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Abstract

Seymour’s second neighborhood conjecture states that every simple digraph (without digons) has

a vertex whose first out-neighborhood is at most as large as its second out-neighborhood. Such a

vertex is said to have the second neighborhood property (SNP). We define ”good” digraphs and

prove a statement that implies that every feed vertex of a tournament has the SNP. In the case of

digraphs missing a matching, we exhibit a feed vertex with the SNP by refining a proof due to

Fidler and Yuster and using good digraphs. Moreover, in some cases we exhibit two vertices with

SNP.
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1. Introduction

In this paper, a digraph D is a pair of two sets (V,D), where E ⊆ V ×V . V and E are the vertex

set and edge set of D and denoted by V (D) and E(D) respectively. An oriented graph is a digraph

that contains neither loops nor digons. If K ⊆ V (D) then the induced restriction of D to K is
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denoted by D[K]. As usual, N+
D (v) (resp. N−

D (v)) denotes the (first) out-neighborhood (resp. in-

neighborhood) of a vertex v ∈ V . N++
D (v) (resp. N−−

D (v)) denotes the second out-neighborhood

(in-neighborhood) of v, which is the set of vertices that are at distance 2 from v (resp. to v). We

also denote d+D(v) = |N+
D (v)|, d

++
D (v) = |N++

D (v)|, d−D(v) = |N−

D (v)| and d−−

D (v) = |N−−

D (v)|.
We omit the subscript if the digraph is clear from the context. For short, we write x → y if the arc

(x, y) ∈ E. A vertex v ∈ V (D) is called whole if d(v) := d+(v)+d−(v) = |V (D)|−1, otherwise

v is non whole. A sink v is a vertex with d+(v) = 0. For x, y ∈ V (D), we say xy is a missing edge

of D if neither (x, y) nor (y, x) are in E(D). The missing graph G of D is the graph whose edges

are the missing edges of D and whose vertices are the non whole vertices of D. In this case, we

say that D is missing G. So, a tournament does not have missing edges.

A vertex v of D is said to have the second neighborhood property (SNP) if d+D(v) ≤ d++
D (v).

In 1990, Seymour conjectured the following:

Conjecture 1. (Seymour’s Second Neighborhood Conjecture (SNC))[1] Every oriented graph

has a vertex with the SNP.

In 1996, Fisher [2] solved the SNC for tournaments by using a certain probability distribu-

tion on the vertices. Another proof of Dean’s conjecture was established in 2000 by Havet and

Thomassé [3]. Their short proof uses a tool called median orders. Furthermore, they have proved

that if a tournament has no sink vertex then there are at least two vertices with the SNP.

Let D = (V,E) be a digraph (vertex) weighted by a positive real valued function ω : V → R+.

The couple (D,ω) (or simply D) is called a weighted digraph. The weight of an arc e = (x, y) is

ω(e) := ω(x).ω(y) . The weight of a set of vertices (resp. edges) is the sum of the weights of its

members. We say that a vertex v has the weighted SNP if ω(N+(v)) ≤ ω(N++(v)). It is known

that the SNC is equivalent to its weighted version: Every weighted oriented graph has a vertex

with the weighted SNP.

Let L = v1v2...vn be an ordering of the vertices of a weighted digraph (D,ω). An arc e =
(vi, vj) is forward with respect to L if i < j. Otherwise e is a backward arc. A weighted median

order L = v1v2...vn of D is an order of the vertices of D that maximizes the weight of the set

of forward arcs of D, i.e., the set {(vi, vj) ∈ E(D); i < j}. In other words, L = v1v2...vn is a

weighted median order of D if ω(L) = max{ω(L′);L′ is an ordering of ther vertices of D}. In

fact, the weighted median order L satisfies the feedback property: For all 1 ≤ i ≤ j ≤ n :

ω(N+
D[i,j](vi)) ≥ ω(N−

D[i,j](vi))

and

ω(N−

D[i,j](vj)) ≥ ω(N+
D[i,j](vj))

where [i, j] := {vi, vi+1, ..., vj}.

