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Abstract

For a graph G having adjacency spectrum (A-spectrum) λn ≤ λn−1 ≤ · · · ≤ λ1 and Laplacian

spectrum (L-spectrum) 0 = µn ≤ µn−1 ≤ · · · ≤ µ1, the energy is defined as E(G) =
∑n

i=1 |λi|
and the Laplacian energy is defined as LE(G) =

∑n

i=1 |µi − 2m
n
|. In this paper, we give upper and

lower bounds for the energy of KKj
n, 1 ≤ j ≤ n and as a consequence we generalize a result of

Stevanovic et al. [22]. We also consider strong double graph and strong p-fold graph to construct

some new families of graphs G for which E(G) > LE(G).
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1. Introduction

Let G be a finite, simple graph with n vertices and m edges having vertex set V (G) =
{v1, v2, . . . , vn}. The adjacency matrix A = (aij) of G is a (0, 1)-square matrix of order n whose

(i, j)-entry is equal to 1 if vi is adjacent to vj and equal to 0, otherwise. The spectrum of the

adjacency matrix is called the A-spectrum of G. If {λ1, λ2, . . . , λn} is the adjacency spectrum of

G, the energy [11] of G is defined as E(G) =
n∑

i=1

|λi|.
This quantity introduced by I. Gutman has noteworthy chemical applications (see [13, 16, 21]).
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Let D(G) = diag(d1, d2, . . . , dn) be the diagonal matrix associated to G, where di is the degree of

vertex vi. The matrices L(G) = D(G)−A(G) and Q(G) = D(G) +A(G) are respectively called

Laplacian and signless Laplacian matrices and their spectrum are respectively called Laplacian

spectrum (L-spectrum) and signless Laplacian spectrum (Q-spectrum) of G. Being real symmetric,

positive semi-definite matrices, we let 0 = µn ≤ µn−1 ≤ · · · ≤ µ1 and 0 ≤ qn ≤ qn−1 ≤ · · · ≤ q1
to be respectively the L-spectrum and Q-spectrum of G. It is well known [8] that µn=0 with mul-

tiplicity equal to the number of connected components of G. Fiedler [8] showed that a graph G

is connected if and only if its second smallest Laplacian eigenvalue is positive and called it as the

algebraic connectivity of the graph G. Also it is well known that for a bipartite graph the L-spectra

and Q-spectra are same [6]. For the sake of simplicity, we denote a
[tj ]
i if the A-eigenvalue (L-

eigenvalue) ai occurs tj times in the A-spectrum (L-spectrum).

The Laplacian energy of a graph G as put forward by Gutman and Zhou [14] is defined as

LE(G) =
n∑

i=1

|µi − 2m
n
|. This quantity, which is an extension of graph-energy concept has found

remarkable chemical applications beyond the molecular orbital theory of conjugated molecules

[20]. Both energy and Laplacian energy have been extensively studied in the literature (see

[1, 2, 10, 7, 16, 23, 24, 25] and the references therein). It is easy to see that tr(L(G)) =
n∑

i=1

µi =

n−1∑
i=1

µi = 2m and tr(Q(G)) =
n∑

i=1

qi = 2m.

The strong double graph of a graph G with vertex set V (G) = {v1, v2, . . . , vn} is the graph

SD(G) obtained by taking two copies of the graph G and joining each vertex vi in one copy with

the closed neighbourhood N [vi] = N(vi) ∪ {vi} of the corresponding vertex in the other copy.

For various properties of SD(G) see [4]. The strong p-fold graph SPF (G) of the graph G is a

graph obtained by taking p-copies of the graph G and joining each vertex vi in one copy with the

closed neighbourhood N [vi] = N(vi) ∪ {vi} of corresponding vertex in every other copy (e.g.,

see Figure 1). It is easy to see that the graphs SD(G) and SPF (G) are connected if and only

if G is connected; and a vertex vi is of degree di in G if and only if it is of degree 2di + 1 and

pdi + p − 1 in SD(G) and SPF (G), respectively. Also the graphs SD(G) and SPF (G) always

contain a perfect matching (1-factor). If Kp is the complete graph on p-vertices, it is easy to see

that SD(G) = G ◦K2 and SPF (G) = G ◦Kp, where ◦ represents the composition of the graphs.

