

Electronic Journal of Graph Theory and Applications

On the domination and signed domination numbers of zero-divisor graph

Ebrahim Vatandoost, Fatemeh Ramezani

Department of Basic Science, Imam Khomeini International University, Oazvin, Iran.

vatandoost@sci.ikiu.ac.ir, ramezani@ikiu.ac.ir

Abstract

Let R be a commutative ring (with 1) and let Z(R) be its set of zero-divisors. The zero-divisor graph $\Gamma(R)$ has vertex set $Z^*(R) = Z(R) \setminus \{0\}$ and for distinct $x,y \in Z^*(R)$, the vertices x and y are adjacent if and only if xy = 0. In this paper, we consider the domination number and signed domination number on zero-divisor graph $\Gamma(R)$ of commutative ring R such that for every $0 \neq x \in Z^*(R), x^2 \neq 0$. We characterize $\Gamma(R)$ whose $\gamma(\Gamma(R)) + \gamma(\overline{\Gamma(R)}) \in \{n+1, n, n-1\}$, where $|Z^*(R)| = n$.

Keywords: domination number, signed domination number, zero-divisor graph

 $Mathematics\ Subject\ Classification:\ 05C25,\ 05C50$

DOI: 10.5614/ejgta.2016.4.2.3

1. Introduction

The study on graphs from algebraic structures is an interesting subject for mathematician. In recent years, many algebraists as well as graph theorists have focused on the *zero-divisor* graph of rings. In [1], Anderson and Livingston introduced the zero-divisor graph of a commutative ring R with identity, denoted by $\Gamma(R)$, as the graph with vertices $Z^*(R) = Z(R) \setminus \{0\}$, the set of nonzero zero-divisors of R, and for distinct vertices x and y are adjacent if and only if xy = 0.

A dominating set for Γ is a subset D of V such that every vertex not in D is adjacent to at least

Received: 22 June 2014, Revised: 28 August 2016, Accepted: 4 September 2016.

one member of D. The domination number is the number of vertices in a smallest dominating set for Γ and denoted by $\gamma(\Gamma)$. Oystein Ore introduced the terms "dominating set" and "domination number" in [10] and has proved if Γ has n vertices and no isolated vertices, then $\gamma(\Gamma) \leq \frac{n}{2}$. For a vertex $v \in V(\Gamma)$, the closed neighborhood N[v] of v is the set consisting of v and all of its neighbors. For a function $g:V(\Gamma)\longrightarrow \{-1,1\}$ and a vertex $v\in V$ we define g[v]= $\sum_{u\in N[v]}g(u)$. A signed dominating function of Γ is a function $g:V(\Gamma)\longrightarrow \{-1,1\}$ such that g[v] > 0 for all $v \in V(\Gamma)$. The weight of a function g is $\omega(g) = \sum_{v \in V(\Gamma)} g(v)$. The signed domination number $\gamma_s(\Gamma)$ is the minimum weight of a signed dominating function on Γ . A signed dominating function of weight $\gamma_s(\Gamma)$ is called a $\gamma_s(\Gamma)$ -function. This concept was defined in [3] and has been studied by several authors (see for instance [4, 7, 8, 13, 14]). For a graph Γ the set of all vertices of Γ is denoted by $V(\Gamma)$. If Γ is a graph, then the *complement* of Γ , denoted by Γ is a graph with vertex set $V(\Gamma)$ in which two vertices are adjacent if and only if they are not adjacent in Γ . A graph is said to be *connected* if each pair of vertices are joined by a walk. The number of edges in a shortest walk joining v_i and v_j is called the distance between v_i and v_j and denoted by $d(v_i, v_i)$. The maximum value of the distance function in a connected graph Γ is called the diameter of Γ and denoted by $diam(\Gamma)$. The complete graph K_n is the graph with n vertices in which each pair of vertices are adjacent. The corona $\Gamma_1 \circ \Gamma_2$ is the graph formed by one copy of Γ_1 and $|V(\Gamma_1)|$ copies of Γ_2 where the ith vertex of Γ_1 is adjacent to every vertex in the ith copy of Γ_2 .

