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Abstract

The present article continues the investigation of visible ideal bases in constructions defined us-

ing directed graphs. Our main theorem establishes that, for every balanced digraph D and each

idempotent semiring R with 1, the incidence semiring ID(R) of the digraph D has a convenient

visible ideal basis BD(R). It also shows that the elements of BD(R) can always be used to generate

two-sided ideals with the largest possible weight among the weights of all two-sided ideals in the

incidence semiring.
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1. Introduction

The investigation of semirings is an important direction of theoretical computer science (cf.

[9, 27, 52, 58, 62]) and symbolic computation (cf. [57]), where many efficient semiring-based

algorithms have been developed (cf. [54]). In graph theory, semirings have been applied, for

example, to the investigation of trust networks defined as directed graphs [23], to the study of

planar flows of directed graphs [28], and to the design of a sophisticated Python library for parallel

graph computations [56].

The construction of incidence semirings of directed graphs was introduced in [7]. To illustrate

the applicability and usefulness of this notion, we include a section with examples, theoretical

results and open questions concerning relations between properties of digraphs and properties of

their incidence semiring (see Section 3). These examples confirm that the general problem of

investigating the relations of properties of digraphs and their incidence semirings is interesting.

The main theorem of this paper handles two-sided ideals in incidence semirings of digraphs

(Theorem 4.1 in Section 4). The concept of an ideal is important and has been used in various

research directions. Visible ideal bases were introduced in [7] by analogy with different construc-

tions (cf. [29, 49]). Our main theorem establishes that, for each balanced digraph D and every

idempotent semiring R with identity element, the incidence semiring ID(R) always has a conve-

nient visible ideal basis BD(R), and elements of BD(R) can be used to generate two-sided ideals

with the largest possible weight among the weights of all two-sided ideals in the incidence semiring

(see Theorem 4.1). Complete definitions of these terms are given in the next section.

2. Preliminaries

We use standard terminology and refer the readers to the monographs [14, 30, 33, 34, 53, 59]

and articles [13, 19, 22, 47, 46] for more information. Throughout the word ‘digraph’ means a

finite directed graph without multiple parallel edges but possibly with loops, and D = (V,E) is a

digraph with the set V of vertices and the set E of edges.

Following [8], we do not assume that all semirings have identity elements. This makes it pos-

sible to consider incidence semirings for larger classes of digraphs. More specifically, a semiring

is a set R with addition + and multiplication · satisfying the following conditions:

(1) (R,+) is a commutative semigroup with zero 0,

(2) (R, ·) is a semigroup,

(3) multiplication distributes over addition,

(4) zero 0 annihilates R, i.e., 0 ·R = R · 0 = 0.

In analogy with a similar terminology of ring theory, we call every semiring with 1 a semiring with

identity element. A semiring R is called an idempotent semiring, or a dioid, or a semiring with

idempotent addition, if x+ x = x for x ∈ R.
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Definition 1. Let D be a digraph, and let R be a semiring. Denote by ID(R) the set consisting of

zero 0 and all finite sums
∑n

i=1 ri(gi, hi), where n ≥ 1, ri ∈ R, (gi, hi) ∈ E, where all empty sums

are assumed to be equal to 0, and where two operations are defined: the standard addition + and

the multiplication · defined by the distributive law and the rule

(g1, h1) · (g2, h2) =

{

(g1, h2) if h1 = g2 and (g1, h2) ∈ E,
0 otherwise,

(1)

for all (g1, h1), (g2, h2) ∈ E. The set ID(R) with two operations + and · defined above will be

called the incidence construction of the digraph D over R. If ID(R) is a semiring, then it is called

the incidence semiring of D over R, or the semiring of D over R.

Every digraph D has the incidence construction ID(R) of D over R. However, easy examples

show that for some digraphs it is not a semiring (see Proposition 3.1 in the next section). If ID(R) is

a semiring, then we say that D has an incidence semiring. Examples of well known and important

classes of digraphs that possess incidence semirings are given in the next section.

