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Abstract

The matching polynomial of a graph is the generating function of the numbers of its matchings

with respect to their cardinality. A graph polynomial is polynomial reconstructible, if its value for

a graph can be determined from its values for the vertex-deleted subgraphs of the same graph. This

note discusses the polynomial reconstructibility of the matching polynomial. We collect previous

results, prove it for graphs with pendant edges and disprove it for some graphs.

Keywords: reconstruction, matching polynomial, perfect matching

Mathematics Subject Classification : 05C31, 05C70

DOI: 10.5614/ejgta.2015.3.1.4

1. Introduction

The famous (and still unsolved) reconstruction conjecture of Kelly [9] and Ulam [15] states

that every graph G with at least three vertices can be reconstructed from (the isomorphism classes

of) its vertex-deleted subgraphs.

With respect to a graph polynomial P (G), this question may be adapted as follows: Can

P (G) of a graph G = (V,E) be reconstructed from the graph polynomials of the vertex deleted-

subgraphs, that is from the collection P (G−v) for v ∈ V ? Here, this problem is considered for the

matching polynomial of a graph, which is the generating function of the number of its matchings

with respect to their cardinality.

This paper aims to prove that graphs with pendant edges are polynomial reconstructible and,

on the other hand, to display some evidence that arbitrary graphs are not.
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In the reminder of this section the necessary definitions and notation are given. Further, the

previous results from the literature are mentioned in Section 2. Section 3 and Section 4 contain the

result for pendant edges and the counterexamples in the general case.

Let G = (V,E) be a graph. A matching in G is an edge subset A ⊆ E, such that no two edges

have a common vertex. The matching polynomial M(G, x, y) is defined as

M(G, x, y) =
∑

A⊆E
A is matching in G

xdef(G,A)y|A|, (1)

where def(G,A) = |V | − |
⋃

e∈A e| is the number of vertices not included in any of the edges of

A. A matching A is a perfect matching, if its edges include all vertices, that means if def(G,A) =
0. A near-perfect matching A is a matching that includes all vertices except one, that means

def(G,A) = 1. For more information about matchings and the matching polynomial, see [2, 6, 11].

There are also two versions of univariate matching polynomials defined in the literature, namely

the matching defect polynomial and the matching generating polynomial [11, Section 8.5]. For

simple graphs, the previously mentioned matching polynomials are equivalent to each other.

For a graph G = (V,E) with a vertex v ∈ V , G−v is the graph arising from the deletion of v,

i.e. arising by the removal of all edges incident to v and v itself. The multiset of (the isomorphism

classes of) the vertex-deleted subgraphs G−v for v ∈ V is the deck of G. The polynomial deck

DP (G) with respect to a graph polynomial P (G) is the multiset of P (G−v) for v ∈ V . A graph

polynomial P (G) is polynomial reconstructible, if P (G) can be determined from DP (G).

2. Previous results

For results about the polynomial reconstruction of other graph polynomials, see the article by

Brešar, Imrich, and Klavžar [1, Section 1] and the references therein. For additional results, see

[10] [12, Section 7] [13, Subsection 4.7.3].

By arguments analogous to those used in Kelly’s Lemma [9], the derivative of the matching

polynomials of a graph G = (V,E) equals the sum of the polynomials in the corresponding poly-

nomial deck.

Proposition 2.1 (Lemma 1 in [3]). Let G = (V,E) be a graph. The matching polynomial

M(G, x, y) satisfies

δ

δx
M(G, x, y) =

∑

v∈V

M(G−v, x, y). (2)

In other words, all coefficients of the matching polynomial except the one corresponding to the

number of perfect matchings can be determined from the polynomial deck and thus also from the

deck:

mi,j(G) =
1

i

∑

v∈V

mi,j(G−v) ∀i ≥ 1, (3)
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where mi,j(G) is the coefficient of the monomial xiyj in M(G, x, y).
Consequently, the (polynomial) reconstruction of the matching polynomial reduces to the de-

termination of the number of perfect matchings.