Let KKj
n, 1 ≤ j ≤ n be the graph obtained by taking two copies of the graph Kn and joining

a vertex in one copy with the j, 1 ≤ j ≤ n, vertices in another copy.

Gutman et al. [12] conjectured that the inequality E(G) ≤ LE(G) holds for all graphs. It

was Stevanović et al. [22] who disproved the conjecture by furnishing an infinite family of graphs

G = KK2
n, for which the reverse inequality holds for all n ≥ 8. As can be seen in [15], for

n = 7, there is only one graph (see graph H in Figure 2) for which E(G) > LE(G) holds.

Using this graph Liu and Liu [15] constructed an infinite family of disconnected graphs for which

E(G) > LE(G) holds. Recently two of the authors [18] defined strong double graph SD(G) of

a graph G and showed that E(G) > LE(G) holds for SD(KK2
n), for all n ≥ 9. In this paper,

we give upper and lower bounds for the energy of KKj
n, 1 ≤ j ≤ n, and as a consequence we

generalize a result of Stevanovic et al. [22]. We also consider strong double graph and strong
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Figure 1. The strong double graph and strong 3-fold graph of P4.

p-fold graph to construct some new families of graphs G for which

E(G) > LE(G). (1)

Using singular value inequality it can be seen that for bipartite graphs the inequality E(G) ≤
LE(G) always holds [21]. So for the reverse inequality we will search for non-bipartite graphs.

For other undefined notations and terminology from graph theory and spectral graph theory, the

readers are referred to [5, 17].

Let KKj
n, 1 ≤ j ≤ n be the graph defined above. The A-spectrum and L-spectrum of KKj

n

were found in [9] and are given by the following results.

Lemma 1.1. If 1 ≤ j ≤ n, n ≥ 3, the A-characteristic polynomial of KKj
n is (x + 1)2n−4h(x),

where h(x) = x4 + (4− 2n)x3 + (n2 − 6n+6− j)x2 + (2n2 − 6n+2nj − j2 − 3j +4)x+ (1+
nj2 − 2j2 + n2 − 2n− 2j + 3jn− jn2).

Lemma 1.2. If 1 ≤ j ≤ n, n ≥ 3, the L-characteristic polynomial of KKj
n is x(x−n)2n−j−2(x−

n− 1)j−1g(x), where g(x) = x2 − (n+ 1 + j)x+ 2j.

By Lemma 1.2, the L-spectrum of the graph KKj
n is

{n[2n−j−2], n+ 1[j−1],
(n+j+1)+

√
(n+j+1)2−8j

2
,
(n+j+1)−

√
(n+j+1)2−8j

2
, 0},

with average vertex degree n− 1 + j

n
. Therefore,

LE(KKj
n) = (2n− j − 2)|n− n+ 1− j

n
|+ (j − 1)|n+ 1− n+ 1− j

n
|

+ |(n+ j + 1) +
√

(n+ j + 1)2 − 8j

2
− n+ 1− j

n
|+ |0− n+ 1− j

n
|

+ |(n+ j + 1)−
√
(n+ j + 1)2 − 8j

2
− n+ 1− 3

n
|

= 3n− j +
4j

n
− 5 +

√
(n+ j + 1)2 − 8j.
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So for any j, 1 ≤ j ≤ n, the Laplacian energy of the graph KKj
n is

LE(KKj
n) = 3n− j +

4j

n
− 5 +

√
(n+ j + 1)2 − 8j. (2)

It is easy to see that LE(KKj
n) is an increasing function of j, 1 ≤ j ≤ n. Therefore it follows

that {KKj
n, 1 ≤ j ≤ n} gives a family of graphs where adding an edge one by one, increases the

Laplacian energy monotonically. So we have the following observation.

Theorem 1.1. Among the family {KKj
n, 1 ≤ j ≤ n}, the graph KK1

n has the minimal Laplacian

energy and the graph KKn
n has the maximal Laplacian energy.

Two graphs G1 and G2 of same order are said to be equienergetic if E(G1) = E(G2) see [2].

In analogy to this two graphs G1 and G2 of same order are said to L-equienergetic if LE(G1) =
LE(G2) see [10, 18, 19]. Since cospectral (Laplacian cospectral) graphs are always equienergetic

(L-equienergetic) the problem of constructing equienergetic (L-equienergetic) graphs is only con-

sidered for non-cospecral (non-Laplacian-cospectral) graphs.