183



www.ejgta.org

A remark on the second neighborhood problem | Salman Ghazal

Indeed, suppose to the contrary that ω(N+
D[i,j](vi)) < ω(N−

D[i,j](vi)). Consider the order L′ =
v1...vi−1vi+1...vjvivj+1...vn obtained from L by inserting vi just after vj . Then we have:

ω(L′) = ω(L) + ω({(vk, vi) ∈ E(D); i ≤ k ≤ j})− ω({(vi, vk) ∈ E(D); i ≤ k ≤ j})

= ω(L) + ω(vi).ω(N
−

D[i,j](vi))− ω(vi).ω(N
+
D[i,j](vj))

= ω(L) + ω(vi).(ω(N
−

D[i,j](vi))− ω(N+
D[i,j](vj))) > ω(L),

which contradicts the maximality of ω(L).

It is also known that if we reverse the orientation of a backward arc e = (vi, vj) of D with

respect to L, then L is again a weighted median order of the new weighted digraph D′ = D −
(vi, vj) + (vj, vi).

When ω = 1, we obtain the definition of median orders of a digraph ([3, 4]).

Let L = v1v2...vn be a weighted median order. Among the vertices not in N+(vn) two types

are distinguished: A vertex vj is good if there is i ≤ j such that vn → vi → vj , otherwise vj is a

bad vertex. The set of good vertices of L is denoted by GD
L [3] ( or GL if there is no confusion ).

Clearly, GL ⊆ N++(vn). The last vertex vn is called a feed vertex of (D,ω).

In 2007, Fidler and Yuster [4] proved that SNC holds for oriented graphs missing a matching.

They have used median orders and another tool called the dependency digraph. However, there

proof does not guarantee that the vertex found to have the SNP is a feed vertex.

In 2012, Ghazal also used the notion of weighted median order to prove the weighted SNC

for digraphs missing a generalized star. As a corollary, the weighted version holds for digraphs

missing a star, complete graph or a sun [5]. He also used the dependency digraph to prove SNC

for other classes of oriented graphs [6].

We say that a missing edge x1y1 loses to a missing edge x2y2 if: x1 → x2, y2 /∈ N+(x1) ∪
N++(x1), y1 → y2 and x2 /∈ N+(y1) ∪ N++(y1). The dependency digraph ∆ of D is defined as

follows: Its vertex set consists of all the missing edges and (ab, cd) ∈ E(∆) if ab loses to cd [4, 6].

Note that ∆ may contain digons.

Definition 1. [5] In a digraph D, a missing edge ab is called a good missing edge if:

(i) (∀v ∈ V \{a, b})[(v → a) ⇒ (b ∈ N+(v) ∪N++(v))] or

(ii) (∀v ∈ V \{a, b})[(v → b) ⇒ (a ∈ N+(v) ∪N++(v))].
If ab satisfies (i) we say that (a, b) is a convenient orientation of ab.
If ab satisfies (ii) we say that (b, a) is a convenient orientation of ab.

We will need the following observation:

Lemma 1.1. [4] Let D be an oriented graph and let ∆ denote its dependency digraph. A missing

edge ab is good if and only if its in-degree in ∆ is zero.
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In the next section, we will define good median orders and good digraphs and prove a statement

which implies that every feed vertex of a weighted tournament has the weighted SNP. In the last

section, we refine the proof of Fidler and Yuster and use good median orders to exhibit a feed

vertex with the SNP in the case of oriented graphs missing a matching.

2. Good median orders

Let D be a (weighted) digraph and let ∆ denote its dependency digraph. Let C be a connected

component of ∆. Set K(C) = {u ∈ V (D); there is a vertex v of D such that uv is a missing

edge and belongs to C }. The interval graph of D, denoted by ID is defined as follows. Its

vertex set consists of the connected components of ∆ and two vertices C1 and C2 are adjacent if

K(C1) ∩ K(C2) 6= φ. So ID is the intersection graph of the family {K(C);C is a connected

component of ∆ }. Let ξ be a connected component of ID. We set K(ξ) = ∪C∈ξK(C). Clearly,

if uv is a missing edge in D then there is a unique connected component ξ of ID such that u and v
belong to K(ξ). For f ∈ V (D), we set J(f) = {f} if f is a whole vertex, otherwise J(f) = K(ξ),
where ξ is the unique connected component of ID such that f ∈ K(ξ). Clearly, if x ∈ J(f) then

J(f) = J(x) and if x /∈ J(f) then x is adjacent to every vertex in J(f).