Incidence semirings of digraphs are a natural generalization of incidence rings (cf. [33, §3.15],

[39], [49] and [59]). If R has an identity element 1, then to simplify notation we identify every

edge e in E with the element 1e in ID(R).
This paper focuses on ideals in the incidence semiring ID(R) of the digraph D. Let N be the

set of all positive integers, and let N0 = N ∪ {0}. Suppose that T is a subset of ID(R). An ideal

generated by T in ID(R) is the set

id (T ) =

{

k
∑

i=1

ℓigiri

∣

∣

∣

∣

∣

k ∈ N0, gi ∈ T, ℓi, ri ∈ ID(R) ∪ N

}

, (2)

where it is assumed that the identity element 1 of N acts as an identity on the whole ID(R) too.

These ideals are also called two-sided ideals, since they are generated by multiplying the elements

of the set T from both sides. In contrast, [7] treated different types of ideals called one-sided ideals,

or left ideals and right ideals. The weight wt (r) of an element r =
∑n

i=1 ri(gi, hi) ∈ ID(R) is the

number of nonzero coefficients ri in the sum. The weight of a subset S of ID(R) is defined as the

minimum weight of a nonzero element in S.

The problem of generating ideals with the largest weight was originally motivated by applica-

tions to the design of classification systems, also known as classifiers (cf. [61], Section 7.5). Let us

refer the readers to a few recent examples of papers in high quality journals devoted to the appli-

cations of classifiers in security [1, 4, 20, 38, 50] and health informatics [3, 5, 6, 31, 37, 60]. The

role of ideals with largest weight in the design of classifiers is very well explained in [2], where a

nice diagram illustrating the classification process is given. More explanations of the role of ideals

with largest weight are given, for example, in [8, 48]. These explanations and previous work show

that it is essential to find ideals with the largest weight in the incidence semirings.

3. Examples and Open Questions

Since the notion of an incidence semiring has been introduced by the authors only recently,

to illustrate the applicability and usefulness of this concept this section presents examples and

37



www.ejgta.org

Ideal bases in constructions defined by directed graphs | J. Abawajy, A. V. Kelarev, and J. Ryan

theoretical results that establish relations between properties of the graph and properties of its

incidence semiring. For example, the first proposition of this section shows that the balanced

property of the digraph is equivalent to the associative law in the incidence construction over the

digraph. The digraph D is said to be balanced if, for all g1, g2, g3, g4 ∈ V with (g1, g2), (g2, g3),
(g3, g4), (g1, g4) ∈ E, the following equivalence holds:

(g1, g3) ∈ E ⇔ (g2, g4) ∈ E,

see [33, §3.15]. The multiplication in R is said to be associative if x(yz) = (xy)z, for all x, y, z ∈
R. The following fact is very easy and in the case of rings it is a part of folklore knowledge. Here

we include a complete proof for semirings, since this proposition permeates the study of incidence

semirings of digraphs.

Proposition 3.1. The multiplication in ID(R) is associative if and only if D is balanced.

Proof. The ‘if’ part. Suppose that D is balanced. The distributive law shows that it suffices to

verify the associative law for elements x, y, z ∈ ID(R) of the form x = (g1, g2), y = (g2, g3), z =
(g3, g4), where g1, g2, g3, g4 ∈ V , because an arbitrary element of ID(R) is a linear combination of

elements of this form.

If (g1, g4) /∈ E, then (1) implies that x(yz) = 0 = (xy)z, and so the associative law holds

in this case. Further, we assume that (g1, g4) ∈ E, and so the balanced property of D applies. If

(g1, g3) ∈ E, then (g2, g4) ∈ E, because D is balanced. Hence it follows from (1) that x(yz) =
(g1, g4) = (xy)z. On the other hand, if (g1, g3) /∈ E, then (g2, g4) /∈ E, and so (1) implies that

x(yz) = 0 = (xy)z. Thus, the associative law holds in all cases.