In this work, we consider the domination and signed domination number on zero-divisor graph $\Gamma(R)$ for commutative ring R. The main results are in the following.

Theorem 1.1. $\gamma_s(\Gamma(R)) = n$ if and only if $\Gamma(R)$ is isomorphic to $K_{1,n-1}$ or $K_3 \circ K_1$.

Theorem 1.2. Let |R| be odd. Then $\gamma_s(\Gamma(R)) = n - 2$ if and only if $\Gamma(R)$ is a cycle C_4 .

Theorem 1.3. $\gamma(\Gamma(R)) + \gamma(\overline{\Gamma(R)}) = n$ if and only if $\Gamma(R)$ is a cycle C_4 or a path P_3 .

Theorem 1.4. $\gamma(\Gamma(R)) + \gamma(\overline{\Gamma(R)}) = n - 1$ if and only if $\Gamma(R)$ is isomorphic to a $K_{1,3}$ or a $K_3 \circ K_1$.

2. Preliminaries

First we give some facts that are needed in the next sections.

Theorem 2.1. [1] Let R be a commutative ring. Then $\Gamma(R)$ is connected and $diam(\Gamma(R)) \leq 3$. Moreover, if $\Gamma(R)$ contains a cycle, then $girth(\Gamma(R)) \leq 7$.

Theorem 2.2. [1] Let R be a finite commutative ring with $|\Gamma(R)| \geq 4$. Then $\Gamma(R)$ is a star graph if and only if $R = Z_2 \times F$ where F is a finite field. In particular, if $\Gamma(R)$ is a star graph, then $|\Gamma(R)| = p^n$ for some prime p and $n \ge 0$. Conversely, each star graph of order p can be realized as $\Gamma(R)$.

Theorem 2.3. [10] If a graph Γ has n vertices and no isolated vertices, then $\gamma(\Gamma) \leq \frac{n}{2}$.

Theorem 2.4. [9] For any graph Γ with n vertices:

i. $\gamma(\Gamma) + \gamma(\overline{\Gamma}) \le n + 1$.

ii. $\gamma(\Gamma)\gamma(\overline{\Gamma}) \leq n$.

Theorem 2.5. [11][5] For a graph Γ with even order n and no isolated vertices, $\gamma(\Gamma) = \frac{n}{2}$ if and only if the components of Γ are the cycle C_4 or the corona $H \circ K_1$ where H is a connected graph.

Lemma 2.1. [8] Let Γ be a complete graph of order n, then

$$\gamma_s(\Gamma) = \begin{cases} 1 & n \text{ is odd.} \\ 2 & n \text{ is even.} \end{cases}$$

Theorem 2.6. [8] Let Γ be a graph with n vertices, then

i. $\gamma_s(\Gamma) + \gamma_s(\overline{\Gamma}) = 2n$ and $\gamma_s(\Gamma)\gamma_s(\overline{\Gamma}) = n^2$ if and only if $\Gamma \in \{P_1, P_2, \overline{P}_2, P_3, \overline{P}_3, P_4\}$, where P_i is a path on i vertices.

ii. $\gamma_s(\Gamma) + \gamma_s(\overline{\Gamma}) = 2n - 2$ and $\gamma_s(\Gamma)\gamma_s(\overline{\Gamma}) = n^2 - 2n$ for exactly 12 graph in Figure 1.

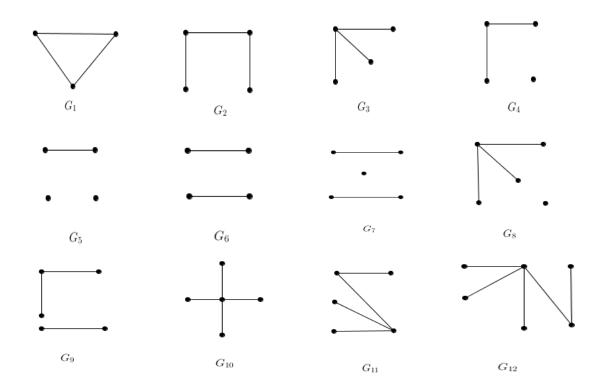


Figure 1. $\gamma_s(\Gamma) + \gamma_s(\overline{\Gamma}) = 2n - 2$ and $\gamma_s(\Gamma)\gamma_s(\overline{\Gamma}) = n^2 - 2n$.