Let L = x1 · · · xn be a (weighted) median order of a digraph D. For i < j, the sets [i, j] :=
[xi, xj] := {xi, xi+1, ..., xj} and ]i, j[= [i, j]\{xi, xj} are called intervals of L. We recall that

K ⊆ V (D) is an interval of D if for every u, v ∈ K we have: N+(u)\K = N+(v)\K and

N−(u)\K = N−(v)\K. The following shows a relation between the intervals of D and the

intervals of L.

Proposition 2.1. Let I = {I1, ..., Ir} be a set of pairwise disjoint intervals of D. Then for every

weighted median order L of D, there is a weighted median order L′ of D such that: L and L′ have

the same feed vertex and every interval in I is an interval of L′.

Proof. Let L = x1x2...xnbe a weighted median order of a weighted digraph (D,ω) and let I =
{I1, ..., Ir} be a set of pairwise disjoint intervals of D. We will use the feedback property to

prove it. Suppose a, b ∈ I1 with a = xi, b = xj , i < j and [xi, xj] ∩ I1 = {xi, xj}. Since I1
is an interval of D, we have N+

]i,j[(xi) = N+
]i,j[(xj) and N−

]i,j[(xi) = N−

]i,j[(xj). So, ω(N−

]i,j[(xi))

≤ ω(N+
]i,j[(xi)) = N+

]i,j[(xj) ≤ ω(N−

]i,j[(xj)) = ω(N−

]i,j[(xi)), where the two inequalities are by the

feedback property. Whence, all the quantities in the previous statement are equal. In particular,

ω(N+
]i,j[(xi)) = ω(N−

]i,j[(xi)). Let L1 be the enumeration x1...xi−1xi+1...xj−1xxi
xjxj+1...xn. Then

ω(L1) = ω(L) + ω(N−

]i,j[(xi)) − ω(N+
]i,j[(xi)) = ω(L). Thus, L1 is a weighted median order of

D. By successively repeating this argument, we obtain a weighted median order in which I1 is an

interval of L. Again, by successively repeating the argument for each I ∈ I, we obtain the desired

order.

We say that D is good digraph if the sets K(ξ)’s are intervals of D. By the previous proposi-

tion, every good digraph has a (weighted) median order L such that the K(ξ)’s form intervals of

L. Such an enumeration is called a good (weighted) median order of the good digraph D.
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Theorem 2.1. Let (D,ω) be a good weighted oriented graph and let L be a good weighted me-

dian order of (D,ω), with feed vertex f. Then for every x ∈ J(f), we have ω(N+(x)\J(f)) ≤
ω(GL\J(f)). So if x has the weighted SNP in (D[J(f)], ω), then it has the weighted SNP in D.

Proof. The proof is by induction n, the number of vertices of D. It is trivial for n = 1. Let

L = x1...xn be a good weighted median order of (D,ω). Set f = xn, J(f) = [xt, xn], L1 = x1...xt

and D1 = D[x1, xt]. Then (D1, ω) is a good weighted oriented graph and L1 is a good weighted

median order of (D1, ω) in which J(xt) = {xt}. Suppose that t < n. Then by the induction

hypothesis, ω(N+
D1
(xt)) ≤ ω(GL1

). However, J(f) is an interval of D, then for every x ∈ J(f),
we have ω(N+(x)\J(f)) = ω(N+(xt)\J(f)) = ω(N+