The ‘only if’ part. Suppose to the contrary that the associative law is satisfied in ID(R), but D
is not balanced. Without loss of generality we may assume that there exist g1, g2, g3, g4 ∈ V such

that (g1, g2), (g2, g3), (g3, g4), (g1, g4) ∈ E and (g1, g3) ∈ E, but (g2, g4) /∈ E. Then it follows

from (1) that x(yz) = (g1, g4) and (xy)z = 0. This contradicts the associative law and shows that

D must be balanced. This completes the proof.

It follows immediately from (1) and Proposition 3.1 that many natural and well known classes

of graphs have incidence semirings.

Example 3.1. The incidence construction is a semiring for each of the following digraphs: (a)

complete digraph, (b) null digraph, (c) directed cycle, (d) Petersen digraph.

A semiring R is said to be nilpotent if there exists a positive integer n such that x1 · · · xn = 0
for all x1, . . . , xn ∈ R.

Proposition 3.2. Let D = (V,E) be a balanced finite graph, and let R be a semiring with identity

element. Then the incidence semiring ID(R) is nilpotent if and only if E does not contain loops.

Proof. The ‘if’ part. Assuming that E does not contain any loops, suppose to the contrary that

ID(R) is not nilpotent. Put n = |V |. Then there exists a nonzero product (u1, u2) · · · (un, un+1) =
(u1, un+1) 6= 0 in ID(R), where (u1, u2), (u2, u3), . . . , (un, un+1) in E. However, since |V | = n,

it follows that there exist 1 ≤ i < j ≤ n + 1 such that ui = uj . Since (ui, ui+1) · · · (uj−1, uj) =
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(ui, uj) 6= 0, we get (ui, uj) = (ui, ui) ∈ E. This contradiction shows that ID(R) has to be

nilpotent.

The ‘only if’ part. Suppose to the contrary that ID(R) is nilpotent, but E contains a loop (u, u).
It follows from (1) that for any n ∈ N the product of n copies of (u, u) is equal to (u, u), and so it

is nonzero. This contradicts the nilpotency of ID(R) and completes the proof.

Examples and theoretical results of this sort confirm that the general problem of investigating

the relations of properties of digraphs and properties of their incidence semirings is worth con-

sidering. Furthermore, here we include a few open questions concerning a few more advanced

properties well known in graph theory. Let us start with the Moore digraphs. A Moore digraph

is a digraph that meets the directed Moore bound. Let us refer to the survey [21] and articles

[15, 16, 17, 18, 19] for more information and previous results on the Moore digraphs.

Problem 1. Find a semiring property such that the incidence semiring ID(R) satisfies it if and

only if D is a Moore graph.

Another important and well known class of digraphs is that of digraphs with edge antimagic

labelling (cf. the survey [10], book [14] and papers [11, 12]).

Problem 2. Find a semiring property such that the incidence semiring ID(R) satisfies it if and

only if D has an edge antimagic labelling.

The readers are referred to [25, 26, 41, 42, 43, 44] for more information on power graphs.

Problem 3. Find a semiring property such that the incidence semiring ID(R) satisfies it if and

only if D is isomorphic to a power graph of a group or a semigroup.

Let us refer to [24, 32, 35, 36, 40, 45, 51, 55] for more complete bibliography and background

information on the Cayley graphs.

Problem 4. Find a semiring property such that the incidence semiring ID(R) satisfies it if and

only if D is isomorphic to a Cayley graph of a group or a semigroup.

4. Main Theorem

The following definition was introduced in [29] by analogy to a similar concept of ring theory

considered, for example, in [49].

Definition 2. A subset S of a semiring R is called a visible basis for ideals, or a visible ideal basis

if, for every subset T of S, the weight of the ideal id (T ) generated by T in R is equal to the

minimum of the weights of all elements of T .