Proposition 2.2. The matching polynomial M(G, x, y) of a graph G can be determined from its

polynomial deck DM(G) and its number of perfect matchings. In particular, the matching polyno-

mials M(G, x, y) of graphs with an odd number of vertices are polynomial reconstructible.

Tutte [14, Statement 6.9] has shown that the number of perfect matchings of a simple graph can

be determined from its deck of vertex-deleted subgraphs and therefore gave an affirmative answer

on the reconstruction problem for the matching polynomial.

The matching polynomial of a simple graph can also be reconstructed from the deck of edge-

extracted and edge-deleted subgraphs [3, Theorem 4 and 6] and from the polynomial deck of

the edge-extracted graphs [7, Corollary 2.3]. For a simple graph G on n vertices, the matching

polynomial is reconstructible from the collection of induced subgraphs of G with ⌊n
2
⌋+ 1 vertices

[5, Theorem 4.1].

3. Result for simple graphs with pendant edges

Theorem 3.1. Let G = (V,E) be a simple graph with a vertex of degree 1. G has a perfect

matching if and only if each vertex-deleted subgraph G−v for v ∈ V has a near-perfect matching.

Proof. For the first direction we assume that G has a perfect matching M . Then each vertex-

deleted subgraph G−v has a near-perfect matching M ′ = M \e, where e is the edge in the matching

M incident to v.

For the second direction, let w be a vertex of degree 1 and u its neighbor. If each vertex-deleted

subgraph has a near-perfect matching, say M ′, so does G−u. Hence, M ′ ∪ {{u, w}} is a perfect

matching of G.

As proven recently by Huang and Lih [8], this statement can be generalized to arbitrary simple

graphs.

Corollary 3.1. Let G = (V,E) be a forest. G has a perfect matching if and only if each vertex-

deleted subgraph G−v for v ∈ V has a near-perfect matching.

Forests have either none or one perfect matching. Because every pendant edge must be in a

perfect matching (in order to cover the vertices of degree 1) and the same holds recursively for the

subforest arising by deleting all the vertices of the pendant edges. Therefore, from Proposition 2.2

and Corollary 3.1 the polynomial reconstructibility of the matching polynomials follows.

Corollary 3.2. The matching polynomials M(G, x, y) of forests are polynomial reconstructible.

On the other hand, arbitrary graphs with pendant edges can have more than one perfect match-

ing. However, Corollary 3.1 can be extended to obtain the number of perfect matchings. For a

graph G = (V,E), the number of perfect matchings and of near-perfect matchings of G is denoted

by p(G) and np(G), respectively.
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Theorem 3.2. Let G = (V,E) be a simple graph with a pendant edge e = {u, w} where w is a

vertex of degree 1. Then we have

p(G) = np(G−u) ≤ np(G−v) ∀v ∈ V and particularly (4)

p(G) = min {np(G−v) | v ∈ V }. (5)

Proof. For each vertex v ∈ V , each perfect matching of G corresponds to a near-perfect matching

of G−v (by removing the edge including v). But the converse is not necessarily true, namely there

are near-perfect matchings of G−v leaving a non-neighbor of v in G unmatched. Thus, we have

p(G) ≤ np(G−v).
In case of the vertex u, each near-perfect matching M ′ of G−u corresponds to a perfect match-

ing M of G, namely M ′ ∪ {e}, and vice versa. Thus, we have p(G) = np(G−u), giving the

result.

By applying this theorem, the number of perfect matchings of a simple graph with pendant

edges can be determined from its polynomial deck and the following result is obtained as a corol-

lary.

Corollary 3.3. The matching polynomials M(G, x, y) of simple graphs with a pendant edge are

polynomial reconstructible.

4. Counterexamples for arbitrary graphs

While it is true that the matching polynomials of graphs with an odd number of vertices or with

an pendant edge are polynomial reconstructible, it does not hold for arbitrary graphs.

There are graphs which have the same polynomial deck and yet their matching polynomials are

different. Although there are already counterexamples with as little as six vertices, it seems that

nothing have been published before in connection with the question addressed here.