D1
(xt)) ≤ ω(GL1

) = ω(GL\J(f)). Now

suppose that t = n. If L does not have any bad vertex then N−(xn) = GL. Whence, ω(N+(xn)) ≤
ω(N−(xn)) = ω(GL) where the inequality is by the feedback property. Now suppose that L has

a bad vertex and let i be the smallest such that xi is bad. Since J(xi) is an interval of D and L,

then every vertex in J(xi) is bad and thus J(xi) = [xi, xp] for some p < n. For j < i, xj is

either an out-neighbor of xn or a good vertex, by definition of i. Moreover, if xj ∈ N+(xn) then

xj ∈ N+(xi). So N+(xn) ∩ [1, i] ⊆ N+(xi) ∩ [1, i]. Equivalently, N−(xi) ∩ [1, i] ⊆ GL ∩ [1, i].
Therefore, ω(N+(xn)∩ [1, i]) ≤ ω(N+(xi)∩ [1, i]) ≤ ω(N−(xi)∩ [1, i]) ≤ ω(GL ∩ [1, i]), where

the second inequality is by the feedback property. Now L′ = xp+1...xn is good also. By induction,

ω(N+(xn) ∩ [p + 1, n]) ≤ ω(GL′). Note that GL′ ⊆ GL ∩ [p + 1, n]. Whence ω(N+(xn)) =
ω(N+(xn) ∩ [1, i]) + ω(N+(xn) ∩ [p + 1, n]) ≤ ω(GL ∩ [1, i]) + ω(GL ∩ [p + 1, n]) = ω(GL).
The second part of the statement is obvious.

Since every (weighted) tournament is a good (weighted) oriented graph, we automatically ob-

tain the second neighborhood conjecture for weighted and non-weighted tournaments respectively.

Corollary 2.1. ([4]) Let L be a weighted median order of a weighted tournament (T, ω) with feed

vertex f. Then ω(N+(f)) ≤ ω(GL).

Corollary 2.2. ([3]) Let L be a median order of a tournament with feed vertex f. Then |N+(f))| ≤
|GL|.

Let L be a good weighted median order of a good oriented graph D and let f denote its feed

vertex. By theorem 2.1, for every x ∈ J(f), ω(N+(x)\J(f)) ≤ ω(GL\J(f)). Let b1, · · · , br
denote the bad vertices of L not in J(f) and v1, · · · , vs denote the non bad vertices of L not in

J(f), both enumerated in increasing order with respect to their index in L.

If ω(N+(f)\J(f)) < ω(GL\J(f)), we set Sed(L) = L. If ω(N+(f)\J(f)) = ω(GL\J(f)), we

set sed(L) = b1 · · · brJ(f)v1 · · · vs. This new order is called the sedimentation of L.

Lemma 2.1. Let L be a good weighted median order of a good weighted oriented graph (D,ω).
Then Sed(L) is a good weighted median order of (D,ω).

Proof. Let L = x1...xn be a good weighted local median order of (D,ω). If Sed(L) = L, there

is nothing to prove. Otherwise, we may assume that ω(N+(xn)\J(xn)) = ω(GL\J(xn)). The

proof is by induction on r the number of bad vertices not in J(xn). Set J(xn) = [xt, xn]. If r = 0
then we have N−(xn)\J(xn) = GL\J(xn). Whence, ω(N+(xn)\J(xn)) = ω(GL\J(xn)) =

186



www.ejgta.org

A remark on the second neighborhood problem | Salman Ghazal

ω(N−(xn)\J(xn)). Thus, Sed(L) = J(xn)x1...xt−1 is a good weighted median order. Now

suppose that r > 0 and let i be the smallest such that xi /∈ J(xn) and is bad. As in the proof

of theorem 2.1, J(xi) = [xi, xp] for some p < n, ω(N+(xn) ∩ [1, i]) ≤ ω(N+(xi) ∩ [1, i]) ≤
ω(N−(xi) ∩ [1, i]) ≤ ω(GL ∩ [1, i]) and ω(N+(xn) ∩ [p + 1, t − 1]) ≤ ω(GL ∩ [p + 1, t − 1]).
However, ω(N+(xn)\J(xn)) = ω(GL\J(xn)), then the previous inequalities are equalities. In

particular, ω(N+(xi)∩ [1, i]) = ω(N−(xi)∩ [1, i]). Since J(xi) is an interval of L and D, then for

every x ∈ J(xi) we have ω(N+(x) ∩ [1, i]) = ω(N−(x) ∩ [1, i]). Thus J(xi)x1...xi−1xp+1...xn is

a good weighted median order. To conclude, apply the induction hypothesis to the good weighted

median order x1...xi−1xp+1...xn.