Lemma 2.2. [8] A graph Γ has $\gamma_s(\Gamma) = n$ if and only if every $v \in \Gamma$ is either isolated, an endvertex or adjacent to an endvertex.

3. Signed domination number on zero-divisor graph

Throughout this paper, R is a commutative ring such that $|Z^*(R)| = n$ and for every non-zero element $x, x^2 \neq 0$. Also $\overline{\Gamma(R)}$ denotes the complement graph of the zero-divisor graph on R.

Lemma 3.1. The cycle C_n is a zero-divisor graph of a ring if and only if n=4.

Proof. Let $\Gamma(R)$ be the zero-divisor graph of a commutative ring R. Since $girth(\Gamma(R)) \leq 7$, then $n \leq 7$. On the contrary, let $\Gamma(R) \simeq C_n$ and $n \geq 5$ or n = 3. If $n \geq 5$, then $a_1 - a_2 - \ldots - a_n - a_1$. So $a_1 + a_3 \in ann(a_2) = \{0, a_1, a_3\}$ and so $a_1 + a_3 = 0$. Thus $a_4a_1 = 0$. This is impossible. Let $\Gamma(R)$ be K_3 . Then $Z(R) = \{0, a, b, c\}$. So $ann(a) = \{0, b, c\}$ and $ann(b) = \{0, a, c\}$. Thus b = -c = a. This is a contradiction. Conversely, the zero divisor graph of ring $Z_3 \times Z_3$ is a cycle C_4 .

Proof of Theorem 1.1. Let $\gamma_s(\Gamma(R)) = n$. Since $\Gamma(R)$ is a connected graph, by Lemma 2.2, every vertex is an endvertex or adjacent to an end-vertex. If $x \in Z^*(R)$ and deg(x) = 1, then $ann(x) = \{0, y\}$ where xy = 0. So O(y) = 2 in group (R, +). Hence |R| has even order. Let $A = \{a : deg(a) > 1\}$. Since $diam(\Gamma(R)) \le 3$, the induced subgraph on A is a complete graph. Consider four cases:

- Case 1. If |A| = 1, then $\Gamma(R)$ is $K_{1,n-1}$.
- Case 2. Let $A = \{a, b\}$. Then $ann(a) \cap ann(b) = \{0\}$. Suppose that $u \in ann(a)$ and $v \in ann(b)$. Since deg(a), deg(b) > 1, then deg(u) = deg(v) = 1 and also uva = uvb = 0. Hence, $uv \in ann(a) \cap ann(b)$ and so uv = 0. This is a contradiction by deg(u) = deg(v) = 1.
- Case 3. Let $A=\{a,b,c\}$. Let E(a) be the set of endvertex adjacent to a. Since $b,c\in ann(a)$ and O(a)=O(b)=2, ann(a) is a subgroup of (R,+) of even order. Hence |E(a)| is odd. The same conclusion can be drawn for b,c. We claim that |E(a)|=1. On the contrary, suppose that $|E(a)|\geq 3$. There is no loos of generality in assuming $E(a)=\{x_1,x_2,x_3\}$. So $ann(a)=\{0,b,c,x_1,x_2,x_3\}$. Hence $x_1=-x_3$ and $O(x_2)=2$ or $O(x_i)=2$ for $i\in\{1,2,3\}$. In the both cases, $x_1+x_2,x_2+x_3\neq 0$. Let $y\in E(b)$. Then $x_1ya=x_1yb=0$. So $x_1y\in ann(a)\cap ann(b)=\{0,c\}$. Since deg(y)=1, $x_1y=c$. In the same manner we can see that $x_2y=x_3y=c$. Hence $y(x_1+x_2)=y(x_2+x_3)=2c=0$. Thus $x_1+x_2,x_2+x_3\in ann(y)=\{0,b\}$. So $x_1+x_2=x_2+x_3=b$ and so $x_1=x_3$. This is a contradiction. Therefore |E(a)|=|E(b)|=|E(c)|=1 and $\Gamma(R)$ is $K_3\circ K_1$.
- Case 4. Let $A = \{a_1, \ldots, a_t\}$ and t > 3. Then $ann(a_i) = \{0, a_1, \ldots, \hat{a}_i, \ldots a_t\} \cup E(a_i)$ for $i \in \{1, \ldots, t\}$. So $\bigcap_{i=1}^{t-2} ann(a_i) = \{0, a_{t-1}, a_t\}$. Hence $a_{t-1} = -a_t$. Since $N(a_{t-1}) \neq N(a_t)$, this is impossible.

