
www.ejgta.org

Electronic Journal of Graph Theory and Applications 3 (2) (2015), 228–236

Reciprocal complementary distance spectra and
reciprocal complementary distance energy of line
graphs of regular graphs

Harishchandra S. Ramane, Ashwini S. Yalnaik

Department of Mathematics, Karnatak University, Dharwad - 580003, India

hsramane@yahoo.com, ashwiniynaik@gmail.com

Abstract

The reciprocal complementary distance (RCD) matrix of a graph G is defined as RCD(G) = [rcij]
where rcij = 1

1+D−dij
if i 6= j and rcij = 0, otherwise, where D is the diameter of G and dij

is the distance between the vertices vi and vj in G. The RCD-energy of G is defined as the

sum of the absolute values of the eigenvalues of RCD(G). Two graphs are said to be RCD-

equienergetic if they have same RCD-energy. In this paper we show that the line graph of certain

regular graphs has exactly one positive RCD-eigenvalue. Further we show that RCD-energy of

line graph of these regular graphs is solely depends on the order and regularity of G. This results

enables to construct pairs of RCD-equienergetic graphs of same order and having different RCD-

eigenvalues.
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distance energy
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1. Introduction

Molecular matrices, encoding in various ways the topological infromation, are an important

source of structural descriptors for quantitative structure property relationships (QSPR) and quan-

titative structure activity relationships (QSAR) models [6]. A large number of molecular matrices
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were defined in the chemical literature. One of these is reciprocal complementary distance (RCD)

matrix.

Let G be a simple, undirected, connected graph with n vertices and m edges. Let the ver-

tices of G be labeled as v1, v2, . . . , vn . The adjacency matrix of a graph G is the square matrix

A = A(G) = [aij] , in which aij = 1 if vi is adjacent to vj and aij = 0 , otherwise. The eigenval-

ues of the adjacency matrix A(G) are the adjacency eigenvalues of G , and these will be labeled as

λ1 ≥ λ2 ≥ · · · ≥ λn and their collection is called as a adjacency spectra of G [3].

The distance between the vertices vi and vj , denoted by dij , is the length of the shortest path

between them. The diameter of a graph G, denoted by diam(G) , is the maximum distance be-

tween any pair of vertices of G. A graph G is said to be r-regular graph if all of its vertices have

same degree equal to r.

The reciprocal complementary distance between the vertices vi and vj , denoted by rcij is de-

fined as rcij =
1

1+D−dij
, where D is the diameter of G and dij is the distance between vi and vj in G.

The reciprocal complementary distance matrix [6, 7] of a graph G is an n× n real symmetric

matrix RCD(G) = [rcij], where

rcij =

{

1

1+D−dij
, if i 6= j

0, otherwise.

The eigenvalues of RCD(G) labeled as µ1 ≥ µ2 ≥ · · · ≥ µn are said to be the RCD-

eigenvalues of G and their collection is called RCD-spectra of G. Two non-isomorphic graphs

are said to be RCD-cospectral if they have same RCD-spectra.

The reciprocal complementary distance energy (RCD-energy) of a graph G is defined as

RCDE(G) =
n

∑

i=1

|µi| . (1)

The Eq. (1) is defined in full analogy with the ordinary graph energy E(G) , defined as [4]

E(G) =
n

∑

i=1

|λi| . (2)

Two graphs G1 and G2 are said to be equienergetic if E(G1) = E(G2) [1, 2, 8, 11, 12, 16]. For

more details on E(G) one can refer [8].

Two connected graphs G1 and G2 are said to be reciprocal complementary distance equiener-

getic or RCD-equienergetic if RCDE(G1) = RCDE(G2) . Of course, RCD-cospectral graphs

are RCD-equienergetic. In this paper we obtain the RCD-eigenvalues and RCD-energy of line
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graphs of certain regular graphs. Further we show that the RCD-energy of line graphs of certain

regular graphs is solely depends on the order and regularity of a graph. Thus infinitely many pairs

of RCD-equienergetic graphs can be constructed such that they have equal number of vertices,

equal number of edges and are non RCD-cospectral.

We need following results.

Theorem 1.1. [3] If G is an r-regular graph, then its maximum adjacency eigenvalue is equal to

r.