Define now inductively Sed0(L) = L and Sedq+1(L) = Sed(Sedq(L)). If the process reaches

a rank q such that Sedq(L) = y1...yn and ω(N+(yn)\J(yn)) < ω(GSedq(L)\J(yn)), call the order

L stable. Otherwise call L periodic. These new order are used by Havet and Thomassé to exhibit

a second vertex with the SNP in tournaments that do not have any sink. We will use them for the

same purpose but for other classes of oriented graphs.

3. Case of oriented graph missing a matching

In this section, D is an oriented graph missing a matching and ∆ denotes its dependency

digraph. We begin by the following lemma:

Lemma 3.1. [4] The maximum out-degree of ∆ is one and the maximum in-degree of ∆ is one.

Thus ∆ is composed of vertex disjoint directed paths and directed cycles.

Proof. Assume that a1b1 loses to a2b2 and a1b1 loses to a′2b
′

2, with a1 → a2 and a1 → a′2. The

edge a′2b2 is not a missing edge of D. If a′2 → b2 then b1 → a′2 → b2, a contradiction. If b2 → a′2
then b1 → b2 → a′2, a contradiction. Thus, the maximum out-degree of ∆ is one. Similarly, the

maximum in-degree is one.

In the following, C = a1b1, ..., akbk denotes a directed cycle of ∆, namely ai → ai+1, bi+1 /∈
N++(ai) ∪ N+(ai), bi → bi+1 and ai+1 /∈ N++(bi) ∪ N+(bi), for all i < k. In [4], it is proved

that D[K(C)] has a vertex with the SNP. Here we prove that every vertex of K(C) has the SNP in

D[K(C)].

Lemma 3.2. ([4]) If k is odd then ak → a1, b1 /∈ N++(ak)∪N
+(ak), bk → b1 and a1 /∈ N++(bk)∪

N+(bk). If k is even then ak → b1, a1 /∈ N++(ak)∪N
+(ak), bk → a1 and b1 /∈ N++(bk)∪N

+(bk).

Lemma 3.3. [4] K(C) is an interval of D.

Proof. Let f /∈ K(C). Then f is adjacent to every vertex in K(C). If a1 → f then b2 → f , since

otherwise b2 ∈ N++(a1)∪N+(a1) which is a contradiction. So N+(a1)\K(C) ⊆ N+(b2)\K(C).
Applying this to every losing relation of C yields N+(a1)\K(C) ⊆ N+(b2)\K(C) ⊆ N+(a3)\K(C)
· · · ⊆ N+(bk)\K(C) ⊆ N+(b1)\K(C) ⊆ N+(a2)\K(C) · · · ⊆ N+(ak)\K(C) ⊆ N+(a1)\K(C)
if k is even. So these inclusion are equalities. An analogous argument proves the same result for

odd cycles.
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Lemma 3.4. In D[K(C)] we have:

If k is odd then:

N+(a1) = N−(b1) = {a2, b3, · · · , ak−1, bk}

N−(a1) = N+(b1) = {b2, a3, · · · , bk−1, ak},

If k is even then:

N+(a1) = N−(b1) = {a2, b3, · · · , bk−1, ak}

N−(a1) = N+(b1) = {b2, a3, · · · , ak−1, bk}.

Proof. Suppose that k is odd. Set K := K(C). Then bk ∈ N+
D[K](a1) by lemma 3.2. Since

ak−1bk−1 loses to ak, bk and (a1, bk) ∈ E(D) then (a1, ak−1) ∈ E(D) and so ak−1 ∈ N+
D[K](a1),

since otherwise (ak−1, a1) ∈ E(D) and so bk ∈ N++
D[K](ak−1), which is a contradiction to the

definition of the losing relation ak−1bk−1 → akbk. And so on bk−2, ak−3, ..., b3, a2 ∈ N+
D[K](a1).

Again, since a1b1 loses to a2, b2 then b2 ∈ N−

D[K](a1). Since a2b2 loses to a3, b3 and (b2, a1) ∈

E(D) then (a3, a1) ∈ E(D) and so a3 ∈ N−

D[K(C)](a1). And so on, b4, a5, ..., bk−1, ak ∈ N−

D[K](a1).