For j = n, we have LE(KKn
n) = 3n−n+ 4n

n
−5+

√
(n+ n+ 1)2 − 8n = 4n−2 = LE(K2n).

Since the L-spectrum of the graph K2n is {2n[2n−1], 0}, it follows by Lemma 1.2, these graphs are

non-Laplacian cospectral. Therefore we have the following.

Theorem 1.2. For j ∈ N, 1 ≤ j ≤ n, the graphs KKn
n and K2n are non-Laplacian cospectral,

Laplacian equienergetic graphs.

Let G and H be two graphs with disjoint vertex sets. Let u ∈ V (G) and v ∈ V (H). Construct

the graph G ⋆H from copies of G and H, by identifying the vertices u and v. Thus |V (G ⋆H)| =
|V (G)|+ |V (H)| − 1. The graph G⋆H is known as the coalescence of G and H with respect to u

and v. For G = Kn, H = Kn+1 and u( respectively v) any vertex of G( respectively H), we have

G ⋆ H = Kn ⋆ Kn+1 = KKn
n . So we have the following consequence.

Corollary 1.1. If G = Kn and H = Kn+1, then

LE(G ⋆ H) = LE(KKn
n) = LE(K2n)

= 4n− 2 = 2n− 2 + 2(n+ 1)− 2 = LE(Kn) + LE(Kn+1).

From this, it follows that the Laplacian energy of the coalescence of a complete graph on n

vertices with a complete graph on n + 1 vertices is the sum of their Laplacian energies, which in

turn is same as the Laplacian energy of the complete graph on 2n vertices.

In [22], it is shown that inequality (1) holds for the graph KK2
n. Here we first show that the in-

equality (1) also holds for the graphs KK3
n and KK4

n, and using this argument, we prove a general

result (Theorem 1.4), which generalizes Proposition 1 (of [22]).
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Theorem 1.3. For n ≥ 8 and j = 3, 4, we have E(KKj
n) > LE(KKj

n).

Proof. For j = 3, it follows from Lemma 1.1, that the A-characteristic polynomial P (KK3
n, x) of

the graph KK3
n is P (KK3

n, x) = (x + 1)2n−4h(x), where h(x) = x4 − 2(n− 2)x3 + (n2 − 6n +
3)x2 + (2n2 − 14)x+ (16n− 23− 2n2).

For n ≥ 8, we have h(n) = n2+2n−23 > 0, h(n−1) = −9 < 0, h(n−2) = (n−1)2 > 0,

h(1) = n2+8n−29 > 0, h(0) = −2n2+16n−23 < 0, h(−2.3) = −1.31n2+8.594n+4.3861 <

0, h(−3) = n2 + 16n+ 19 > 0.

Therefore, h(x) has three positive roots, one in each of the intervals (0, 1), (n − 2, n − 1) and

(n− 1, n), and a single negative root in the interval (−3,−2.3). Assume that x1, x2, x3, x4 are the

roots of h(x) with x1, x2, x3 > 0 and x4 < 0. Therefore the A-spectrum of the graph KK3
n is

{−1[2n−4], x1, x2, x3, x4}, with x1 + x2 + x3 + x4 = 2(n− 2). We have

E(KK3
n) = (2n− 4)| − 1|+ |x1|+ |x2|+ |x3|+ |x4|

= 2n− 4 + x1 + x2 + x3 − x4

= 2n− 4 + 2n− 4− 2x4

> 4n− 3.4.

By (2), the Laplacian energy of KK3
n is

LE(KK3
n) = 3n− 8 +

12

n
+
√
n2 + 8n− 8.

So E(KK3
n) − LE(KK3

n) = n + 4.6 − 12
n
−

√
n2 + 8n− 8 = g(n). It is easy to see that

g(n) > 0 for all n ≥ 8. That is, E(KK3
n) > LE(KK3

n), for all n ≥ 8.

Using the same argument as above, it can be seen that for j = 4, the polynomial h(x) has three

positive roots, one in each of the intervals (0, 1), (n−2, n−1) and (n−1, n), and a single negative

root in the interval (−3,−2.4). So proceeding similarly the result follows.

Now we obtain the lower and upper bounds for the energy of KKj
n.

Theorem 1.4. For k ∈ N− {1}, (k − 1)2 < j ≤ k2 and n ≥ ((k − 1)2 + 2)2 − (k − 1)2, we have

4n− 8 + 2k < E(KKj
n) < 4n− 8 + 2(k + 1).