Visible ideal bases are convenient for determining the weights of ideals. Let D = (V,E) be a

digraph, and let g be a vertex in V . We use the following notation for two sets of vertices

In (g) = {h ∈ V | (h, g) ∈ E}, (3)

Out (g) = {h ∈ V | (g, h) ∈ E}. (4)
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Define two sets of edges of the digraph D = (V,E)

Er = {(g, h) ∈ E | Out (g) ∩ Out (h) = ∅}, (5)

Eℓ = {(g, h) ∈ E | In (g) ∩ In (h) = ∅}. (6)

Denote the subgraph of D = (V,E) with the same set V of vertices and the set Eℓ of edges by

Dℓ = (V,Eℓ). (7)

Likewise, denote the subgraph of D = (V,E) with the same set V of vertices and the set Er of

edges by

Dr = (V,Er). (8)

For any positive integer k, let Pk stand for the set of all pairs (S, v), where v ∈ V and S ⊆
In (v) are such that |S| = k, (u, v) ∈ Eℓ for all u ∈ S, and the intersection Out (v) ∩ Out (u) is

equal to the same set for all vertices u in S (so that Out (v) ∩ Out (u1) = Out (v) ∩ Out (u2),
for all u1, u2 ∈ S). Thus,

Pk = {(S, v) | v ∈ V, S ⊆ In (v), |S| = k, (u, v) ∈ Eℓ for all u ∈ S, (9)

Out (v) ∩ Out (u1) = Out (v) ∩ Out (u2), for all u1, u2 ∈ S}.

Let HL,k be the set of all elements x =
∑

u∈S r(u, v) ∈ IDℓ
(R), for all pairs (S, v) ∈ Pk and all

0 6= r ∈ R, i.e.,

HL,k =

{

∑

u∈S

r(u, v) ∈ IDℓ
(R)

∣

∣

∣

∣

∣

(S, v) ∈ Pk, 0 6= r ∈ R

}

. (10)

Denote by ML the largest positive integer such that the set PML
is not empty, or zero if such

integers do not exist, and put

HL = HL,ML
. (11)

Similarly, for any positive integer k, let us introduce the sets

Qk = {(v, S) | v ∈ V, S ⊆ Out (v), |S| = k, (v, u) ∈ Er for all u ∈ S, (12)

In (v) ∩ In (u1) = In (v) ∩ In (u2), for all u1, u2 ∈ S},

HR,k =

{

∑

u∈S

r(v, u) ∈ IDr
(R)

∣

∣

∣

∣

∣

(v, S) ∈ Qk, 0 6= r ∈ R

}

. (13)

Denote by MR the largest positive integer such that the set QMR
is not empty, or zero if such

integers do not exist, and put

HR = HR,MR
. (14)
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Let HZ be the set of all elements x =
∑

(u,v)∈Eℓ∩Er
r(u, v) ∈ ID(R) for all (u, v) ∈ Eℓ ∩ Er and

0 6= r ∈ R. Finally, put

BD(R) = HZ ∪HR ∪HL. (15)

Our main theorem shows that all incidence semirings of digraphs have convenient visible bases,

which can be used to generate two-sided ideals of the largest weight.

Theorem 4.1. Let D be a balanced finite digraph, and let R be an idempotent semiring with

identity element. Then the following conditions hold:

(i) The set BD(R) is a visible ideal basis in ID(R).

(ii) If ID(R) has any ideal of weight greater than one, then the set BD(R) contains an element

x ∈ BD(R) such that the ideal id (x) has the largest possible weight among the weights of

all two-sided ideals in ID(R).

It is nice that our main theorem eliminates algorithmic questions from the problem of gener-

ating ideals of the largest weight, because it gives us visible bases which can be used directly to

generate ideals of the largest weight.

5. Proofs

A semiring F is said to be zerosumfree if, for all x1, . . . , xn ∈ F ,

x1 + · · ·+ xn = 0 ⇐⇒ x1 = · · · = xn = 0. (16)

The following lemma is easy and well known.

Lemma 5.1. ([30]) All idempotent semirings are zerosumfree.

For any semiring R, the left annihilator of R is the set

Ann ℓ(R) = {x ∈ R | xR = 0}, (17)

and the right annihilator of R is the set

Ann r(R) = {x ∈ R | Rx = 0}. (18)

Lemma 5.2. If D is a balanced digraph and R is a semiring with identity element, then the fol-

lowing equalities hold:

Ann r(ID(R)) = IDℓ
(R), (19)

Ann ℓ(ID(R)) = IDr
(R). (20)
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Proof. Here we include only the proof of equality (19), because the proof of equality (20) is dual.