We use the same argument for finding N+
D[K](b1) and N−

D[K](b1). Also we use the same argument

when k is even.

Lemma 3.5. In D[K(C)] we have: N+(ai) = N−(bi), N
−(ai) = N+(bi),

N++(ai) = N−(ai)∪{bi}\{bi+1} and N++(bi) = N−(bi)∪{ai}\{ai+1} for all i = 1, ..., k where

ak+1 := a1, bk+1 := b1 if k is odd and ak+1 := b1, bk+1 := a1 if k is even.

Proof. The first part is due to the previous lemma and the symmetry in these cycles. For the second

part it is enough to prove it for i = 1 and a1. Suppose first that k is odd. By definition of losing

relation between a1b1 and a2b2 we have b2 /∈ N++(a1) ∪ N+(a1). Moreover a1 → a2 → b1,
whence b1 ∈ N++(a1). Note that for i = 1, ..., k − 1, ai → ai+1 and bi → bi+1. Combining this

with the previous lemma we find that N++(a1) = N−(a1) ∪ {b1}\{b2}. Similar argument is used

when k is even.

So we have:

Lemma 3.6. d++(v) = d+(v) = d−(v) = k − 1 for all v ∈ K(C).

Let P = a1b1, a2b2, · · · , akbk be a connected component of ∆, which is also a maximal path

in ∆, namely ai → ai+1, bi → bi+1 for i = 1, ..., k − 1. Since a1b1 is a good edge then (a1, b1) or

(b1, a1) is a convenient orientation. If (a1, b1) is a convenient orientation, then we orient (ai, bi) for

i = 1, ..., k. Otherwise, we orient aibi as (bi, ai). We do this for every such a path of ∆. Denote

the set of these new arcs by F . Set D′ = D + F .

Since we have oriented all the missing edges of D that form the connected components of ∆
that are paths, then they are no longer missing edges of D′ and thus, the dependency digraph of D′

is composed of only directed cycles. Then by lemma 3.3 we have:
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Lemma 3.7. D′ is a good digraph.

Now, we are ready to prove the following statement:

Theorem 3.1. Every feed vertex of D′ has the SNP in D and D′.

Proof. Let L be a good median order of D′ and let f denote its feed vertex. We have |N+
D′(f)\J(f)|

≤ |GD′

L \J(f)| by theorem 2.1.

Suppose that f is not incident to any new arc of F . Then J(f) = {f} or J(f) = K(C)
( in D and D′) for some cycle C of ∆, N+

D′(f) = N+(f) and f has the SNP in D[J(f)]. Let

y ∈ N++
D′ (f)\J(f). There is a vertex x such that f → x → y → f in D′. Note that the arcs

(f, x) and (y, f) are in D. If (x, y) ∈ D or is a convenient orientation then y ∈ N++(f). Oth-

erwise, there is a missing edge rs that loses to xy, namely s → y and x /∈ N++(s) ∪ N+(s).
But fs is not a missing edge then we must have (f, s) ∈ D. Thus y ∈ N++(f). Hence

N++
D′ (f)\J(f) ⊆ N++(f)\J(f). Thus |N+(f)| = |N+

D′(f)| = |N+
D′(f)\J(f)| + |N+

D′(f) ∩
J(f)| ≤ |GD′

L \J(f)|+ |N++
D′ (f) ∩ J(f)| ≤ |N++(f)\J(f)|+ |N++

D[J(f)](f)| = |N++(f)|.

Suppose that F is incident to a new arc of F . Then there is a path P = a1b1, a2b2, · · · , akbk in

∆, which is also a connected component ∆, namely at → at+1, bt → bt+1 for t = 1, ..., k− 1, such

that f = ai or f = bi. We may suppose without loss of generality that (at, bt) ∈ D′, ∀t ∈ {1, ..., k}.

