 

 

 
-

0.1
1 

 
-

0.03 

 
-
0.
54 

 
0.08 

 
0.10 

 
 
 

SRA1
4 

 

 

 
 
 

0.05 
 

 
 
 
-

0.2
8 

 
 
 
-

0.11 

 
 
 
-
0.
55 

 
 
 
-0.03 

 
 
 

0.21 

 
 

SRA1
5 

 

 

 
 

-0.01 
 

 
 
-

0.4
1 

 
 
-

0.33 

 
 
-
0.
74 

 
 

-0.05 

 
 

0.10 

 
 

SRA1
6 

 

 
 

 
 

0.28 
 

 
 
-

0.1
2 

 
 

0.26 

 
 
-
0.
94 

 
 

-0.00 

 
 

0.48 

 
 

SRA1
7 

 

 

 
 

0.07 
 

 
 
-

0.4
7 

 
 
-

0.20 

 
 
-
1.
10 

 
 

-0.30 

 
 

0.14 

 
 

SRA1
8 

  
 

0.08 
 

 
 
-

0.2
8 

 
 
-

0.12 

 
 
-
0.
65 

 
 

0.01 

 
 

0.24 
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SRA1

9 

 
 

 

 
0.13 

 

 
-

0.3
9 

 
-

0.00 

 
-
0.
87 

 
0.12 

 
0.31 

 
 
 

SRA2
0 

 

 

 
 
 

0.27 
 

 
 
 
-

0.1
0 

 
 
 
-

0.27 

 
 
 
-
0.
55 

 
 
 

0.22 

 
 
 

0.15 

GPCR= G-protein coupled receptor, >0- active, -5.0-0.0- moderately active, < -
5.0- inactive. 

 
3.2.3 Osiris property explorer 
To evaluate compounds for their pharmacokinetic properties, including toxicity, 
solubility, drug-likeness, and drug score (www.organicchemistry. org/prog/peo/), 
we utilized Osiris property explorer. The findings of virtual screening are scored 
and given a green, red, or yellow color code based on things like their effect on 
mutagenicity, the reproductive system, irritation, and the ability to cause cancer. 
Properties that are red show that there is a high risk of unwanted effects, while 
properties that are green show that the drug behaves as expected, works well with 
other drugs, and is safe in-vivo [54, 55]. This program makes predictions based 
on how similar the functional groups of the compound being studied are to the 
functional groups of compounds in its database that have been studied in-vitro 
and in-vivo a lot. The results showed that all compounds with a green color, 
except for SRA11 (which had a yellow color for its irritant effect), were safe and 
shouldn't cause cancer, mutagenesis, skin irritation, or problems with the 
reproductive system. Table 5 shows the results of the toxic effects risks, drug 
likeness score, and drug score for each compound.  
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Table 5: Osiris property explorer toxicity and drug-relevant features  prediction of 
compounds (SRA11-20).  
 

Compo

und 
 

 

                                

Toxicity 

           Drug-relevant properties 

 
Tumor
igenic 

 
Repro

duc
tive 
effe
ct 

 
Irritant 
effect 

 
Mutagen

icity 

 
cLogP 

 
Solubil

ity 

 
Dru
g- 
liken
ess 

 
Drug 
Score 

 
 

SRA1
1 

 
Green 

 
     
Green 

 
Yellowish 

red 

 
Green 

 
1.31 

 
-1.47 

 
5.4
1 

 
0.55 

 
SRA1

2 

 
Green 

      
      
Green 

 
Green 

 
Green 

 
2.85 

 
-4.73 

 
1.1
8 

 
0.56 

 

SRA1
3 

 

Green 

 

      
Green 

 

Green 

 

Green 

 

-0.85 

 

-0.53 

 

6.8
7 

 

0.91 

 
 

SRA1
4 

 
Green 

 
      
Green 

 
Green 

 
Green 

 
0.24 

 
-2.69 

 
0.5
4 

 
0.67 

 
 

SRA1
5 

 
Green 

 
Red 

 
Green 

 
Green 

 
-1.58 

 
-2.04 

 
2.8
5 

 
0.86 

 
 