Remark 4.1. The matching polynomials M(G, x, y) of arbitrary graphs are not polynomial recon-

structible. The minimal counterexample for simple graphs (with respect to the number of vertices

and edges) are the graphs G1, G2 shown in Figure 1.

The graphs creating the minimal counterexample have six vertices and there are three more

pairs of such simple graphs, which are given in Figure 2.

The question arises, whether or not there are such counterexamples consisting of graphs with

an arbitrary even number of vertices. In the remainder, we give an affirmative answer to this

questions.

Let Pn and Cn be a path and a cycle on n vertices, respectively. For a graph G = (V,E), G
denotes the complement of G, i.e. G = (V,

(

V

2

)

\ E). For two graphs G and H , the disjoint union

of G and H is denoted by G ∪· H .

Theorem 4.1. Let k ≥ 3. The matching polynomials M(G, x, y) of the graphs C2k, Ck ∪· Ck and

C2k, Ck ∪· Ck are not polynomial reconstructible.
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G1 G2

M(G1,x,y) = 2y3 + · · · 6= 0y3 + · · · = M(G2,x,y)

G′
1 G′

2

M(G′
1,x,y) = 3xy2 +4x3y+ x5 = M(G′

2,x,y)

Figure 1. Graphs G1 and G2, which are the minimal simple graphs creating a counterexample for the polynomial

reconstructibility of the matching polynomial M(G, x, y). The decks of G1 and G2 consist of six graphs, each iso-

morphic to G′

1
and G′

2
, respectively. Unlike the matching polynomials of G1 and G2, the matching polynomials of

G′

1
and G′

2
coincide.

G3 G4

G5 = G4 G6 = G3

G7 = G2 G8 = G1

Figure 2. The other counterexamples on six vertices for the polynomial reconstructibility of the matching polynomial

M(G, x, y).
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Proof. Due to Godsil [4, Corollary 2.3], the matching polynomial of a graph is determined by the

matching polynomial of the complement of this graph. Furthermore, G−v = G−v. Therefore, it is

enough to consider the graphs C2k and Ck ∪· Ck.

The matching polynomials of these two graphs do not coincide because C2k has exactly two

perfect matchings, while Ck ∪· Ck has zero (k odd) or four (k even) perfect matchings.

On the other hand, their polynomial decks are identical. At first observe, that (C2k)−v is iso-

morphic to P2k−1 and (Ck ∪· Ck)−v is isomorphic to Ck ∪· Pk−1 for every vertex v of the respective

graph.

It remains to show that the matching polynomials of these graphs in the deck coincide, i.e.

M(P2k−1, x, y) = M(Ck ∪· Pk−1, x, y). Therefore, we make use of the well-known recurrence

relation for the matching polynomial [2, Theorem 1]:

M(G, x, y) = M(G−e, x, y) + y ·M(G−u−v, x, y),

where e = {u, v} is an edge of G, G−e is the graph with the edge e deleted and G−u−v is the graph

with the vertices of e deleted.

Applying the recurrence relation to the edge connecting the (k − 2)th and (k − 1)th vertex of

P2k−1 (counted from either side), we obtain

M(P2k−1, x, y) = M(Pk−1 ∪· Pk, x, y) + y ·M(Pk−2 ∪· Pk−1, x, y).

Applying the recurrence relation to an edge of the cycle in Ck ∪· Pk−1, we obtain exactly the same

term:

M(Ck ∪· Pk−1, x, y) = M(Pk ∪· Pk−1, x, y) + y ·M(Pk−2 ∪· Pk−1, x, y).

It follows, that the polynomial decks coincide, while the matching polynomials of the original

graphs do not. Hence, those cannot be determined from the corresponding polynomial decks.

In fact, the above construction for k = 2, in the case of the graphs C4 and C2 ∪· C2, where C2 is

a graph on two vertices connected by two parallel edges, provide an even smaller counterexample,

though the graphs are not simple.

In addition, to obtain examples on an arbitrary even number of vertices such that the graphs

and their complements are connected, the construction of the graphs G3 and G4 as well as of their

complements G5 and G6 can be generalized analogously.
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