Corollary 3.1. If $\gamma_s(\Gamma(R)) = n$, then $\gamma_s(\overline{\Gamma(R)}) \in \{0, 3\}$.

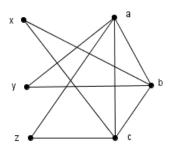


Figure 2. $\overline{K_3 \circ K_1}$.

Proof. By Theorem 1.1, $\Gamma(R) \simeq K_{1,n-1}$ or $K_3 \circ K_1$. If $\Gamma(R) \simeq K_{1,n-1}$, then $\overline{\Gamma(R)}$ is $K_1 \cup K_{n-1}$. Since |Z(R)| is even, then n is odd and so $\gamma_s(K_{n-1}) = 2$ and $\gamma_s(\overline{\Gamma(R)}) = 3$. If $\Gamma(R) \simeq K_3 \circ K_1$, then $\overline{\Gamma(R)}$ is the graph in Figure 2. Let $V_1 = \{x,y,z\}$ and $V_2 = \{a,b,c\}$. Define $f: V(\overline{\Gamma(R)}) \longrightarrow \{-1,+1\}$ such that

$$f(u) = \begin{cases} -1 & u \in V_1; \\ +1 & u \in V_2. \end{cases}$$

It is clear that f is a signed dominating function and $\omega(f)=0$. If g is a function such that $\omega(g)<0$, then g is not a signed dominating function. Therefore $\gamma_s(\overline{\Gamma(R)})=0$.

Corollary 3.2. If $\gamma_s(\Gamma(R)) = n$, then $|R| \in \{2^k, 2p^k\}$ where p is prime.

The Proof of Theorem 1.2 Since |R| is odd, $\delta \geq 2$. Let $x \in R$ and deg(x) = 2k + 1. Then |ann(x)| = 2k + 2. This is a contradiction by |R| is odd. So all vertices have even degree. Since $diam(\Gamma(R)) \leq 3$, there are three cases:

- Case 1. If $diam(\Gamma(R)) = 1$, then $\Gamma(R)$ is complete graph K_n . Since all vertices have even degree, n is odd and so $\gamma_s(\Gamma(R)) = 1$. Hence n = 3 and $\Gamma(R)$ is K_3 . This is impossible by Lemma 3.1.
- Case 2. If $diam(\gamma(R))=3$, then there are $a,b\in Z^*(R)$ such that d(a,b)=3. Define signed dominating function $f:V(\Gamma(R))\longrightarrow \{-1,+1\}$ such that f(a)=f(b)=-1 and f(x)=1 for $x\in Z^*(R)\setminus \{a,b\}$. Thus $\gamma_s(\Gamma(R))< n-2$. This is impossible.