Let us first prove the inclusion Ann r(ID(R)) ⊇ IDℓ
(R). Pick any nonzero element x in

IDℓ
(R). By (7), the element x can be written down in the form x =

∑n

i=1 xi(gi, hi), where xi ∈ R,

(gi, hi) ∈ Eℓ. We claim that ID(R)x = 0.

To verify this, suppose to the contrary that there exists an edge (u, v) ∈ E such that (u, v)x 6= 0.

Then (u, v)(gi, hi) 6= 0, for some i. It follows from (1) that v = gi and (u, hi) ∈ E. Hence

u ∈ In (gi) ∩ In (hi), and so (gi, hi) /∈ Eℓ. This contradiction shows that the assumption made

in the beginning of this paragraph was wrong, and in fact ID(R)x = 0. This means that x ∈
Ann r(ID(R)). Thus, Ann r(ID(R)) ⊇ IDℓ

(R).
To prove the reversed inclusion, take any element x in Ann r(ID(R)). We can write it down

as x =
∑n

i=1 xi(gi, hi), where 0 6= xi ∈ R, (gi, hi) ∈ E. Suppose to the contrary that x does not

belong to IDℓ
(R). It follows from (7) that there exists i such that (gi, hi) /∈ Eℓ. Hence (6) yields that

there exists w ∈ V such that (w, gi), (w, hi) ∈ E. Therefore 1(w, gi) · 1(gi, hi) = 1(w, hi) 6= 0 in

ID(R). Since (w, gi)(gi, hi) is a summand of (w, gi)x with coefficient xi and since x was chosen in

the right annihilator Ann r(ID(R)) we get (w, gi)x = 0; whence xi = 0. This contradiction shows

that our assumption made in the beginning of this paragraph was wrong, and in fact x ∈ IDℓ
(R).

Therefore Ann r(ID(R)) ⊆ IDℓ
(R). This completes the proof of equality (19).

Lemma 5.3. If D is a balanced digraph, R is an idempotent semiring with identity element, and

x ∈ HZ , then {x} is a visible ideal basis in ID(R).

Proof. Since x belongs to HZ , we can write it down as a sum

x =
∑

(i,j)∈Eℓ∩Er

r(i, j) ∈ ID(R), (21)

where 0 6= r ∈ R. Evidently, wt (x) = |Eℓ ∩ Er|. Consider an arbitrary nonzero element y in

id (x). It follows from (2) that

y =
k
∑

j=1

ℓjxrj, (22)

for some ℓj, rj ∈ ID(R)∪{1}. Lemma 5.2 shows that all summands ℓjxrj in (22) are equal to zero

whenever ℓj ∈ ID(R) or rj ∈ ID(R). We may assume that only nonzero summands are included

in (22). This means that ℓj = rj = 1 for all j = 1, . . . , k. Since R is an idempotent semiring, it

follows from Lemma 5.1 that

wt (y) = wt

(

k
∑

j=1

x

)

= wt (x). (23)

Therefore wt ( id (x)) = wt (x), which means that {x} is a visible ideal basis in ID(R).

Lemma 5.4. If D is a balanced digraph, R is an idempotent semiring with identity element, k is

a positive integer and x ∈ HL,k, then {x} is a visible ideal basis in ID(R). In particular, {y} is a

visible ideal basis in ID(R), for each y ∈ HL.
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Proof. Since x belongs to HL,k, it can be recorded as a sum

x =
∑

s∈S

r(s, v) ∈ ID(R), (24)

where (S, v) ∈ Pk and 0 6= r ∈ R. Hence wt (x) = |S| = k. We need to prove that wt ( id (x)) =
wt (x).