Theorem 1.2. [13] Let G be an r-regular graph of order n. If r, λ2, . . . , λn are the adjacency

eigenvalues of G , then the adjacency eigenvalues of G, the complement of G, are n − r − 1 and

−λi − 1, i = 2, 3, . . . , n.

The line graph of G, denoted by L(G) is the graph whose vertices corresponds to the edges of

G and two vertices of L(G) are adjacent if and only if the corresponding edges are adjacent in G
[5]. If G is a regular graph of order n and of degree r then the line graph L(G) is a regular graph

of order nr/2 and of degree 2r − 2.

Theorem 1.3. [14] If λ1, λ2, . . . , λn are the adjacency eigenvalues of a regular graph G of order

n and of degree r , then the adjacency eigenvalues of L(G) are

λi + r − 2, i = 1, 2, . . . , n, and

−2, n(r − 2)/2 times .

✇ ✇ ✇ ✇ ✇
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★
★★

❝
❝❝

✇

✇
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★
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★
★❝

❝
❝
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❝✇
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✇
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Figure 1: The forbidden induced subgraphs

Theorem 1.4. [9, 10] For a connected graph G, diam(L(G)) ≤ 2 if and only if none of the three

graphs F1, F2 and F3 of Fig. 1 is an induced subgraph of G.

Lemma 1.1. [15] If for any two adjacent vertices u and v of a graph G, there exists a third vertex

w which is not adjacent to any of u and v, then

(i) G is connected and

(ii) diam
(

G
)

≤ 2.
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2. RCD-eigenvalues

Theorem 2.1. Let G be an r-regular graph on n vertices and diam(G) = 2. If r, λ2, . . . , λn are the

adjacency eigenvalues of G , then its RCD-eigenvalues are n−1− r
2

and −1− λi

2
, i = 2, 3, . . . , n.

Proof. Since G is an r-regular graph, 1 = [1, 1, . . . , 1]′ is an eigenvector of A = A(G) corre-

sponding to the eigenvalue r. Set z = 1√
n
1 and let P be an orthogonal matrix with its first column

equal to z such that P ′AP = diag(λ1, λ2, . . . , λn). Since diam(G) = 2, RCD(G) can be written

as RCD(G) = J − I − (1/2)A, where J is the matrix whose all entries are equal to 1 and I is an

identity matrix. It follows that

P ′(RCD)P = P ′
(

J − I − 1

2
A
)

P

= P ′JP − I − 1

2
P ′AP

= diag
(

n− 1− r
2
,−1− λ2

2
, . . . ,−1− λn

2

)

,

where we have used the fact that any column of P other than the first column is orthogonal

to the first column. Hence the eigenvalues of RCD(G) are n − 1 − (r/2) and −1 − (λi/2),
i = 2, 3, . . . , n.

Theorem 2.2. If G is an r-regular, connected graph of order n ≥ 4 and if none of the three

graphs F1, F2 and F3 of Fig. 1 is an induced subgraph of G , then L(G) has exactly one positive

RCD-eigenvalue, equal to r(n− 2)/2.

Proof. Let r, λ2, λ3, . . . , λn be the adjacency eigenvalues of a regular graph G . Then from Theo-

rem 1.3, the adjacency eigenvalues of L(G) are

λi + r − 2, i = 1, 2, . . . , n, and

−2, n(r − 2)/2 times.

}

(3)

The graph G is regular of degree r and has order n . Therefore L(G) is a regular graph on nr/2
vertices and of degree 2r − 2. As none of the three graphs F1, F2 and F3 of Fig. 1 is an induced

subgraph of G , from Theorem 1.4, diam(L(G)) = 2 . Therefore from Theorem 2.1 and Eq. (3),

the RCD-eigenvalues of L(G) are

r(n− 2)/2, and

−(λi + r)/2, i = 2, 3, . . . , n and

0, n(r − 2)/2 times.















(4)

All adjacency eigenvalues of a regular graph of degree r satisfy the condition −r ≤ λi ≤ r [3].

Therefore λi + r ≥ 0 , i = 1, 2, . . . , n . The theorem follows from Eq. (4).
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3. RCD-energy

Theorem 3.1. If G is an r-regular, connected graph of order n ≥ 4 and if none of the three graphs

F1, F2 and F3 of Fig. 1 is an induced subgraph of G , then

RCDE(L(G)) = r(n− 2).