Case 3. Let $diam(\Gamma(R)) = 2$. If $\Delta = 2$, then $\Gamma(R)$ is a cycle. So $\Gamma(R) \simeq C_4$, by Theorem 3.1. Let $deg(y) = \Delta \geq 4$. Let $ann(y) = \{0, a_1, \dots, a_t\}$ where t is even and $t \geq 4$. So $O(a_i) \neq 2$. Hence, $-a_i \in ann(y)$. Thus $ann(y) = \{0, a_1, -a_1, \dots, a_{\frac{t}{2}}, -a_{\frac{t}{2}}\}$. Let $x \in N(a_1)$. If there is $2 \le j \le \frac{t}{2}$ such that $\{a_1, a_j\} \notin E(\Gamma(R))$, then $d(x, a_j) > 2$. Otherwise, there is $z \in N(a_i) \setminus ann(y)$ and so d(x,z) = 3. This is not true. So for every $x \in N(a_1)$, $deg(x) \geq 4$. Define $f: V(\Gamma(R)) \longrightarrow \{-1, +1\}$ such that $f(a_1) = f(-a_1) = -1$ and f(v) = 1 for every $v \in V(\Gamma(R)) \setminus \{a_1, -a_1\}$. So f is a signed dominating function and so $\gamma(\Gamma(R)) < n-2$. This is a contradiction.

Theorem 3.1. If $\gamma_s(\Gamma(R)) + \gamma_s(\overline{\Gamma(R)}) = 2n$, then $|R| \in \{2^k, 2 \times 3^k\}$.

Proof. Since $\Gamma(R)$ is a connected graph, by Theorem 2.6, $\Gamma(R)$ is one of the paths in $\{P_1, P_2, P_3, P_4\}$. It is known P_4 is not a zero-divisor graph.

If $\Gamma(R)$ is P_1 , then $Z(R) = \{0, x\}$. So $x^2 = 0$. This is impossible.

Let $\Gamma(R)$ be P_2 . Then $Z(R) = \{0, a, b\}$ and O(a) = O(b) = 2. So |R| is even. If $p \mid |R|$ where p is an odd prime number, then there is $r \in R$ such that O(r) = p. Hence (p-1)a = 0. Thus ra = r(pa) = 0. So $r \in ann(a)$ and so r = b. This is a contradiction. If $\Gamma(R)$ is a - c - b, then $ann(c) = \{0, a, b\}$. So b = -a and so O(a) = 3. Also O(c) = 2. Also by Theorem 2.2, $R \simeq Z_2 \times F$. So $|R| = 2 \times 3^k$.

Theorem 3.2. If $\gamma_s(\Gamma(R)) + \gamma_s(\overline{\Gamma(R)}) = 2n - 2$, then $|R| = 2p^k$ where p is an odd prime.

Proof. By Theorem 2.6 and Lemma 3.1 and since $\Gamma(R)$ is a connected graph, $\Gamma(R) \in \{K_{1,3}, K_{1,4}, G_1, G_2\}$ where G_1, G_2 are two graphs in Figure 3. We show that G_1 and G_2 are not a zero-divisor graph. If G_1 is a zero-divisor graph, then b(a+e)=0. So $a+e\in ann(b)=\{0,a,e\}$. Hence e=-a. This is contradiction by $c, d \notin ann(a)$. Similar argument applies for G_2 .

If $\Gamma(R)$ is $K_{1,3}$ or $K_{1,4}$, then likewise Corollary 3.2, $|R| = 2p^k$.

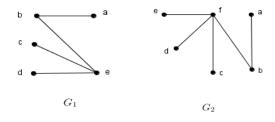


Figure 3. G_1 and G_2 in Theorem 3.2.

4. Domination number on zero-divisor graph

Theorem 4.1. $\gamma(\Gamma(R)) = \frac{n}{2}$ if and only if $\Gamma(R)$ is a cycle C_4 or a $K_3 \circ K_1$.

Proof. Let $\gamma(\Gamma(R)) = \frac{n}{2}$. By Theorem 2.5, $\Gamma(R)$ is the a cycle C_4 or the corona $H \circ K_1$ where H is a connected graph. If $\Gamma(R)$ is not C_4 , then $\Gamma(R) \simeq H \circ K_1$. Let $A = \{a_i \, ; \, deg(a_i) > 1\}$. Since $diam(\Gamma(R)) \leq 3$, the induced subgraph on A is complete. If |A| = 2, then $\Gamma(R)$ is a path P_4 . This is impossible. If |A| > 3, then $\bigcap_{i=1}^{t-2} ann(a_i) = \{0, a_{t-1}, a_t\}$. Hence $a_t = -a_{t-1}$. This is a contradiction. So |A| = 3 and so $\Gamma(R) \simeq K_3 \circ K_1$. The converse is clear.