Pick any nonzero element y in id (x). We have to verify that wt (y) ≥ wt (x). It follows from

(2) that y can be written down as

y =
k
∑

j=1

ℓjxrj, (25)

for some ℓj, rj ∈ ID(R) ∪ {1}. We may assume that only nonzero summands ℓjxrj are included

in (25). It follows from x ∈ IDℓ
(R) and Lemma 5.2 that ℓjx = 0 for all ℓj ∈ ID(R). Therefore

further we may assume that all the ℓj are equal to 1 in the expression (25).

Since ID(R) =
⊕

(u,w)∈E R(u, w), in view of the distributive law we may assume that every

element rj 6= 1 in (22) is homogeneous, which means that it belongs to the union ∪(u,w)∈ER(u, w).
Furthermore, since xrj 6= 0, it follows from (1) that all the rj in (25) belong to ∪(v,w)∈ER(v, w),
where the element v is associated to x in (24). By (9), the intersection Out (v) ∩ Out (u) is

equal to one and the same set T for all u in S. Since xrj 6= 0, we see that all the rj belong to

∪w∈TR(v, w). Therefore rj = tj(v, wj), for some 0 6= tj ∈ R and wj ∈ V . Since xrj 6= 0, we

get xrj =
∑

s∈S rtj(s, wj). Hence wt (xrj) = wt (x). Given that R is an idempotent semiring, it

follows from Lemma 5.1 that wt (y) ≥ wt (x), as required.

Lemma 5.5. If D is a balanced digraph, R is an idempotent semiring with identity element, k is a

positive integer, and x ∈ HR,k, then {x} is a visible ideal basis in ID(R). In particular, {y} is a

visible ideal basis in ID(R), for each y ∈ HR.

Proof. We omit the proof, because Lemma 5.5 is dual to Lemma 5.4.

Lemma 5.6. Let D be a balanced digraph, R an idempotent semiring with identity element, and

let B be a subset of ID(R). Then B is a visible ideal basis in ID(R) if and only if every set {x} is

a visible ideal basis in ID(R) for each x ∈ B.

Proof. The ‘only if’ part follows immediately, because the definition of a visible ideal basis implies

that every subset S of each visible ideal basis T is a visible ideal basis too.

To prove the ‘if’ part, suppose that all sets {x} are visible ideal bases in ID(R), for all x ∈ B.

Choose an arbitrary subset T of BD(R) and consider a nonzero element y in id (T ) such that the

weight of y is minimal, so that wt (y) = wt ( id (T )). By (2), we can write y down as a sum

y =
k
∑

i=1

ℓitiri (26)
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for some ti ∈ T , k ∈ N0, ℓi, ri ∈ ID(R) ∪ N. Combining similar terms in (26) by collecting all

summands ℓitiri with equal values of the ti ∈ T into separate subsums, we can rewrite y as

y =
a
∑

i=1

(

bi
∑

j=1

ℓi,jtiri,j,

)

(27)

where ti ∈ T , ℓi,j, ri,j ∈ ID(R) ∪ N, and where ti 6= tj for all 0 ≤ i < j ≤ a. We may remove all

sums equal to zero from (27) and assume that
∑bi

j=1 ℓi,jtiri,j 6= 0 for all i. Lemmas 5.3, 5.4 and 5.5

show that wt (
∑bi

j=1 ℓi,jtiri,j) = wt (ti), because
∑bi

j=1 ℓi,jtiri,j ∈ id (ti). Finally, Lemma 5.1

implies that

wt (y) ≥ wt (t1), . . . , wt (ta).

This means that the set T is a visible ideal basis of ID(R), which completes the proof.

Proof of Theorem 4.1. Condition (i) immediately follows from (15) and Lemmas 5.3, 5.4, 5.5

and 5.6.

Next, we are going to prove condition (ii). Suppose that the incidence semiring ID(R) has an

ideal of weight greater than one. Choose an ideal J of ID(R) such that the weight of J is the largest

possible one among the weights of all ideals in ID(R). Choose a nonzero element y of minimal

weight in J . Then wt (y) = wt (J) ≥ 2. Since y ∈ ID(R), there exist n ≥ 2, y1, . . . , yn ∈ R,

(g1, h1), . . . , (gn, hn) ∈ E, such that

y =
n
∑

i=1

yi(gi, hi). (28)

We may assume that likely terms in (28) have been combined so that all edges (g1, h1), . . . , (gn, hn)
are pairwise distinct. Then wt (y) = n. Here we have to consider several cases.