Proof. By Lemma 1.1, the A-characteristic polynomial P (KKj
n, x) of the graph KKj

n is

P (KKj
n, x) = (x+ 1)2n−4h(x),

where

h(x) = x4 + (4− 2n)x3 + (n2 − 6n+ 6− j)x2

+ (2n2 − 6n+ 2nj − j2 − 3j + 4)x

+ (1 + nj2 − 2j2 + n2 − 2n− 2j + 3jn− jn2).
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Let x1, x2, x3, x4 be the zeros of the polynomial h(x). Then the spectrum of the graph KKj
n is

{−1[2n−4], x1, x2, x3, x4}.

For (k − 1)2 < j ≤ k2 and n ≥ ((k − 1)2 + 2)2 − (k − 1)2, we have the following.

h(n) = n2 + 2n+ 1− 2j2 − 2j > 0,

h(n− 1) = −j2 < 0,

h(n− 2) = (n− 1)2 > 0,

h(0) = 1− 2j − 2j2 − 2n+ 3nj + nj2 + n2 − jn2 < 0,

h(−k) = k4 + (2n− 4)k3 + (n2 − 6n+ 6− j)k2 − (2n2 − 6n+ 2nj − j2 − 3j + 4)k

+(1 + nj2 − 2j2 + n2 − 2n− 2j + 3jn− jn2) < 0,

h(−(k + 1)) = k4 + 2nk3 + (n2 − j)k2 + (j2 + j − 2nj)k + (jn+ nj2 − jn2 − j2) > 0.

Therefore, by Intermediate Value Theorem, it follows that h(x) has three positive roots, one in

each of the intervals (0, n−2), (n−2, n−1) and (n−1, n), and a single negative root in the interval

(−(k + 1),−k). Assume that x1, x2, x3 > 0 and x4 < 0. Since x1 + x2 + x3 + x4 = 2(n− 2).
We have

E(KKj
n) = (2n− 4)| − 1|+ |x1|+ |x2|+ |x3|+ |x4|

= 2n− 4 + x1 + x2 + x3 − x4

= 2n− 4 + 2n− 4− 2x4

= 4n− 8− 2x4.

The result follows from the fact that x4 ∈ (−(k+1),−k) implies −(k+1) < x4 < −k, which

implies k < −x4 < k + 1.

Since (k − 1)2 < j ≤ k2 implies k − 1 <
√
j < k, we have the following consequence of

Theorem 1.4.

Corollary 1.2. For k ∈ N−{1}, (k− 1)2 < j ≤ k2 and n ≥ ((k− 1)2 + 2)2 − (k− 1)2, we have

E(KKj
n) > 4n− 8 + 2

√
j.

A graph G on n vertices is said to be hyperenergetic if its energy exceeds the energy of the

complete graph Kn, that is E(G) > E(Kn) = 2(n − 1). Since KKj
n is a graph on 2n vertices,

we have the following.

Corollary 1.3. For k ∈ N − {1, 2}, (k − 1)2 < j ≤ k2 and n ≥ ((k − 1)2 + 2)2 − (k − 1)2, the

graph KKj
n is hyperenergetic.

Proof. Since k ≥ 3, we have by Theorem 1.4, E(KKj
n) > 4n−8+2k ≥ 4n−2 = E(K2n).
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Corollary 1.4. For k ∈ N−{1}, (k− 1)2 < j ≤ k2 and n ≥ ((k− 1)2 + 2)2 − (k− 1)2, we have

E(KKj
n) > LE(KKj

n).

Proof. For k = 2, we have j = 2, 3, 4 and n ≥ 8, the result follows by Proposition 1 (of [22]) and

Theorem 1.3. So assume that k ≥ 3. By equation (2) and Corollary 1.2, we have

E(KKj
n)− LE(KKj

n) = 4n− 8 + 2
√
j − 3n+ j − 4j

n
+ 5−

√
(n+ j + 1)2 − 8j

= n+ 2
√

j + j − 3− 4j

n
−

√
(n+ j + 1)2 − 8j = g(n).

It is easy to see that g(n) > 0, for n ≥ ((k− 1)2 + 2)2 − (k− 1)2, k ≥ 3. Therefore the result

follows.