Suppose first that f = ai and i < k. Then f gains only bi as a first out-neighbor and bi+1 as a second

out-neighbor. Indeed, let y ∈ N++
D′ (f)\{bi+1}. There is a vertex x such that f → x → y → f

in D′. Suppose that bi 6= x. Note that the arcs (f, x) and (y, f) are in D. If (x, y) ∈ D or is

a convenient orientation then y ∈ N++(f). Otherwise, there is a missing edge rs that loses to

xy, namely s → y and x /∈ N++(s) ∪ N+(s). But fs is not a missing edge then we must have

(f, s) ∈ D. Thus y ∈ N++(f). Suppose that bi = x. Since bi → y, ai+1 /∈ N++(bi) ∪ N+(bi)
and ai+1y is not a missing edge, then we must have (y, ai+1) ∈ D. Thus f → ai+1 → y in D
and y ∈ N++(f). Hence N++

D′ (f)\{bi+1} ⊆ N++(f). Note that J(f) = {f} in D′. Combining

this with theorem 2.1, we get |N+(f)| = |N+
D′(f)| − 1 ≤ |N++

D′ (f)| − 1 ≤ |N++(f)|. Now

suppose that f = ak. We reorient the missing edge akbk as (bk, ak) and let D′′ denote the new

oriented graph. Then L is a good median order of the good oriented graph D′′, N+
D′′(f) = N+(f),

J(f) = {f} in D′′, and f has the SNP in D′′. Let y ∈ N++
D′′ (f). There is a vertex x such that

f → x → y → f in D′′. Note that the arcs (f, x) and (y, f) are in D. If (x, y) ∈ D or is

a convenient orientation then y ∈ N++(f). Otherwise, there is a missing edge rs that loses to

xy, namely s → y and x /∈ N++(s) ∪ N+(s). But fs is not a missing edge then we must have

(f, s) ∈ D. Thus y ∈ N++(f) and N++
D′′ (f) ⊆ N++(f). Thus f has the SNP in D. Finally,

suppose that f = bi. We use the same argument of the case f = ak to prove that f has the SNP in

D.

We note that our method guarantees that the vertex f found with the SNP is a feed vertex of

some digraph containing D. This is not guaranteed by the proof presented in [4]. Recall that F is

the set of the new arcs added to D to obtain the good oriented graph D′. So if F = φ then D is a

good oriented graph.
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Theorem 3.2. Let D be an oriented graph missing a matching and suppose that F = φ. If D has

no sink vertex then it has at least two vertices with the SNP.

Proof. Consider a good median order L = x1...xn of D. If J(xn) = K(C) for some directed

cycle C of ∆ then by theorem 2.1 and lemma 3.6 the result holds. Otherwise, xn is a whole vertex

(i.e. J(xn) = {xn}). By theorem 2.1, xn has the SNP in D. So we need to find another vertex

with SNP. Consider the good median order L′ = x1...xn−1. Suppose first that L′ is stable. There

is q for which Sedq(L′) = y1...yn−1 and | N+(yn−1)\J(yn−1) |<| GSedq(L′)\J(yn−1) |. Note that

y1...yn−1xn is also a good median order of D. By theorem 2.1 and lemma 3.6, y := yn−1 has

the SNP in D[y1, yn−1]. So | N+(y) |=| N+
D[y1,yn−1]

(y) | +1 ≤| GSedq(L′) |≤| N++(y) |. Now

suppose that L′ is periodic. Since D has no sink then xn has an out-neighbor xj . Choose j to be

the greatest (so that it is the last vertex of its corresponding interval). Note that for every q, xn

is an out-neighbor of the feed vertex of Sedq(L′). So xj is not the feed vertex of any Sedq(L′).
Since L′ is periodic, xj must be a bad vertex of Sedq(L′) for some integer q, otherwise the index

of xj would always increase during the sedimentation process. Let q be such an integer. Set

Sedq(L′) = y1...yn−1. Lemma 3.6 and theorem 2.1 guarantee that the vertex y := yn−1 with the

SNP in D[y1, yn−1]. Note that y → xn → xj and GSedq(L′) ∪ {xj} ⊆ N++(y). So | N+(y) |=|
N+

D[y1,yn−1]
(y) | +1 =| GSedq(L′) | +1 =| GSedq(L′) ∪ {xj} |≤| N++(y) |.
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