SRA1
6 

 
Green 

 
Green 

 
Green 

 
Green 

 
0.03 

 
-5.47 

 
-

0.7 

 
0.4 

 
 

SRA1
7 

 
Green 

 
Red 

 
Green 

 
Green 

 
-1.41 

 
-2.36 

 
5.1
3 

 
0.85 

 
     SRA18 

 

 
Green 

 
     
Green 

 
Green 

 
Green 

 
-2.05 

 
-2.13 

 
-

0.8
7 

 
0.56 

 
 

 
     
SRA19 

 
Green 

 
      
Green 

 
Green 

 
Green 

 
-3.14 

 
-1.97 

 
5.9
6 

 
0.86 
 

  
    
SRA20 

 
Green 

 
      
Green 

 
Green 

 
Green 

 
-1.05 

 
-1.97 

 
5.9
6 

 
0.86 

No risk or low risk is indicated by a green color, moderate risk by yellow, and 
high toxicity risk by red. 
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3.2.4. ADME and the prediction of toxicity 
 To determine a compound's ADME (Absorption, Distribution, Metabolism, and 
Excretion) and toxicity profile, the PreADMET database was used. Because oral 
dosage is so common, intestinal absorption of the medicine must be a primary 

consideration for optimal therapeutic efficacy. Some crucial properties highlighted 
by Lipinski's rule of five were indeed the general prerequisite for medication 
absorption. Optimal absorption and bioavailability were demonstrated by the 
compounds, and the rule of five was satisfied, as indicated by the compounds' 
LogP, TPSA, MW, nON, nOHNH, nviolation, nrotb, and MV data [63²65]. A 
number of in-vitro approaches have been developed for reliable and precise 
prediction of intestinal absorption. The Caco-2 cell system is the most widely used 
in vitro model of intestinal permeability [51]. In the apical membrane of cells, P-
glycoprotein (P-gp) activity may reduce the drug's bioavailability [76]. 
 
3.2.5. Prediction of ADME/T Properties 
Pre ADMET server tallied the results of the HIA (Human Intestinal Absorption), 
BBB (Blood-Brain Barrier) penetration, Caco-2 cell permeability, and Ames test 
[37, 39, 63]. Pre ADMET server data indicated that compounds 4a, 4b, and 4d 
had high human intestinal absorption (HIA) scores. Higher HIA values suggest 

enhanced intestine absorption after oral administration of the drug. The presence 
of mutagenicity in a chemical was determined by its performance on the AMES 
toxicity test. The AMES toxicity test resulted in a negative for the tested molecule, 
indicating that the majority of the ligands examined were safe [77,78]. Results 
from the toxicity prediction research show that the proposed chemical was 
expected to be carcinogenic in rats and to be carcinogenic in mice (Table 6). 

 
Table 6: Toxicity prediction by Pre ADMET server of compounds (SRA11-20). 
 

       Compd.      Toxicity prediction Name of Test Value
s of 
Test 

SRA11 
 

Ames 
test 

Ames TA100 (+S9) - 

Ames TA100 (-S9) - 

Ames TA1535 (+S9) - 

Ames TA1535 (-S9) + 

Carcinogenicity Carcinogenicity (Mouse) - 

Carcinogenicity (Rat) + 

SRA12 
 

Ames 
test 

Ames TA100 (+S9) - 

Ames TA100 (-S9) - 

Ames TA1535 (+S9) - 

Ames TA1535 (-S9) - 

Carcinogenicity Carcinogenicity (Mouse) - 

Carcinogenicity (Rat) + 

SRA13 
 

Ames 
test 

Ames TA100 (+S9) - 

Ames TA100 (-S9) - 

Ames TA1535 (+S9) - 

Ames TA1535 (-S9) - 

Carcinogenicity Carcinogenicity (Mouse) - 

Carcinogenicity (Rat) + 
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   SRA14 Ames 
test 