Proof. Bearing in mind Theorem 2.2 and Eq. (4), the RCD-energy of L(G) is computed as:

RCDE(L(G)) =
r(n− 2)

2
+

n
∑

i=2

(λi + r)

2
+ |0| ×

n(r − 2)

2

= r(n− 2) since

n
∑

i=2

λi = −r.

From Theorem 3.1, we see that the RCD-energy of the line graph of a regular graph G, that

does not contain Fi , i = 1, 2, 3, as an induced subgraph is fully determined by the order n and

degree r of G.

Let Kn be the complete graph on n vertices, Kk,k be the complete bipartite graph on 2k vertices

and CP (k) be the cocktail party graph (a regular graph on n = 2k vertices and of degree 2k − 2)

[3]. None of the three graphs F1, F2 and F3 of Fig.1 is an induced subgraph of these graphs.

Therefore from Theorem 3.1 we have following:

Corollary 3.1. (i) RCDE(L(Kn)) = n2 − 3n+ 2, for n ≥ 4.

(ii) RCDE(L(Kk,k)) = 2k(k − 1), for k ≥ 2.

(iii) RCDE(L(CP (k))) = 4(k − 1)2, for k ≥ 2.

Theorem 3.2. Let G be an r-regular graph of order n. Let L(G) be the line graph of G such that

for any two adjacent vertices u and v of L(G), there exists a third vertex w in L(G) which is not

adjacent to any of u and v.

(i) If the smallest adjacency eigenvalue of G is greater than or equal to 3− r, then

RCDE
(

L(G)
)

= 3n(r − 2)/2.

(ii) If the second largest adjacency eigenvalue of G is at most 3− r, then

RCDE
(

L(G)
)

= (nr/2) + 2r − 3.

Proof. Let the adjacency eigenvalues of G be r, λ2, . . . , λn. From Theorem 1.3, the adjacency

eigenvalues of L(G) are

2r − 2, and

λi + r − 2, i = 2, 3, . . . , n, and

−2, n(r − 2)/2 times.















(5)
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From Theorem 1.2 and the Eq. (5), the adjacency eigenvalues of L(G) are

(nr/2)− 2r + 1, and

−λi − r + 1, i = 2, 3, . . . , n, and

1, n(r − 2)/2 times.















(6)

Since for any two adjacent vertices u and v of L(G) there exists a third vertex w which is not

adjacent to any of u and v in L(G), by Lemma 1.1, diam
(

L(G)
)

= 2. Therefore by Theorem 2.1

and Eq. (6), the RCD-eigenvalues of L(G) are

(nr/4) + r − (3/2), and

λi+r−3

2
, i = 2, 3, . . . , n, and

(−3/2), n(r − 2)/2 times.















(7)

Therefore

RCDE
(

L(G)
)

=

∣

∣

∣

∣

nr

4
+ r −

3

2

∣

∣

∣

∣

+
n

∑

i=2

∣

∣

∣

∣

λi + r − 3

2

∣

∣

∣

∣

+

∣

∣

∣

∣

−
3

2

∣

∣

∣

∣

n(r − 2)

2
. (8)

(i) By assumption, λi + r − 3 ≥ 0, i = 2, 3, . . . n, then from Eq. (8)

RCDE
(

L(G)
)

=
nr

4
+ r −

3

2
+

n
∑

i=2

(

λi + r − 3

2

)

+
3n(r − 2)

4

=
nr

4
+ r −

3

2
+

1

2

n
∑

i=2

λi + (n− 1)

(

r − 3

2

)

+
3n(r − 2)

4

=
3n(r − 2)

2
since

n
∑

i=2

λi = −r.

(ii) By assumption, λi + r − 3 < 0, i = 2, 3, . . . n, then from Eq. (8)

RCDE
(

L(G)
)

=
nr

4
+ r −

3

2
−

n
∑

i=2

(

λi + r − 3

2

)

+
3n(r − 2)

4

=
nr

4
+ r −

3

2
−

1

2

n
∑

i=2

λi − (n− 1)

(

r − 3

2

)

+
3n(r − 2)

4

=
nr

2
+ 2r − 3 since

n
∑

i=2

λi = −r.
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Some of the examples of r-regular graphs whose second largest adjacency eigenvalue is at most

3 − r and the diameter of the complement of their line graph is equal to two are a 5-vertex cycle

C5, a 5-vertex complete graph K5, a 6-vertex cycle C6 and a complete bipartite graph K3,3.