Case 1. (g1, h1), . . . , (gn, hn) ∈ Eℓ ∩ Er. Then |Eℓ ∩ Er| ≥ wt (y) ≥ 2. Hence the set HZ is

nonempty. Take any nonzero element x ∈ HZ . Lemma 5.3 tells us that wt (x) = wt ( id (x)) =
|Eℓ ∩ Er|. Hence wt (y) ≤ wt (x). It follows from the maximality of the weight of wt (J) =
wt (y) that wt (y) = wt (x). This means that condition (ii) is satisfied in this case.

Case 2. (g1, h1), . . . , (gn, hn) ∈ Er, but there exists i such that (gi, hi) /∈ Eℓ. Without loss of

generality we may assume that (g1, h1) /∈ Eℓ. By (6), there exists v ∈ In (g1) ∩ In (h1).
Fix any j such that 1 ≤ j ≤ n. Consider an arbitrary element w ∈ In (gj) ∩ In (hj). We

get (w, gj)y 6= 0, because yj(w, hj) = 1(w, gj) · yj(gj, hj) is a summand of (w, gj)y. Since

(w, g1)y ∈ id (y) ⊆ J , the minimality of the weight of y in J implies that wt ((w, gj)y) ≥ wt (y).
However, (28) yields us that

(w, gj)y =
n
∑

i=1

yi(w, gj)(gi, hi), (29)

and so wt ((w, gj)y) ≤ n = wt (y). Hence wt ((w, gj)y) = wt (y). It follows that all summands

yj(w, gj)(gj, hi) are nonzero. By (1), we get gj = gi for all i = 1, . . . , n. Therefore g1 = g2 =
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· · · = gn, for all j = 1, . . . , n. Since all summands yj(w, g1)(g1, hi) in (29) are nonzero, we get

w ∈ In (g1) ∩ In (h1). It follows that In (gj) ∩ In (hj) = In (g1) ∩ In (h1), for all j = 1, . . . , n.

Putting S = {h1, . . . , hn}, we get S ⊆ Out (g1). The hypothesis of Case 2 tells us that

(g1, u) ∈ Er for all u ∈ S. Besides, as we have just verified in the preceding paragraph, the

intersection In (g1) ∩ In (u) is equal to one and the same set for all vertices u in S. Therefore

(g1, S) ∈ Qn.

It follows from (13) that the element

z =
n
∑

i=1

1(g1, hi). (30)

belongs to HR,n. Lemma 5.5 tells us that the set {z} is a visible ideal basis in ID(R). Hence

wt ( id (z)) = wt (z) = n. The maximality of the weight wt (J) and Lemma 5.5 imply that

n = MR. Therefore z ∈ HR. This means that condition (ii) holds true in this case.

Case 3. (g1, h1), . . . , (gn, hn) ∈ Eℓ, but there exists 1 ≤ i ≤ n such that (gi, hi) /∈ Er. This

case is dual to Case 2, and so a dual proof shows that condition (ii) holds true in this case too.

Case 4. There exist 1 ≤ a, b ≤ n such that (ga, hb) /∈ Er ∪ Eℓ. Without loss of generality

we may assume that (g1, h1) /∈ Er ∪ Eℓ. Then (5) and (6) show that we can find elements u ∈
In (g1) ∩ In (h1) and v ∈ Out (g1) ∩ Out (h1). It follows from (1) and (28) that

(u, g1)y(h1, v) = y1(u, v) 6= 0. (31)

Since (u, g1)y(h1, v) ∈ J , we see that wt (J) = wt ((u, g1)y(h1, v)) = 1. This contradiction

shows that Case 4 is impossible.

Cases 1 through to 4 cover all possibilities. Therefore condition (ii) always holds true. This

completes the proof.
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