By a suitable labelling of vertices, the adjacency matrix A = A(KKj
n) of the graph KKj

n,

1 ≤ j ≤ n, can be put in the form

A =

(
0 x2n−1

xt
2n−1 B

)
,

where x2n−1 is a (2n− 1)-vector having first (n− 1 + j)-entries equal to 1 and rest 0 and B is the

adjacency matrix of the graph Kn−1 ∪Kn.

Let the eigenvalues of A be λ1 ≥ λ2 ≥ · · · ≥ λ2n−1 ≥ λ2n. Since the spectrum of B is

{n− 1, n− 2,−1[2n−3]}, by interlacing inequalities for principal submatrix, we have

λ1 ≥ n− 1 ≥ λ2 ≥ n− 2 ≥ λ3 ≥ −1 ≥ λ4 ≥ −1 ≥ · · · ≥ −1 ≥ λ2n−1 ≥ −1 ≥ λ2n.

From this it follows that λ1 ∈ (2n − 1, n − 1), λ2 ∈ (n − 2, n − 1), λ3 ∈ (−1, n − 2), λ2n ∈
(−1,−2n+1) and λ4 = λ5 = · · · = λ2n−1 = −1. This shows that the eigenvalue λ1, λ2 are always

positive and λ2n always negative, while as λ3 may be positive or negative. Also it is clear from this

and Lemma 1, that λ1, λ2, λ3, λ2n are the zeros of the polynomial h(x) = h(x) = x4+(4−2n)x3+
(n2−6n+6−j)x2+(2n2−6n+2nj−j2−3j+4)x+(1+nj2−2j2+n2−2n−2j+3jn−jn2). So

λ1+λ2+λ3+λ2n = 2n−4 and λ1λ2λ3λ2n = 1+nj2−2j2+n2−2n−2j+3jn−jn2. Since λ1, λ2 >

0 and λ2n < 0, it follows that λ3 > 0 if and only if 1+nj2− 2j2+n2− 2n− 2j+3jn− jn2 < 0,

which is so if and only if 2 ≤ j ≤ n− 3. Therefore we have the following result.

Theorem 1.5. For 5 ≤ j ≤ n− 3 and n ≥ 9, we have E(KKj
n) > LE(KKj

n) if and only if

n >
j2 − 3j + 16 +

√
(j2 − 3j + 16)2 + 4(j − 4)(j2 − 2j + 16)

2(j − 4)
.

Proof. Since, for 5 ≤ j ≤ n− 3, the eigenvalue λ3 > 0, therefore we have

E(KKj
n) = (2n− 4)| − 1|+ |λ1|+ |λ2|+ |λ3|+ |λ2n|

= 2n− 4 + λ1 + λ2 + λ3 − λ2n

= 2n− 4 + 2n− 4− 2λ2n

= 4n− 8− 2λ2n.
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Also by Theorem 1.1, we have 4n−4 = LE(KK0
n) < LE(KK1

n) < LE(KKj
n) < LE(KKn

n) =
4n − 2, for all 5 ≤ j ≤ n − 3. So instead of showing E(KKj

n) > LE(KKj
n), we will show

E(KKj
n) > LE(KKn

n). We have

E(KKj
n)− LE(KKn

n) = 4n− 8− 2λ2n − 4n+ 2

= −6− 2λ2n > 0

if and only if λ2n < −3 which, by the Intermediate Value Theorem, is equivalent to h(−3) < 0, that

is (j−4)n2−(j2−3j+16)n−(j2−2j+16) > 0, that is n >
j2−3j+16+

√
(j2−3j+16)2+4(j−4)(j2−2j+16)

2(j−4)
.

The conditions of Theorem 1.5 are also sufficient for the graph KKj
n to be hyperenergetic.

If u (respectively v) is a vertex in G (respectively H) and G ⋆ H is their coalescence, then it is

shown in [21] that

E(G ⋆ H) ≤ E(G) + E(H), (3)

with equality if and only if either u is an isolated vertex of G or v is an isolated vertex of H or both

are isolated vertices.

For j = n, we have KKn
n = Kn ⋆ Kn+1. So for G = Kn and H = Kn+1, we have by (3)

E(KKn
n) = E(Kn ⋆ Kn+1) < E(Kn) + E(Kn+1)

= 2n− 2 + 2(n+ 1)− 2 = 4n− 2 = LE(KKn
n).