Corollary 3.2. Let G be a cubic graph of order n. Let L(G) be the line graph of G such that

for any two adjacent vertices u and v of L(G), there exists a third vertex w in L(G) which is not

adjacent to any of u and v. Then

RCDE
(

L(G)
)

=
3n+ E(G)

2
.

Proof. Substituting r = 3 in Eq. (8) we get

RCDE
(

L(G)
)

=

∣

∣

∣

∣

3n

4
+

3

2

∣

∣

∣

∣

+
n

∑

i=2

∣

∣

∣

∣

λi

2

∣

∣

∣

∣

+

∣

∣

∣

∣

−
3

2

∣

∣

∣

∣

n

2

=
3n

4
+

3

2
+

1

2
(E(G)− 3) +

3n

4

=
3n+ E(G)

2
.

4. RCD-equienergetic graphs

Lemma 4.1. Let G1 and G2 be regular graphs of the same order and of the same degree. Then

following holds:

(i) L(G1) and L(G2) are of the same order, same degree and have the same number of edges.

(ii) L(G1) and L(G2) are of the same order, same degree and have the same number of edges.

Proof. Statement (i) follows from the fact that the line graph of a regular graph is a regular and

that the number of edges of G is equal to the number of vertices of L(G) . Statement (ii) follows

from the fact that the complement of a regular graph is a regular and that the number of vertices of

a graph and its complement is equal.

Lemma 4.2. Let G1 and G2 be regular, connected graphs of the same order n ≥ 4 and of the

same degree. Let none of the three graphs F1, F2 and F3 of Fig. 1 be an induced subgraph of Gi ,

i = 1, 2 . Then L(G1) and L(G2) are RCD-cospectral if and only if G1 and G2 are cospectral.

Proof. Follows from Eqs. (3) and (4).

Lemma 4.3. Let G1 and G2 be regular graphs of the same order and of the same degree. Let for

i = 1, 2, L(Gi) be the line graph of Gi such that for any two adjacent vertices ui and vi of L(Gi),
there exists a third vertex wi in L(Gi) which is not adjacent to any of ui and vi. Then L(G1) and

L(G2) are RCD-cospectral if and only if G1 and G2 are cospectral.
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Proof. Follows from Eqs. (5), (6) and (7).

Theorem 4.1. Let G1 and G2 be regular, connected, non cospectral graphs of the same order

n ≥ 4 and of the same degree r. Let none of the three graphs F1, F2 and F3 of Fig. 1 be an induced

subgraph of Gi , i = 1, 2. Then line graphs L(G1) and L(G2) form a pair of non RCD-cospectral,

RCD-equienergetic graphs of equal order and of equal number of edges.

Proof. Follows from Lemma 4.1, Lemma 4.2 and Theorem 3.1.

Theorem 4.2. Let G1 and G2 be regular, non cospectral graphs of the same order and of the same

degree r. Let for i = 1, 2, L(Gi) be the line graph of Gi such that for any two adjacent vertices ui

and vi of L(Gi), there exists a third vertex wi in L(Gi) which is not adjacent to any of ui and vi.
(i) If the smallest adjacency eigenvalue of Gi, i = 1, 2 is greater than or equal to 3−r, then L(G1)
and L(G2) form a pair of non RCD-cospectral, RCD-equienergetic graphs of equal order and of

equal number of edges.

(ii) If the second largest adjacency eigenvalue of Gi, i = 1, 2 is at most 3 − r, then L(G1) and

L(G2) form a pair of non RCD-cospectral, RCD-equienergetic graphs of equal order and of

equal number of edges.

Proof. Follows from Lemma 4.1, Lemma 4.3 and Theorem 3.2.

Theorem 4.3. Let G1 and G2 be non cospectral, cubic equienergetic graphs of the same order.

Let for i = 1, 2, L(Gi) be the line graph of Gi such that for any two adjacent vertices ui and vi
of L(Gi), there exists a third vertex wi in L(Gi) which is not adjacent to any of ui and vi. Then

L(G1) and L(G2) form a pair of non RCD-cospectral, RCD-equienergetic graphs of equal order

and of equal number of edges.

Proof. Follows from Lemma 4.1, Lemma 4.3 and Corollary 3.2.
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