Ames TA100 (+S9) + 

Ames TA100 (-S9) + 

Ames TA1535 (+S9) - 

Ames TA1535 (-S9) - 

Carcinogenicity Carcinogenicity (Mouse) - 

Carcinogenicity (Rat) + 

                       
SRA15 

Ames 
test 

Ames TA100 (+S9) - 

Ames TA100 (-S9) + 

Ames TA1535 (+S9) - 

Ames TA1535 (-S9) + 

Carcinogenicity Carcinogenicity (Mouse) - 

Carcinogenicity (Rat) + 

                
SRA16 

Ames 
test 

Ames TA100 (+S9) - 

Ames TA100 (-S9) + 

Ames TA1535 (+S9) - 

Ames TA1535 (-S9) - 

Carcinogenicity Carcinogenicity (Mouse) - 

Carcinogenicity (Rat) + 

 
   SRA17 

Ames 
test 

Ames TA100 (+S9) - 

Ames TA100 (-S9) + 

Ames TA1535 (+S9) - 

Ames TA1535 (-S9) + 

Carcinogenicity Carcinogenicity (Mouse) - 

Carcinogenicity (Rat) + 

 
     SRA18 

Ames 
test 

Ames TA100 (+S9) + 

Ames TA100 (-S9) + 

Ames TA1535 (+S9) - 

Ames TA1535 (-S9) + 

Carcinogenicity Carcinogenicity (Mouse) - 

Carcinogenicity (Rat) + 

 
    SRA19 

Ames 
test 

Ames TA100 (+S9) + 

Ames TA100 (-S9) + 

Ames TA1535 (+S9) - 

Ames TA1535 (-S9) + 

Carcinogenicity Carcinogenicity (Mouse) - 

Carcinogenicity (Rat) + 

 
      SRA20 

Ames 
test 

Ames TA100 (+S9) - 

Ames TA100 (-S9) - 

Ames TA1535 (+S9) - 

Ames TA1535 (-S9) - 

Carcinogenicity Carcinogenicity (Mouse) - 

Carcinogenicity (Rat) + 

-: Negative; +: Positive 
 
It has been shown that these limitations are strongly linked to how well a drug is 
absorbed by the human gut, how well it passes through the Caco-2 monolayers, 
and how well it gets through the blood-brain barrier. It was thought that the 
compound with the least polar chemical structure would be able to cross the 
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BBB, and the results are shown in Table 8. Based on a method published by Ertl 
[36], Molecular Polar Surface Area (MPSA) is defined as the summation of 
fragment-based contributions. O- and N-centered polar fragments are measured 
and calculated by the surface areas used by the oxygen, nitrogen, and active 

hydrogen atoms that are attached to them. Molecules' transport properties, like 
being absorbed by the intestines or getting through the blood-brain barrier, are 
controlled by their molecular volume (MV). Because of this, Molecular volume is 
used in QSAR studies to design the properties of molecules and how they work in 
living things. Molinspiration's method for figuring out the size of a molecule is 
based on the contributions of groups. The number of bonds that can be rotated 
(nrotb) is a simple topological factor that shows how flexible a molecule is. 
 
Table 7: ADME/T prediction by Pre ADMET tool compounds (SRA11-20). 
 

Compd. Toxicity 
prediction 

Name of Test Values of Test 

SRA11 Absorption HIA, % (Human intestinal absorption) 92.215603 

Caco-2 cell permeability in nm/sec ( In-
vitro) 

15.7825 

MDCK cell permeability in nm/sec ( In-
vitro) 

215.717 

Skin permeability (logKp) in cm/hour ( 
In-vitro) 

-4.11061 

Bioavailability Buffer solubility in mg/ml 367.222 

Pure water solubility in mg/ml 1247.44 

Distribution Plasma protein binding % ( In-vitro) 47.279628 

Blood-brain 
barrier 
penetration ( In-
vivo) (C. brain/C. 
blood) 

0.0493072 

SRA12 Absorption HIA, % (Human intestinal absorption) 95.342099 

Caco-2 cell permeability in nm/sec ( In-
vitro) 

27.4034 

MDCK cell permeability in nm/sec ( In-
vitro) 

37.0983 

Skin permeability (logKp) in cm/hour ( 
In-vitro) 

-2.86615 

Bioavailability Buffer solubility in mg/ml 4.12198 

Pure water solubility in mg/ml 0.389741 

Distribution Plasma protein binding % ( In-vitro) 95.889629 

Blood-brain 
barrier 
penetration ( In-
vivo) (C. brain/C. 
blood) 