Theorem 4.2. $\gamma(\Gamma(R)) + \gamma(\overline{\Gamma(R)}) = n + 1$ if and only if $\Gamma(R)$ is complete graph K_n .

Proof. Let $\gamma(\Gamma(R)) + \gamma(\overline{\Gamma(R)}) = n+1$. By Theorem 2.3, $\gamma(\Gamma(R)) \leq \frac{n}{2}$. So $\gamma(\overline{\Gamma(R)}) > \frac{n}{2}$ and so $\overline{\Gamma(R)}$ has isolated vertex. Hence $\gamma(\Gamma(R)) = 1$ and $\gamma(\overline{\Gamma(R)}) = n$. Thus all vertices of $\overline{\Gamma(R)}$ are isolated. Therefore $\Gamma(R) \simeq K_n$.

Proof of Theorem 1.3. Let $\gamma(\Gamma(R)) + \gamma(\overline{\Gamma(R)}) = n$. Since $\Gamma(R)$ is a connected graph, $\gamma(\Gamma(R)) \leq \frac{n}{2}$. We consider following cases:

Case 1. Let $\gamma(\Gamma(R)) = \frac{n}{2}$. By Theorem 4.1 and above equality, $\Gamma(R)$ is a C_4 .

Case 2. If $\gamma(\Gamma(R)) < \frac{n}{2}$, then $\gamma(\overline{\Gamma(R)}) > \frac{n}{2}$. So $\overline{\Gamma(R)}$ has an isolated vertex and so $\gamma(\Gamma(R)) = 1$. Also $\gamma(\overline{\Gamma(R)}) = n - 1$. Thus $\overline{\Gamma(R)}$ is $P_2 \cup (n-2)K_1$. It is clear that $n \geq 3$.

Sub case I. If n > 3, then likewise the proof of Theorem 4.1, the contradiction reaches.

Sub case II. If n=3, then $\overline{\Gamma(R)} \simeq P_2 \cup K_1$. So $\Gamma(R)$ is the path P_3 .

The converse is easy.

Proof of Theorem 1.4. Let $\gamma(\Gamma(R)) + \gamma(\overline{\Gamma(R)}) = n - 1$. Since $\Gamma(R)$ has no isolated vertices, $\gamma(\Gamma(R)) \leq \frac{n}{2}$. There are three cases:

- Case 1. If $\gamma(\Gamma(R)) = \frac{n}{2}$, then $\Gamma(R)$ is $K_3 \circ K_1$ or C_4 by Theorem 4.1. But $K_3 \circ K_1$ is not satisfied in $\gamma(\Gamma(R)) + \gamma(\overline{\Gamma(R)}) = n 1$.
- Case 2. Let $\gamma(\Gamma(R))=\frac{n}{2}-1$. Then $\gamma(\overline{\Gamma(R)})=\frac{n}{2}$. By Theorem 2.4, $0\leq n\leq 6$. So $n\in\{4,6\}$.
 - Sub case I. Let n=4. Then $\gamma(\Gamma(R))=1$ and $\gamma(\overline{\Gamma(R)})=2$. So $\Gamma(R)$ is $K_{1,3}$ or G in Figure 4. Let G be a zero-divisor graph. Since deg(a)=1, O(b)=2. On the other hand, $ann(c)=\{0,b,d\}$. So d=-b. This is not true.
- Sub case II. If n=6, then $\gamma(\Gamma(R))=2$ and $\gamma(\overline{\Gamma(R)})=3$. So $\overline{\Gamma(R)}$ is a graph without isolated vertex. Hence by Theorem 2.5, $\overline{\Gamma(R)}$ is $C_4\cup P_2$, $3P_2$ or $K_3\circ K_1$. So $\Gamma(R)$ is G_1,G_2 and G_3 in Figure 4, respectively. In graph G_1 , c(d+e)=0 and so $d+e\in ann(c)$. Hence d+e=0 or f. Thus ad=0 or bd=0. This is a contradiction. In graph G_2 , $d+f\in ann(a)$. But all cases are impossible. In graph G_3 , Since b(d+f)=0, d=-f. So cf=0. This is not true.