From this it follows that the graph KKn
n is not hyperenergetic.

2. On strong graphs and strong p-fold graphs

For a graph G with vertex set V (G) = {v1, v2, . . . , vn}, the strong double graph SD(G) is a

graph obtained by taking two copies of G and joining each vertex vi in one copy with the closed

neighbourhood N [vi] = N(vi) ∪ {vi} of corresponding vertex in another copy. In other words,

strong double graph of the graph G with vertex set V (G) = {v1, v2, . . . , vn} is the graph SD(G)
with vertex set V (SD(G)) = {x1, x2, . . . , xn, y1, y2, . . . , yn}, where the adjacency is defined as

follows. xi(yi) is adjacent to xj(yj) if vi adjacent to vj; and xi adjacent to yj if i = j or vi adjacent

to vj (see Figure 1).

The following observations can be found in [18].

Lemma 2.1. If λi, i = 1, 2, . . . , n, is the A-spectrum of the graph G, then the A-spectrum of the

graph SD(G) is 2λi + 1, −1[n] , i = 1, 2, . . . , n.

Lemma 2.2. If µi and di, i = 1, 2, . . . , n, are respectively the L-spectrum and degree sequence of

the graph G, then the L-spectrum of the graph SD(G) is 2µi, 2di + 2, i = 1, 2, . . . , n.
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Figure 2. Graph H is the only graph on 7 vertices with E(H) > LE(H). Graph G1 is one of the graphs with

E(G1) > LE(G1), but E(SPF (G1)) ≤ LE(SPF (G)).

For the graph H (see Figure 2) it is shown in [15] that E(H) > LE(H) and using this, an

infinite families of graphs (disconnected) were constructed for which the inequality (1) holds.

Here we show inequality (1) also holds for SD(H). By direct calculation it can seen that the

A-spectrum of H is

{3.17741, 1.73205, 0.67836, 1[2], 1.73205, 1.85577}

and its L-spectrum is

{4 +
√
2, 3 +

√
3, 4[2], 4−

√
2, 3−

√
3, 0}.

Using Lemmas 2.1 and 2.2, and the fact that the degree sequence of H is [4, 3, 3, 3, 3, 3, 3], it

follows that the A-spectrum and L-spectrum of the graph SD(H) are respectively as

{7.35482, 4.4641, 2.35672,−1[9],−2.4641,−2.71154}

and

{10, 8 + 2
√
2, 6 + 2

√
3, 8[8], 8− 2

√
2, 6− 2

√
3, 0}.

Therefore LE(SD(H)) = 28.299377 < 28.3512 = E(SD(H)). That proves the assertion.

For a graph G with vertex set {v1, v2, . . . , vn}, let SPF (G) be the graph obtained by taking

p-copies of the graph G and joining each vertex vi in one copy with the closed neighbourhood

N [vi] = N(vi) ∪ {vi} of the corresponding vertex in every other copy. By a suitable labelling of

vertices, it can be seen that the adjacency matrix Â of the graph SPF (G) is

Â =




A A+ I · · · A+ I

A+ I A · · · A+ I
...

... · · · ...

A+ I A+ I · · · A


 ,

where A is the adjacency matrix of G and I is the identity matrix of order equal to the order of A.

Therefore the characteristic polynomial
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|λIpn − Â| =

∣∣∣∣∣∣∣∣∣

λIn − A −(A+ I) · · · −(A+ I)
−(A+ I) λIn − A · · · −(A+ I)

...
... · · · ...

−(A+ I) −(A+ I) · · · λIn − A

∣∣∣∣∣∣∣∣∣
,

Using elementary transformations C1 → C1 + C2 + · · · + Cp and then Ri → Ri − R1, for

i = 2, 3, . . . , p, it can be seen that the spectrum of the matrix Â and so the A-spectrum of the graph

SPF (G) is

{−1[n(p−1)], px1 + p− 1, px2 + p− 1, . . . , pxn + p− 1}, (4)

where x1, x2, . . . , xn are the adjacency eigenvalues of the graph G.

Also the degree matrix D̂ of the graph SPF (G) is

D̂ =




pD + (p− 1)I 0 · · · 0
0 pD + (p− 1)I · · · 0
...

... · · · ...

0 0 · · · pD + (p− 1)I


 .