0.207344 

SRA13 Absorption HIA, % (Human intestinal absorption) 88.872345 

Caco-2 cell permeability in nm/sec ( In-

vitro) 

7.42263 
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MDCK cell permeability in nm/sec ( In-
vitro) 

2.63357 

Skin permeability (logKp) in cm/hour ( 
In-vitro) 

-4.98237 

Bioavailability Buffer solubility in mg/ml 1267.96 

Pure water solubility in mg/ml 1661.14 

Distribution Plasma protein binding % ( In-vitro) 28.649417 

Blood-brain 
barrier 
penetration ( In-
vivo) (C. brain/C. 
blood) 

0.0584475 

SRA14 Absorption HIA, % (Human intestinal absorption) 91.308684 

Caco-2 cell permeability in nm/sec ( In-
vitro) 

1.13618 

MDCK cell permeability in nm/sec ( In-
vitro) 

2.52908 

Skin permeability (logKp) in cm/hour ( 
In-vitro) 

-4.95527 

Bioavailability Buffer solubility in mg/ml 3.02145 

Pure water solubility in mg/ml 0.346366 

Distribution Plasma protein binding % ( In-vitro) 80.038452 

Blood-brain 
barrier 
penetration ( In-
vivo) (C. brain/C. 

blood) 

0.0465817 
 
 

SRA15 Absorption HIA, % (Human intestinal absorption) 75.207209 

Caco-2 cell permeability in nm/sec ( In-
vitro) 

1.70306 

MDCK cell permeability in nm/sec ( In-
vitro) 

0.833755 

Skin permeability (logKp) in cm/hour ( 
In-vitro) 

-5.12146 

Bioavailability Buffer solubility in mg/ml 185.214 

Pure water solubility in mg/ml 154.972 

Distribution Plasma protein binding % ( In-vitro) 54.013105 

Blood-brain 
barrier 
penetration ( In-
vivo) (C. brain/C. 

blood) 

0.0420603 

SRA16 Absorption HIA, % (Human intestinal absorption) 83.700104 

Caco-2 cell permeability in nm/sec ( In-
vitro) 

1.7489 

MDCK cell permeability in nm/sec ( In-
vitro) 

0.687794 

Skin permeability (logKp) in cm/hour ( 

In-vitro) 

-5.1046 
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Bioavailability 

Buffer solubility in mg/ml 28.2703 

Pure water solubility in mg/ml 4.12212 

             
Distribution 

Plasma protein binding % ( In-vitro) 60.886301 

Blood-brain 

barrier 
penetration ( In-
vivo) (C. brain/C. 
blood) 

0.0549292 

SRA17 Absorption HIA, % (Human intestinal absorption) 73.189010 

Caco-2 cell permeability in nm/sec ( In-
vitro) 

0.943094 

MDCK cell permeability in nm/sec ( In-
vitro) 

0.457272 

Skin permeability (logKp) in cm/hour ( 
In-vitro) 

-5.22165 

Bioavailability Buffer solubility in mg/ml 10.4568 

Pure water solubility in mg/ml 41.8636 

Distribution Plasma protein binding % ( In-vitro) 43.962351 

Blood-brain 

barrier 
penetration ( In-
vivo) (C. brain/C. 
blood) 

0.0358059 

SRA18 Absorption HIA, % (Human intestinal absorption) 85.778193 

Caco-2 cell permeability in nm/sec ( In-
vitro) 

0.502463 

MDCK cell permeability in nm/sec ( In-
vitro) 

2.52258 

Skin permeability (logKp) in cm/hour ( 
In-vitro) 

-5.0398 

Bioavailability Buffer solubility in mg/ml 163.365 

Pure water solubility in mg/ml 328.207 

Distribution Plasma protein binding % ( In-vitro) 60.687062 

Blood-brain 
barrier 
penetration ( In-
vivo) (C. brain/C. 
blood) 

0.0421355 

SRA19 Absorption HIA, % (Human intestinal absorption) 75.297321 

Caco-2 cell permeability in nm/sec ( In-
vitro) 