Case 3. If $\gamma(\Gamma(R)) < \frac{n}{2} - 1$, then $\overline{\Gamma(R)}$ has an isolated vertex. So $\gamma(\Gamma(R)) = 1$ and so $\gamma(\overline{\Gamma(R)}) = n - 2$. Hence $\overline{\Gamma(R)}$ is $P_3 \cup (n-3)K_1$ or $K_3 \cup (n-3)K_1$. If n=4, then $\Gamma(R)$ is G in Figure 4 or $K_{1,3}$ respectively. But G is not a zero-divisor graph of a ring. For n>4, the contradiction reached by the same method in Theorem 4.1.

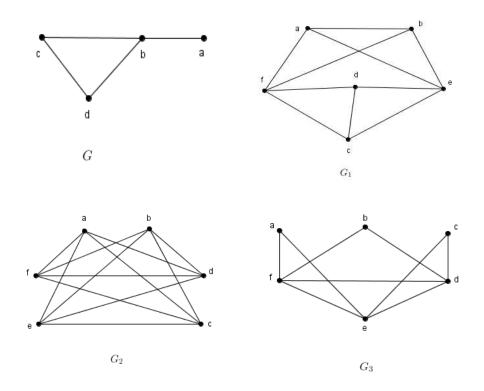


Figure 4. $\Gamma(R)$ in the proof of Theorem 1.4, Cases 2 and 3.

References

- [1] D. F. Anderson and P. S. Livingston, The zero divisor graph of a commutative ring, *Journal of Algebra* **217** (1999), 434–447.
- [2] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993.
- [3] J. E. Dunbar, S. T. Hedetniemi, M.A. Henning, and P. J. Slater, Signed domination in graphs, in: *Graph Theory, Combinatorics, and Applications*, (John Wiley and Sons, 1995), 311–322.
- [4] O. Favaron, Signed domination in regular graphs, *Discrete Mathematics* **158** (1996), 287–293.
- [5] J. F. Fink, M. S. Jacobson, L. F. Kinch, and J. Roberts, On geraphs having domination number half their order, *Periodica Mathematica Hungarica* **16** (1985), 287–293.

- [6] P. Flach and L. Volkmann, Estimations for the domination number of a graph, *Discrete Math*ematics 80 (1990), 145–151.
- [7] Z. Füredi and D. Mubayi, Signed domination in regular graphs and set-systems, *Journal of* Combinatorial Theory, Series B **76** (1999), 223–239.
- [8] R. Haas and T. B. Wexler, Signed domination numbers of a graph and its complement, Discrete Mathematics 283 (2004), 87–92.
- [9] F. Jaeger and C. Payan, Relations du type Nordhaus-Gaddum pour le nombre d'absorption d'un graphe simple, CR Acad. Sci. Ser. A 274 (1972), 728-730.
- [10] O. Ore, *Theory of Graphs*, Providence: American Mathematical Society, 1962.
- [11] C. Payan and N. H. Xuong, Domination-balanced graphs, *Journal of Graph Theory* 6 (1982), 23 - 32.
- [12] E. Vatandoost and Y. Golkhandy Pour, Domination in commuting graph and its complement, Iranian Journal of Science and Technology, Transactions A: Science, DOI: 10.1007/s40995-016-0028-5, 1-9, 2016.
- [13] L. Volkman and B. Zelinka, Signed domatic number of a graph, Discrete Applied Mathematics **150** (2005), 261–267.
- [14] B. Zelinka, Signed and minus domination in bipartite graphs, Czechoslovak Mathematical Journal 56 (2006), 587-590.