So the Laplacian matrix L̂ of the graph SPF (G) is

L̂ =




pD + (p− 1)I − A −(A+ I) · · · −(A+ I)
−(A+ I) pD + (p− 1)I − A · · · −(A+ I)

...
... · · · ...

−(A+ I) −(A+ I) · · · pD + (p− 1)I − A


 .

Proceeding similarly as above, it can be seen that the L-spectrum of the graph SPF (G) is

{pµ1, pµ2, . . . , pµn, pd1 + p[p−1], pd2 + p[p−1], . . . , pdn + p[p−1]}, (5)

where µ1, µ2, . . . , µn are the Laplacian eigenvalues of G and d1, d2, . . . , dn are the degrees of the

vertices in G.

The next result gives a two way infinite families of graphs G for which the inequality (1) holds.

Theorem 2.1. For j = 2, 3, 4, p = 2, 3 and n ≥ 9 and for j = 2, 3, 4, p ≥ 4 and n > pj, we have

E(SPF (KKj
n)) > LE(SPF (KKj

n)).

Proof. For p = 2 and j = 2, 3, 4, we have SPF (KKj
n)

∼= SD(KK2
n) or SD(KK3

n) or

SD(KK4
n), respectively. If SPF (KKj

n)
∼= SD(KK2

n), then the result follows by Theorem 4.4 in

[18]. If SPF (KKj
n)

∼= SD(KK3
n) or SD(KK3

n), then the result follows by proceeding similarly

as in Theorem 4.4 in [18]. Also for p = 3 and j = 2, 3, 4, we have SPF (KKj
n)

∼= KK2
n ◦ K3

or KK3
n ◦K3 or KK4

n ◦K3, respectively. Here we will show the result holds for SPF (KKj
n)

∼=
KK2

n ◦K3, and the result for the other two cases follows similarly.

The A-spectrum of the graph KK2
n ◦K3 is {−1[6n−4], 3x1+2, 3x2+2, 3x3+2, 3x4+2}, where

x1, x2, x2, x4 are the zeros of h(x) = x4 − 2(n − 2)x3 + (n2 − 6n + 4)x2 + 2(n2 − n − 3)x −
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(n2 − 8n + 11). Proceeding similarly as in Theorem 1.3, it can be seen that x1, x2, x3 > 0 and

x4 ∈ (−3,−2.2) for n ≥ 9. So, we have

E(KK2
n ◦K3) = 12n− 6x4 − 12 > 12n+ 1.2.

Also the L-spectrum of the graph KK2
n◦K3 is {3n[6n−10], 3n+3[5], 3n+6[2], 3(n+3)±

√
n2+6n−7

2
, 0},

with average vertex degree 3n− 1 + 6
n

. We have

LE(KK2
n ◦K3) = 9n− 13 +

24

n
+ 3

√
n2 + 6n− 7.

Therefore E(KK2
n ◦K3) − LE(KK2

n ◦K3) = 3n + 14.2 − 24
n
− 3

√
n2 + 6n− 7 = g(n). It

is easy to see that g(n) > 0, for all n ≥ 9.

So assume that p ≥ 4 and j = 2, 3, 4. Using (4) and Lemma 1.1, it follows that the A-spectrum

of the graph SPF (KKj
n) is

{−1[2pn−4], px1 + (p− 1), px2 + (p− 1), px3 + (p− 1), px4 + (p− 1)},

where x1, x2, x3, x4 are the zeros of the polynomial h(x) = x4 − 2(n − 2)x3 + (n2 − 6n + 6 −
j)x2 + (2n2 − 6n+ 2nj − j2 − 3j + 4)x+ (1 + nj2 − 2j2 + n2 − 2n− 2j + 3nj − jn2).

For n > pj, p ≥ 4 and j = 2, 3, 4, we have h(n) = n2 + 2n− 2j2 − 2j + 1 > 0, h(n− 1) =
−j2 < 0, h(n− 2) = (n− 1)2 > 0, h(1) = 16− 6j− 3j2 − 16n+5jn+ nj2 +4n2 − jn2 > 0,

h(0) = 1 + nj2 − 2j2 + n2 − 2n− 2j + 3nj − jn2 < 0, h(−3) = 16− 2j + j2 + 16n− 3jn+
nj2 + 4n2 − jn2 > 0,

h(−2.j) =





−0.56n2 + 4.656n+ 2.3936 < 0, if j = 2
−1.31n2 + 8.594n+ 4.3861 < 0, if j = 3
−2.04n2 + 14.288n+ 8.0016 < 0 if j = 4.