2.83561 

MDCK cell permeability in nm/sec ( In-
vitro) 

0.581086 

Skin permeability (logKp) in cm/hour ( 
In-vitro) 

-5.1312 

Bioavailability Buffer solubility in mg/ml 435.553 

Pure water solubility in mg/ml 63.5098 

Distribution Plasma protein binding % ( In-vitro) 38.872860 

Blood-brain 0.0627287 
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barrier 
penetration ( In-
vivo) (C. brain/C. 
blood) 

SRA20 Absorption HIA, % (Human intestinal absorption) 76.683939 

Caco-2 cell permeability in nm/sec ( In-
vitro) 

2.3402 

MDCK cell permeability in nm/sec ( In-
vitro) 

1.91347 

Skin permeability (logKp) in cm/hour ( 
In-vitro) 

-5.0762 

Bioavailability Buffer solubility in mg/ml 346.266 

Pure water solubility in mg/ml 98.2177 

Distribution Plasma protein binding % ( In-vitro) 57.895070 

Blood-brain 
barrier 
penetration ( In-
vivo) (C. brain/C. 
blood) 

0.0395919 

 
BBB indicates compounds can cross blood brain barrier, HIA indicates 
compounds can absorb through intestine; Caco-2 indicates compounds can cross 
Caco-2 cell. 
 
3.2.6  Metabolism prediction   
 

By leaving the specificity of fingerprint identification at its default and choosing  
all models, the Pre ADMET server was able to guess the first phase of the 
compound's metabolism. The most essential factor is cytochrome P450 
(CYP450), which is part of the isozymes group and helps break down drugs, 
essential fats, steroids, bile acids, carcinogens, and other things. Some of the 
different types of cytochrome P450 could be stopped from working by several of 
the compounds that were tested. Cytochrome P450 enzymes are essential for 
how drugs are broken down in the body. Cytochrome P450 enzymes are a group 
of heme proteins that are involved in the metabolism of many pharmacologically 
active compounds. They can cause unwanted side effects and drug interactions 
[66, 77]. In-silico data show that all of the designed compounds, except for 
compound SRA19, are substrates for CYP 450 3A4 (non substrate). All 
compounds except compound SRA11are found to be non-substrates for CYP 450 
2D6 and non-inhibitors for CYP 450 2D6. However, compound  SRA18  is found 
to be inhibitors of CYP 450 2C19, CYP 450 2C9, as well as CYP 450 3A4 and 
substrates for CYP 450 3A4 (Table 8). 
 
3.2.7. Prediction of Drug likeness and Violation for Synthetic Compounds 
There are a number of drug-like rules, such as Lipinski's rule, the Ghose filter, 
the Lead-like rule, CMC, WDI, and MDDR. Based on these different rules, the 
Pre ADMET server has a drug-likeness prediction module. But Lipinski's rule, 
which is also known as the "rule of five," is a well-known way to figure out how 
similar newly designed molecules are to drugs. The Lead-like rule is another 

well-known rule. It is based on a quantitative study of the chemical structures of 
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18 pairs of lead and drugs. Ghose filter says that a substance can't be a drug if 
its measured log P is between -0.4 and 5.6, its molecular weight is between 160 
and 480, its molar refractivity is between 40 and 130, and it has between 20 and 
70 atoms in total [39]. Rules have been made  

 
Table 8: Cytochrome P450 enzymes and P-glycoprotein inhibition of compounds 
(SRA11-20). 
 

 
Compd

. 

CYP 450 
2C19 

Inhibition 

CYP 450 
2C9 

Inhibition 

CYP 450 
2D6 

Inhibition 

CYP 450 
2D6 

Substrate 

CYP 450 
3A4 

Inhibition 

CYP 450 
3A4 

Substrate 

 
P-gp 

inhibitor 

SRA11 Non 
Inhibitor 

Non 
Inhibitor 

Non 
Inhibitor 

Substrate Non 
Inhibitor 

Substrate Non 
Inhibitor 

SRA12 Non 
Inhibitor 

Non 
Inhibitor 

Non 
Inhibitor 

Non 
Substrate 

Non 
Inhibitor 

Weakly 
Substrate 

Non 
Inhibitor 

SRA13 Non 
Inhibitor 

Non 
Inhibitor 

Non 
Inhibitor 

Substrate Non 
Inhibitor 

Substrate Non 
Inhibitor 

SRA14 Inhibitor       nhibitor Non 
Inhibitor 

Non 
Substrate 

Inhibitor Substrate Non 
Inhibitor 

SRA15 Non 
Inhibitor 

     Inhibitor Non 
Inhibitor 

Non 
Substrate 

Non 
Inhibitor 

Weakly 
Substrate 

Non 
Inhibitor 

SRA16 Non 
Inhibitor 

      
Inhibitor 

Non 
Inhibitor 

Non 
Substrate 

Inhibitor Substrate Non 
Inhibitor 

SRA17 Non 
Inhibitor 

      
Inhibitor 

Non 
Inhibitor 

Non 
Substrate 

Inhibitor Substrate Non 
Inhibitor 

SRA18 Inhibitor      Inhibitor Non 
Inhibitor 

Non 
Substrate 

Inhibitor Substrate Non 
Inhibitor 

SRA19 Non 
Inhibitor 

    Inhibitor Non 
Inhibitor 

Non 
Substrate 

Non 
Inhibitor 

Non 
Substrate 

Non 
Inhibitor 

SRA20 Non 
Inhibitor 

      
Inhibitor 

Non 
Inhibitor 

Non 
Substrate 

Non 
Inhibitor 

Substrate Non 
Inhibitor 

CYP 450; Cytochrome P450 enzyme, P-gp = P-glycoprotein. 
 
that tell the difference between chemical molecules that look like drugs and 
those that don't. All of the compounds were found to be like drugs and to fit the 
MDDR-like rule and the rule of five. Except for compounds SRA17 and SRA19, 
all of the designed compounds also meet the CMC-like rule. Table 9 shows the 
results of compounds that were made with different rules. 
 
Table 9: Prediction of Drug likeness/Violation by different rules for compounds 
(SRA11-20) 
 
 

Com
pd. 

CMC like Rule Lead like Rule MDDR like 
Rule 

       Rule of Five WDI like Rule 

 Rule Violation Rule Viola
tion 

Rule Viol
atio
n 

Rule Violation Rule Violat
ion 

SRA
11 

Qualifie
d 

0 Suitabl
e 

0 Drug 
like 

0 Suitabl
e 

0 Out of 90% cut 
off 

1 

SRA1 Qualifie 0 Violate 2 Drug 0 Suitabl 0 Out of 90% cut 2 
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2 d d ike e off 

SRA1
3 

Qualifie
d 

0 Violate
d 

2 Drug like 0 Suitabl
e 

0 Out of 90% cut 
off 

1 

SRA1
4 

Qualifie
d 

0 Violate
d 

1 Drug like 0 Suitabl
e 

0 Out of 90% cut 
off 

0 

SRA1
5 

Qualifie
d 

0 Violate
d 

2 Drug like 0 Suitabl
e 

0 Out of 90% cut 
off 

1 

SRA1
6 

Qualifie
d 

0 Violate
d 

2 Drug like 0 Suitabl
e 

0 Out of 90% cut 
off 

2 

SRA1
7 

Not 
Qualifie

d 

1 Violate
d 

2 Drug like 0 Suitabl
e 

0 Out of 90% cut 
off 

2 

SRA1
8 

Qualifie
d 

0 Violate
d 

1 Drug like 0 Suitabl
e 

0 Out of 90% cut 
off 

1 

SRA1
9 

Not 
Qualifie

d 

1 Violate
d 

2 Drug like 0 Suitable 0 Out of 90% cut 
off 

1 

SRA2
0 

Qualifie
d 

      0 Violate
d 

          
2 

Drug like      0 Suitable      0 Out of 90% cut 
off 

           
1 

 
3.3. Pharmacological evaluation 
3.3.1 In vitro EGFR phosphorylation assays 
 
Taking Geftinib as reference compounds, the synthesized compounds (SRA11-20) 
were 
evaluated for the EGFR kinase assay. The results suggested that compound 
SRA20 (IC50 = 0.93µM), having 3-Chloro-4-fluorophenyl group. The rest of the 
compounds showed inhibitory activity in the range of 2.1 to 52.5 µM (Table 10). 
 