Therefore, h(x) has three positive roots, one in each of the intervals (0, 1), (n − 2, n − 1) and

(n − 1, n), and a single negative root in the interval (−3,−2.j). Assume that x1, x2, x3 > 0 and

x4 < 0. We have

E(SPF (KKj
n)) = (2pn− 4)| − 1|+ |px1 + p− 1|+ |px2 + p− 1|

+ |px3 + p− 1|+ |px4 + p− 1|
= 2pn− 4 + p(x1 + x2 + x3)− px4 + 2p− 2

= 2pn− 4 + p(2n− 4− x4)− px4 + 2p− 2

= 4pn− 2p− 2px4 − 6

> 4pn+ 2p(1.j)− 6.

Also by Lemma 1.2, equation (5) and the fact that the degree sequence of the graph KKj
n is

[n+ j − 1, n[j], (n− 1)[2n−j−1]], it follows that the L-spectrum of the graph SPF (KKj
n) is

{pn[2pn−p(j+1)−1], p(n+ 1)[pj−1], p(n+ j)[p−1],
p((n+j+1)±

√
(n+j+1)2−8j)

2
, 0}
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with average vertex degree pn− 1 + pj

n
. Therefore, we have

LE(SPF (KKj
n)

= (2pn− p(j + 1)− 1)|pn− pn+ 1− pj

n
|+ (pj − 1)|pn+ p− pn+ 1− pj

n
|

+ (p− 1)|pn+ pj − pn+ 1− pj

n
|+ |0− pn+ 1− pj

n
|+

+ |p((n+ j + 1)−
√

(n+ j + 1)2 − 8j)

2
− pn+ 1− pj

n
|

+ |p((n+ j + 1) +
√

(n+ j + 1)2 − 8j)

2
− pn+ 1− pj

n
|

= 3pn− p(j + 1)− 4 +
4pj

n
+ p

√
(n+ j + 1)2 − 8j.

For n > pj, p ≥ 4 and j = 2, 3, 4, we have E(SPF (KKj
n)) − LE(SPF (KKj

n)) =
pn + p(2(1.j) + j + 1) − 2 − 4pj

n
− p

√
(n+ j + 1)2 − 8j > 0. That is, E(SPF (KKj

n)) >

LE(SPF (KKj
n)), for all n > pj, p ≥ 4 and j = 2, 3, 4.

Remark 2.1. From Theorems 1.3 and 2.1, one may get an insight that the inequality E(SPF (G)) >
LE(SPF (G)) holds whenever the inequality E(G) > LE(G) holds. This is not always true, in

fact there are graphs G for which E(G) > LE(G) hold, but E(SPF (G)) > LE(SPF (G)) does

not hold. For example, consider the graph G1 as shown in Figure 2. For this graph A-spectrum is

{−2.5616,−2.3444,−1.2837,−0.8643,−0.4633, 0.6766, 0.8543, 1.9383, 4.0482}

and L-spectrum is

{0, 1.7888, 3.1355, 3.5858, 4.1973, 4.6874, 5.3643, 6.4142, 6.8267}.

So E(G1) = 15.0347 > 14.9798 = LE(G1). By Lemma 1.1, the A-spectrum of the graph

SD(G1) = S2F (G1) is

{−1[9],−4.1232,−3.6888,−1.5676,−0.7286, 0.0734, 2.3532, 2.7086, 4.8766, 9.0964}.

Also by Lemma 1.2 and the fact the degree sequence of the graph G1 is [3, 4, 4, 4, 4, 4, 4, 4, 5],
it follows that the L-spectrum of SD(G1) is

{0, 3.5776, 6.271, 7.1716, 8.3946, 9.3748, 10.7286, 12.8284, 13.6534, 8, 10[7], 12}.

Therefore E(SD(G1)) = 38.2162 < 41.1704 = LE(SD(G1)).

Although the conjecture that “the inequality LE(G) ≥ E(G) holds for all G” has been dis-

proved. This inequality holds for most of the graphs as shown in [12] and [22]. Therefore the

following problem will be of great interest.

Problem 1. Characterize all non-bipartite graphs G for which the inequality LE(G) ≥ E(G)
holds.
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