Table 10. Inhibitory results of substituted Benzimidazole-2-Urea derivatives 
against two human cancer cell lines and in vitro EGFR kinase assay 
 

Compound EGFR HepG2 (Liver) A549 (Lung) 

SRA11 2.1 14.7 2.4 

SRA12 21.73 28.4 7.4 

SRA13 52.5 37.4 74.7 

SRA14 2.6 11.9 9.5 

SRA15 ND 34.2 ND 

SRA16 6.8 57.32 38.5 

SRA17 10.4 46.3 >100 

SRA18 37.5 >100 68.4 

SRA19 >100 >100 12.6 

SRA20 0.93 7.5 1.9 

5-FU - 5.0 1.10 

Gefitinib  0.010  
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3.3.2 In Vitro Cytotoxicity 
Pharmacological evaluation of compounds in vitro were determined using MTT 
assay method against two cancer cell lines HepG2 (liver) and A549 (lung) showed 
high anti-tumor activities.The IC50 values were reported in Table 10. Regarding 

the activity against liver cancer cell lines (HepG2), compound SRA20 (3-Chloro-4-
fluorophenyl) was the most active one with IC50 value of 7.5µM, whereas 
antitumor activity of other compounds are in order of SRA14> SRA11> SRA12> 
SRA15> SRA13 >SRA17>SRA 16 with IC50 value range (11.9-����Í0�� 
Some of the compounds also showed potent activity against Non-small lung 
cancer (A549). Among them compound with SRA20 was the most potent one 
(IC50 = 1.9 µM), whereas antitumor activity of other compounds are in order of 
SRA11>SRA12>SRA 14>SRA 19>SRA 16>SRA18>SRA17 with IC50 value range 
(2.4-38.5 µM). 
The anti-cancer studies on the synthesized compounds from Scheme revealed the 
structure activity relationship that the nature of substituent on the phenyl 
substituent attached to the NH of urea group influences the activity. The results 
from the Table 12 of compounds SRA18, SRA19, SRA20 showed moderate to good 
cytotoxic activity against A549 (lung cancer cell lines). It is worth pointing out 
that most significant inhibition shown by compound(SRA20) against A549 cancer 

cell line with IC50 = 1.9µM. The increase in activity was mainly attributed to the 
Chloro-fluorophenyl at ortho position of NH of urea group.  
 
Conclusion 
 
In conclusion, we have successfully synthesized a set of 10 new compounds 
(SRA11-SRA20) that all contain benzimidazole,urea moiety. Synthetic spectra 
were characterized using, 1H Nuclear Magnetic Resonance, mass spectrometry, 
and elemental analysis. Each compound was tested for its anticancer properties 
using an in vitro EGFR kinase assay and two different human cancer cell lines. 
The results of the screening showed that SRA20 compounds inhibited the growth 
of cancerous cell lines by a considerable prevalence. Lipinski's rule of five were 
used to estimate the oral absorption, molecular descriptors, drug-like qualities , 
bioactivity of compounds and the findings show that the compounds had good 
oral bioavailability. OSIRIS property explorer anticipated drug relevant properties, 

and results show that compounds earn a decent drug score, with compounds 
SRA11, SRA13, and SRA20 receiving great drug likeness and scoring particularly 
highly. 
 
High lipophilicity, which indicates strong lipid solubility and facilitates drug 
interaction with membranes, was observed for the synthesized compounds. 
Compound SRA20 is a potent inhibitor of CYP 450 2C19, CYP 450 3A4, and CYP 
2C9, while the other chemicals are all substrates for CYP 450 3A4 with the 
exception of SRA19. When compared to the other compounds, SRA20 showed the 
highest drug score and bioactivity score and displayed the best drug-relevant 
characteristics, ADME, and lack of toxicity. Further study is being conducted to 
learn more about the SAR and QSAR of SRA13 and SRA20, the two most active 
compounds in the series. 
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